CS111, Lecture 8

Multiprocessing Introduction

Optional reading:
Operating Systems: Principles and Practice (2"d Edition): Chapter 4

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
Creative Commons Attribution 2.5 License. Allrights reserved.
Based on slides and notes created by John Ousterhout, Jerry Cain, Chris Gregg, and others.
NOTICE RE UPLOADING TO WEBSITES: This contentis protected and may notbe shared,
uploaded, or distributed. (without expressed written permission)

Lecture 7 Recap: Filesystem System

Calls

* open, close, read and write are 4 system calls for interacting w/ the filesystem

* These functions work with file descriptors — unigue numbers assigned by the
operating system to refer to that instance of that file in this program.

 read and write may not read/write all requested bytes — not necessarily an
error (e.g. may be interrupted), but we may need to call them multiple times.

File descriptors are a powerful
abstraction for working with files
and other resources.

File Descriptors and I/0

 What if we could use the same code that writes to a file to also write output to
the terminal? Or write to a network connection?

 What if we could use the same code that reads from a file to read input from
the user? Or read from a network connection?

File descriptors let us do this! A file descriptor can represent more than a file —
it is a number representing a currently-open resource. That resource could be a
file, or something that behaves like a file.

 When you connect to the network, you get back a file descriptor — you can
read/write with it to read/write on the network!

* There are special reserved file descriptor numbers 0,1,2 — reading from O reads
input from the terminal, writing to 1 writes to the terminal STDOUT, and
writing to 2 writes to the terminal STDERR!

File Descriptors and I/0

There are 3 special file descriptors provided by default to each program:
* 0: standard input (user input from the terminal) - STDIN_FILENO

 1: standard output (output to the terminal) - STDOUT FILENO

 2: standard error (error output to the terminal) - STDERR_FILENO

These aren’t really files — however, they are set up to behave just like they are.
E.g. read(0, buf, nbytes) gets input from the user!

Programs always assume that 0,1,2 represent STDIN/STDOUT/STDERR.
E.g. cin in C++ is essentially a nicer version of read(0, buf, nbytes)!

Example: Copy

What is the smallest 1 line change/hack we could make to this code to make it

print the contents of the source file to the terminal instead of copying it to the
destination file?

static const int kDefaultPermissions = 0644;
int main(int argc, char *argv[]) {
int sourceFD = open(argv[1l], O RDONLY);
int destinationFD = open(argv[2],
O WRONLY | O CREAT | O EXCL, kDefaultPermissions);

copyContents(sourceFD, destinationFD);
close(sourceFD);

close(destinationFD);
return 0;

Example: Copy

What is the smallest 1 line change/hack we could make to this code to make it

print the contents of the source file to the terminal instead of copying it to the
destination file?

static const int kDefaultPermissions = 0644;
int main(int argc, char *argv[]) {
int sourceFD = open(argv[1], O RDONLY);
int destinationFD openl{argvl 15
O-—WRONLY O—CREAT O—EXCL; kDefaultPermissions)s

copyContents(sourceFD, STDOUT_FILENO);

close(sourceFD);
: destinationFD)s

return 0;
}

Topic 2: Multiprocessing - How
can our program create and

interact with other programs?
How does the operating system
manage user programs?

CS111 Topic 2: Multiprocessing

Multiprocessing - How can our program create and interact with other
programs? How does the operating system manage user programs?

Why is answering this question important?

* Helps us understand how programs are spawned and run (e.g. shells, web
servers)

* Introduces us to the challenges of concurrency — managing concurrent events
* Allows us to understand how shells work and implement our own!

assign3: implement your own shell program!

CS111 Topic 2: Multiprocessing

Managing
Multiprocessing processes and
Introduction running other
programs

Inter-process
communication
with pipes

Today Lecture 9 Lecture 10 / 11

assign3: implement your own shell!
10

Learning Goals

e Learn how to use the fork() function to create a new process
* Understand how a process is cloned and run by the OS

11

Plan For Today

* Multiprocessing overview

* Introducing fork()
* Cloning Processes

cp -r /afs/ir/class/csl11l1l/lecture-code/lect8 .

12

Plan For Today

* Multiprocessing overview

cp -r /afs/ir/class/csl11l1l/lecture-code/lect8 . 13

Multiprocessing Terminology

Program: code you write to execute tasks

Process: an instance of your program running; consists of program and
execution state.

Key idea: multiple processes can run the same program

Process 5621

int main(int argc, char *argv[]) {
printf("Hello, world!\n");
printf("Goodbye!\n");
return 0;

14

Multiprocessing

Your computer runs many processes simultaneously - even with just 1 processor
core (how?)

* "simultaneously"” = switch between them so fast humans don't notice

* Your program thinks it's the only thing running

* OS schedules tasks - who gets to run when

* Each gets a little time, then has to wait

* Many times, waiting is good! E.g. waiting for key press, waiting for disk
e Caveat: multicore computers can truly multitask

15

Playing with Processes

When you run a program from the terminal, it runs in a new process.

* The OS gives each process a unique "process ID" number (PID)

* PIDs are useful once we start managing multiple processes

e getpid() returns the PID of the current process (pid_t is a numeric type)

// getpid.c

#include <stdio.h>

#include <unistd.h>

int main(int argc, char *argv[]) {
pid t myPid = getpid();
printf("My process ID is %d\n", myPid);
return 9;

$./getpid
My process ID is 18814

$./getpid
My process ID is 18831

16

* Introducing fork()

Plan For Today

cp -r /afs/ir/class/csl11l1l/lecture-code/lect8 .

17

Fork is a system call that
creates a second process which
IS a clone of the first.

fork() creates a second process that is a clone of the first:

Process A

int main(int argc, char *argv[]) {
printf("Hello, world!\n");
fork();
printf("Goodbye!\n");
return 0;

$./myprogram

pid t fork();

19

fork() creates a second process that is a clone of the first: pid_t fork();

Process A

int main(int argc, char *argv[]) {
» printf("Hello, world!\n");
fork();
printf("Goodbye!\n");
return 0;

$./myprogram
Hello, world!

20

fork() creates a second process that is a clone of the first:

Process A

int main(int argc, char *argv[]) {
printf("Hello, world!\n");

» fork();
printf("Goodbye!\n");
return 0;

$./myprogram
Hello, world!

pid t fork();

21

fork() creates a second process that is a clone of the first: pid_t fork();

Process A

Process B

int main(int argc, char *argv[]) {
printf("Hello, world!\n");

» fork();
printf("Goodbye!\n");
return 0;

int main(int argc, char *argv[]) {
printf("Hello, world!\n");

m) fork();
printf("Goodbye!\n");
return 0;

$./myprogram
Hello, world!

fork() creates a second process that is a clone of the first: pid_t fork();

Process A

Process B

int main(int argc, char *argv[]) {
printf("Hello, world!\n");
fork();
printf("Goodbye!\n");
return 0;

int main(int argc, char *argv[]) {
printf("Hello, world!\n");
fork();
printf("Goodbye!\n");
return 0;

$./myprogram
Hello, world!
Goodbye!
Goodbye!

fork() creates a second process that is a clone of the first:

Process A

int main(int argc, char *argv[]) {
int x = 2;
printf("Hello, world!\n");
fork();
printf("Goodbye, %d!\n", Xx);
return 0;

$./myprogram

pid t fork();

24

fork() creates a second process that is a clone of the first:

Process A

int main(int argc, char *argv[]) {
int x = 2;
printf("Hello, world!\n");

» fork();
printf("Goodbye, %d!\n", Xx);
return 0;

$./myprogram
Hello, world!

pid t fork();

25

fork() creates a second process that is a clone of the first: pid_t fork();

Process A

Process B

int main(int argc, char *argv[]) {
int x = 2;
printf("Hello, world!\n");

» fork();
printf("Goodbye, %d!\n", Xx);
return 0;

$./myprogram
Hello, world!

int main(int argc, char *argv[]) {
int x = 2;
printf("Hello, world!\n");
fork();
printf("Goodbye, %d!\n", x);
return 0;

fork() creates a second process that is a clone of the first: pid_t fork();

Process A

Process B

int main(int argc, char *argv[]) {
int x = 2;
printf("Hello, world!\n");
fork();
printf("Goodbye, %d!\n", Xx);
return 0;

$./myprogram
Hello, world!
Goodbye, 2!
Goodbye, 2!

int main(int argc, char *argv[]) {
int x = 2;
printf("Hello, world!\n");
fork();
printf("Goodbye, %d!\n", x);
return 0;

fork() creates a second process that is a clone of the first:

e parent (original) process forks off a child (new) process

pid t fork();

* The child starts execution on the next program instruction. The
parent continues execution with the next program instruction. The order from

now on is up to the OS!

 fork() is called once, but returns twice (why?)

main printf fork printf return
® - & o -8
“Greetings... "Bye-bye,.."
printf return
L -
“Bye-bye.. "

PARENT

CHILD

lllustration courtesy of Roz Cyrus.

28

fork() creates a second process that is a clone of the first: pid_t fork();

e parent (original) process forks off a child (new) process
A child process could also then later call fork, thus being a parent itself

e Everything is duplicated in the child process (except PIDs are different)
* File descriptor table - this explains how the child can still output to the same terminal!
 Mapped memory regions (the address space) - regions like stack, heap, etc. are copied

29

fork()

(Am | the parent
or the child?)

Process A Process B

int main(int argc, char *argv[]) { int main(int argc, char *argv[]) {
int x = 2; int x = 2;
printf("Hello, world!\n"); printf("Hello, world!\n");
fork(); fork();
printf("Goodbye, %d!\n", x); printf("Goodbye, %d!\n", x);
return 9; return 9;

Is there a way for the processes to tell which is the parent and which is the child?

Key Idea: the return value of fork() is different in the parent (original) and the
child (new).

* fork returns the child’s PID in the parent, and O in the child
* 0 is not the child’s PID — just a sentinel value to indicate it is the child
* For the parent, this is the only way to get the child’s PID

This allows us to assign different tasks to the parent and child!

31

fork()

In the parent, fork() will return the PID of the child. In the child, fork() will
return O (this is not the child's PID, it's just 0).

Process 111

int main(int argc, char *argv[]) {
printf("Hello, world!\n");
pid_t pidOrZero = fork();
printf("fork returned %d\n",
pidOrZero);
return 0;

$./myprogram

32

fork()

In the parent, fork() will return the PID of the child. In the child, fork() will
return O (this is not the child's PID, it's just 0).

Process 111

int main(int argc, char *argv[]) {
printf("Hello, world!\n");
pid_t pidOrZero = fork();
printf("fork returned %d\n",
pidOrZero);
return 0;

$./myprogram

Hello, world!

33

fork()

In the parent, fork() will return the PID of the child. In the child, fork() will
return O (this is not the child's PID, it's just 0).

Process 111

Process 112

int main(int argc, char *argv[]) {
printf("Hello, world!\n");
pid_t pidOrZero = fork();
printf("fork returned %d\n",
pidOrZero);
return 0;

$./myprogram
Hello, world!

int main(int argc, char *argv[]) {
printf("Hello, world!\n");
pid_t pidOrZero = fork();
printf("fork returned %d\n",
pidOrZero);
return 9;

fork()

In the parent, fork() will return the PID of the child. In the child, fork() will
return O (this is not the child's PID, it's just 0).

Process 111 Process 112

int main(int argc, char *argv[]) { int main(int argc, char *argv[]) {
printf("Hello, world!\n"); printf("Hello, world!\n");
pid t pidOrZero = fork(); pid t pidOrZero = fork();
printf("fork returned %d\n", printf("fork returned %d\n",
pidOrZero); pidOrZero);

return 0O; return 0O;

$./myprogram
Hello, world!
fork returned 112
fork returned ©

fork()

In the parent, fork() will return the PID of the child. In the child, fork() will
return O (this is not the child's PID, it's just 0).

Process 111 Process 112

int main(int argc, char *argv[]) { int main(int argc, char *argv[]) {
printf("Hello, world!\n"); printf("Hello, world!\n");
pid t pidOrZero = fork(); pid t pidOrZero = fork();
printf("fork returned %d\n", printf("fork returned %d\n",
pidOrZero); pidOrZero);
return 0O; return 0O;

$./myprogram $./myprogram
Hello, world! Hello, world!
fork returned 112 fork returned ©

fork returned © fork returned 112

We can no longer assume
the order in which our
program will execute! The

OS decides the order.

pid t pidOrZero = fork();
if (pidOrZero == 0) {

// Only executed by the child
} else {

// Only executed by the parent
}

// Executed by both parent and child (if they get here)

38

* In the parent, fork() will return the PID of the child

* In the child, fork() will return O (this is not the child's PID, it's just 0)

* if fork() returns < 0, that means an error occurred (e.g. out of processes)
» getppid() gets the PID of your parent and getpid() gets your own PID

* fork allows us to implement a shell - a program that prompts the user for a
command to run, runs that command, waits for the command to finish, and
then prompts the user again.

 shell (parent) forks off child process to run a command you enter. When you run a
command, its parent is the shell.

* Key Idea: we can only run one program per process, so to keep the shell running we
need to run the user’s command in another process.

39

Our Goal: Shell

A shell is a program that prompts the user for a command to run, runs that
command, waits for the command to finish, and then prompts the user again.

while (true) {
char *user_command = .. // user input

pid t pidOrZero = fork();
if (pidOrZero == @) {
// run user’s command in the child, then terminate

Our Goal: Shell

A shell is a program that prompts the user for a command to run, runs that
command, waits for the command to finish, and then prompts the user again.

while (true) {

char *user_command = .. // user input

pid_t pidOrZero = fork(); Key idea: we can only

if (pidOrZero == 0) { run one program per
I_/__/____P_E‘_r_‘___l_J_S__e_f___S__f_‘?:_:%m;]_r]fj____l_r_‘___th_e____C_h_l}_c_li process, so we need

) et Lo run the user’s
| o command in another
process — otherwise,

\ the shell will go away!

int main(int argc, char *argv[]) {
printf("Hello from process %d! (parent %d)\n", getpid(), getppid());
pid t pidOrZero = fork();
assert(pidOrZero >= 0);
printf("Bye from process %d! (parent %d)\n", getpid(), getppid());
return 9;

$./intro-fork o
R R L A CE IS P LELEOl © | he parent of the original
Bye from process 29686! (parent 29351) process is the shell - the

Bye from process 29688! (parent 29686) program that you run in the

$./intro-fork terminal.

[HNTORE Jole]i N o] oo 1o WPTE AN G E NI PAELYOI « The ordering of the parent and

Bye from process 29691! (parent 29690) : : |
Bye from process 29690! (parent 29351) child output is up to the OS:

Which of these outputs is not possible?

// Assume parent PID 111, child PID 112

pid t pidOrZero = fork();

printf("hello, world!\n");

printf("goodbye! (fork returned %d)\n", pidOrZero);

A) C)

hello, world! hello, world!

hello, world! goodbye! (fork returned 112)
goodbye! (fork returned 0) hello, world!

goodbye! (fork returned 112) goodbye! (fork returned 0)
B) D)

hello, world! hello, world!

hello, world! goodbye! (fork returned 112)
goodbye! (fork returned 112) goodbye! (fork returned 0)
goodbye! (fork returned 0) hello, world!

Respond on PollEv: g
pollev.com/cs111 N

43

Processes all the way down

Even a child process can call fork to spawn its own child process!

int main(int argc, char *argv[]) {
printf("Hello!\n");

fork();
printf("Howdy!\n");
fork();

printf("Hey there!\n");
return 0;

¥

* How many total processes are there (including the parent) in this program?

&

* How many times is each printf statement printed?

44

Which of these outputs is *not* possible?

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

0%

0%

0%

0%

Processes all the way down

Even a child process can call fork to spawn its own child process!

int main(int argc, char *argv[]) {
» printf("Hello!\n"); m

fork();
printf("Howdy!\n");
fork();

printf("Hey there!\n");
return 0;

¥

* How many total processes are there (including the parent) in this program?

&

* How many times is each printf statement printed?

46

Processes all the way down

Even a child process can call fork to spawn its own child process!

int main(int argc, char *argv[]) {
printf("Hello!\n");
m) fork();
printf("Howdy!\n");
fork();
printf("Hey there!\n");
return 0;

Child 1

¥

* How many total processes are there (including the parent) in this program?

&

* How many times is each printf statement printed?

47

Processes all the way down

Even a child process can call fork to spawn its own child process!

int main(int argc, char *argv[]) {
printf("Hello!\n");

fork();

printf("Howdy!\n"); .
for‘k()§ e Child 1
printf("Hey there!\n");

return 0;

¥

* How many total processes are there (including the parent) in this program?

&

* How many times is each printf statement printed?

48

Processes all the way down

Even a child process can call fork to spawn its own child process!

int main(int argc, char *argv[]) {
printf("Hello!\n");
fork();
printf("Howdy!\n");
» fork();
printf("Hey there!\n");
return 0;

Child 1 Child 2

GChild

¥

* How many total processes are there (including the parent) in this program?

&

* How many times is each printf statement printed?

49

Processes all the way down

Even a child process can call fork to spawn its own child process!

int main(int argc, char *argv[]) {
printf("Hello!\n");

fork();

k() Child 1 Child 2
» printf("Hey there!\n");

return O;

GChild

¥

* How many total processes are there (including the parent) in this program?

&

* How many times is each printf statement printed?

50

Processes all the way down

Even a child process can call fork to spawn its own child process!

int main(int argc, char *argv[]) {
printf("Hello!\n");

fork();

° 1n l " °)
-FF,;::E-I(:;:E Howdy '\n"); child 1 Child 2
printf("Hey there!\n");
return 0;

GChild

¥

* How many total processes are there (including the parent) in this program?

&

. 4
* How many times is each printf statement printed?

51

Processes all the way down

Even a child process can call fork to spawn its own child process!

int main(int argc, char *argv[]) {
printf("Hello!\n");

fork();

° 1n l " °)
22:;?(:1;5 Howdy '\n"); child 1 Child 2
printf("Hey there!\n");
return 0;

GChild

¥

* How many total processes are there (including the parent) in this program?

&

. 4
* How many times is each printf statement printed?

e Haollav 1 HAawdAdAyy v) Hoev tharav ld cnanild he intfarminoclad

52

* Cloning Processes

Plan For Today

cp -r /afs/ir/class/csl11l1l/lecture-code/lect8 .

53

What happens to variables/addresses?

int main(int argc, char *argv[]) {
char str[128];
strcpy(str, "Hello");
printf("str's address is %p\n", str);
pid t pidOrZero = fork();
if (pidOrZero == @) { // The child should modify str
printf("I am the child. str's address is %p\n", str);
strcpy(str, "Howdy");
printf("I am the child and I changed str to %s. str's address is
still %p\n", str, str);
} else { // The parent should sleep and print out str
printf("I am the parent. str's address is %p\n", str);
printf("I am the parent, and I'm going to sleep for 2sec.\n");
sleep(2);
printf("I am the parent. I just woke up. str's address is %p,
and its value is %s\n", str, str);

}
return 0; . fork-copy.c .,

Process Clones

$./fork-copy

str's address is Ox7ffc8cta9990

I am the parent. str's address is Ox7ffc8cfa9990

I am the parent, and I'm going to sleep for 2sec.

I am the child. str's address is Ox7ffc8cfa9990

I am the child and I changed str to Howdy. str's address is still
Ox7ffc8cfta9990

I am the parent. I just woke up. str's address 1s Ox7ffc8cfa9990, and its
value is Hello

* How can the parent and child use the same address to store different data?
* Each program thinks it is given all memory addresses to use
* The operating system maps these virtual addresses to physical addresses

* When a process forks, its virtual address space stays the same

* The operating system will map the child's virtual addresses to different physical
addresses than for the parent

55

Process Clones

$./fork-copy

str's address is Ox7ffc8cta9990

I am the parent. str's address is Ox7ffc8cfa9990
I am the parent, and I'm going to sleep for 2sec.
I am the child. str's address is Ox7ffc8cfa9990

I am the child and I changed str to Howdy. str's address is still
Ox7ffc8cta9990

I am the parent. I just woke up. str's address 1s Ox7ffc8cfa9990, and its
value is Hello

Isn't it expensive to make copies of all memory when forking?
* The operating system only /lazily makes copies.

* It will have them share physical addresses until one of them changes its
memory contents to be different than the other.

* This is called copy on write (only make copies when they are written to).

fork() In Helper Functions

void helperFn() {
pid t pidOrZero = fork();
if (pidOrZero == 0) {
printf("I am the child\n");
} else {

printf("I am the parent\n");

}

}

int main(int argc, char *argv[]) {
helperFn();
printf("This is printed twice!\n");
return 0;

57

fork() In Helper Functions

// returns true if parent, false if child
bool helperFn() {
pid_t pidOrZero = fork();
if (pidOrZero == 0) {
printf("I am the child\n");
return false;
} else {
printf ("I am the parent\n");
return true;

}

int main(int argc, char *argv[]) {
bool amParent = helperFn();
if (amParent) printf("This is printed once\n");
return 0;

fork() In Helper Functions

void helperFn() {
pid t pidOrZero = fork();
if (pidOrZero == 0) {
printf("I am the child\n");

exit(0); // like immediately returning © from main
} else {

printf("I am the parent\n");

}

}

int main(int argc, char *argv[]) {
helperFn();
printf("This is printed once\n");
return 9;

fork() is used pervasively in applications and systems. For example:
* A shell forks a new process to run an entered program command

* Most network servers run many copies of the server in different processes

 When your kernel boots, it starts the system.d program, which forks off all the
services and systems for your computer

Processes are the first step in understanding concurrency, another key principle
In computing systems.

60

Next time: how can we
have the parent wait until
the child is finished? And

how can we tell the child to

run another program?

Our Goal: Shell

A shell is a program that prompts the user for a command to run, runs that
command, waits for the command to finish, and then prompts the user again.

while (true) {
char *user_command = .. // user input

pid t pidOrZero = fork();
if (pidOrZero == 0) {
// run user’s command in the child, then terminate

* Multiprocessing overview Lecture 8 takeaway: fork()
* Introducing fork() allows a process to fork off a
* Cloning Processes cloned child process. The

order of execution between
parent and child is up to the
OS! We can distinguish
between parent and child using
fork’s return value (child PID in
parent, O in child).

Next time: waiting on a child process,
plus how to run other programs s

	Slide 1: CS111, Lecture 8 Multiprocessing Introduction
	Slide 2: Lecture 7 Recap: Filesystem System Calls
	Slide 3: File descriptors are a powerful abstraction for working with files and other resources.
	Slide 4: File Descriptors and I/O
	Slide 5: File Descriptors and I/O
	Slide 6: Example: Copy
	Slide 7: Example: Copy
	Slide 8
	Slide 9: CS111 Topic 2: Multiprocessing
	Slide 10: CS111 Topic 2: Multiprocessing
	Slide 11: Learning Goals
	Slide 12: Plan For Today
	Slide 13: Plan For Today
	Slide 14: Multiprocessing Terminology
	Slide 15: Multiprocessing
	Slide 16: Playing with Processes
	Slide 17: Plan For Today
	Slide 18: Fork is a system call that creates a second process which is a clone of the first.
	Slide 19: fork()
	Slide 20: fork()
	Slide 21: fork()
	Slide 22: fork()
	Slide 23: fork()
	Slide 24: fork()
	Slide 25: fork()
	Slide 26: fork()
	Slide 27: fork()
	Slide 28: fork()
	Slide 29: fork()
	Slide 30: fork()
	Slide 31: fork()
	Slide 32: fork()
	Slide 33: fork()
	Slide 34: fork()
	Slide 35: fork()
	Slide 36: fork()
	Slide 37: We can no longer assume the order in which our program will execute! The OS decides the order.
	Slide 38: fork()
	Slide 39: fork()
	Slide 40: Our Goal: Shell
	Slide 41: Our Goal: Shell
	Slide 42: fork()
	Slide 43: Which of these outputs is not possible?
	Slide 44: Processes all the way down
	Slide 45
	Slide 46: Processes all the way down
	Slide 47: Processes all the way down
	Slide 48: Processes all the way down
	Slide 49: Processes all the way down
	Slide 50: Processes all the way down
	Slide 51: Processes all the way down
	Slide 52: Processes all the way down
	Slide 53: Plan For Today
	Slide 54: What happens to variables/addresses?
	Slide 55: Process Clones
	Slide 56: Process Clones
	Slide 57: fork() In Helper Functions
	Slide 58: fork() In Helper Functions
	Slide 59: fork() In Helper Functions
	Slide 60: fork()
	Slide 61: Next time: how can we have the parent wait until the child is finished? And how can we tell the child to run another program?
	Slide 62: Our Goal: Shell
	Slide 63: Recap

