
1

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides and notes created by John Ousterhout, Jerry Cain, Chris Gregg, and others.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared,

uploaded, or distributed. (without expressed written permission)

CS111, Lecture 9
Multiprocessing System Calls

2

CS111 Topic 2: Multiprocessing

Multiprocessing
Introduction

Managing
processes and
running other

programs

Inter-process
communication

with pipes

Lecture 8 Today Lecture 10 - 11

assign3: implement your own shell!

Key Question: How can our program create and interact with other programs? How
does the operating system manage user programs?

3

Learning Goals

• Learn how to use waitpid() to wait for a child process to finish.

• Understand how to use execvp() to run a new program within a process.

• See how a shell is implemented using fork + execvp + waitpid

4

Plan For Today

• Recap: fork()

• waitpid() and waiting for child processes

• Demo: waiting for children

• execvp()

• Building our first shell

cp -r /afs/ir/class/cs111/lecture-code/lect9 .

5

Plan For Today

• Recap: fork()

• waitpid() and waiting for child processes

• Demo: waiting for children

• execvp()

• Building our first shell

cp -r /afs/ir/class/cs111/lecture-code/lect9 .

6

fork()

A system call that creates a new child process

• The "parent" is the process that creates the other "child" process

• From then on, both processes are running the code after the fork

• The child process is identical to the parent, except:
• it has a new Process ID (PID)

• for the parent, fork() returns the PID of the child; for the child, fork() returns 0

• fork() is called once, but returns twice

pid_t pidOrZero = fork();
// both parent and child run code here onwards
printf("This is printed by two processes.\n");

7

Child runs until the end of the program

void helperFn() {
 pid_t pidOrZero = fork();
 if (pidOrZero == 0) {
 printf("I am the child\n");
 } else {
 printf("I am the parent\n");
 }
}

int main(int argc, char *argv[]) {
 helperFn();
 printf("This is printed once\n");
}

8

Child runs until the end of the program

void helperFn() {
 pid_t pidOrZero = fork();
 if (pidOrZero == 0) {
 printf("I am the child\n");
 exit(0);
 } else {
 printf("I am the parent\n");
 }
}

int main(int argc, char *argv[]) {
 helperFn();
 printf("This is printed once\n");
}

9

Process Clones

How can the parent and child use the same address to store different data?

• Each program thinks it is given all memory addresses to use

• The operating system maps these virtual addresses to physical addresses

• When a process forks, its virtual address space stays the same

• Copy on write: only as needed, the operating system will map the child's
virtual addresses to different physical addresses than for the parent

$./fork-copy
str's address is 0x7ffc8cfa9990
I am the parent. str's address is 0x7ffc8cfa9990
I am the parent, and I'm going to sleep for 2sec.
I am the child. str's address is 0x7ffc8cfa9990
I am the child and I changed str to Howdy. str's address is still
0x7ffc8cfa9990
I am the parent. I just woke up. str's address is 0x7ffc8cfa9990, and its
value is Hello

10

Our Goal: Shell

A shell is a program that prompts the user for a command to run, runs that
command, waits for the command to finish, and then prompts the user again.

while (true) {

 char *user_command = … // user input

 pid_t pidOrZero = fork();
 if (pidOrZero == 0) {
 // run user’s command in the child, then terminate

 }

 // parent waits for child before continuing

}

???

???

11

Our Goal: Shell

A shell is a program that prompts the user for a command to run, runs that
command, waits for the command to finish, and then prompts the user again.

while (true) {

 char *user_command = … // user input

 pid_t pidOrZero = fork();
 if (pidOrZero == 0) {
 // run user’s command in the child, then terminate

 }

 // parent waits for child before continuing

}

???

???

Key idea: we can only
run one program per
process, so we need
to run the user’s
command in another
process – otherwise,
the shell will go away!

12

Our Goal: Shell

A shell is a program that prompts the user for a command to run, runs that
command, waits for the command to finish, and then prompts the user again.

while (true) {

 char *user_command = … // user input

 pid_t pidOrZero = fork();
 if (pidOrZero == 0) {
 // run user’s command in the child, then terminate

 }

 // parent waits for child before continuing

}

execvp

waitpid

13

Plan For Today

• Recap: fork()

• waitpid() and waiting for child processes

• Demo: waiting for children

• execvp()

• Building our first shell

cp -r /afs/ir/class/cs111/lecture-code/lect9 .

14

It would be nice if there
was a function we could

call that would "stall" our
program until the child is

finished.

15

waitpid()

A system call that a parent can call to wait for its child to exit:

pid_t waitpid(pid_t pid, int *status, int options);

• pid: the PID of the child to wait on (we'll see other options later)

• status: where to put info about the child's termination (or NULL)

• options: optional flags to customize behavior (always 0 for now)

• the function returns when the specified child process exits

• the return value is the PID of the child that exited, or -1 on error (e.g. no child to wait
on)

• If the child process has already exited, this returns immediately - otherwise, it blocks

16

waitpid()

// waitpid.c
int main(int argc, char *argv[]) {
 printf("Before.\n");
 pid_t pidOrZero = fork();
 if (pidOrZero == 0) {
 sleep(2);
 printf("I (the child) slept and the parent waited for me.\n");
 } else {
 pid_t result = waitpid(pidOrZero, NULL, 0);
 printf("I (the parent) finished waiting for the child. This
 always prints last.\n");
 }
 return 0;
}

Before.
I (the child) slept and the parent waited for me.
I (the parent) finished waiting for the child. This always prints last.

17

waitpid()

// waitpid-status.c
int main(int argc, char *argv[]) {
 pid_t pid = fork();
 if (pid == 0) {
 printf("I'm the child, and the parent will wait up for me.\n");
 return 111; // contrived exit status (not a bad number, though)
 } else {
 int status;
 pid_t result = waitpid(pid, &status, 0);
 if (WIFEXITED(status)) {
 printf("Child exited with status %d.\n", WEXITSTATUS(status));
 } else {
 printf("Child terminated abnormally.\n");
 }
 return 0;
 }
}
I'm the child, and the parent will wait up for me.
Child exited with status 111.

18

waitpid()

...
int status;
pid_t result = waitpid(pid, &status, 0);
if (WIFEXITED(status)) {
 printf("Child exited with status %d.\n", WEXITSTATUS(status));
} else {
 printf("Child terminated abnormally.\n");
}
...

Provided macros (see man page for full list) let us extract info from the status.

• WIFEXITED – check if child terminated normally

• WEXITSTATUS – get exit status of child

This output will be the same every time! The parent will always wait for the child to
finish before continuing.

19

waitpid()

Another benefit of waitpid: it cleans up the state of the terminated child
process

• A process that finished but hasn’t yet been waited on by its parent is called
a zombie .

• Zombies take up system resources (until they are ultimately cleaned up later
by the OS). Therefore, a parent process should always wait on its children
processes.

• If a child is still running, waitpid in the parent will block until the child finishes,
and then clean it up. If a child process is a zombie, waitpid will return
immediately and clean it up.

• Child processes whose parent process terminates without waiting on them get
the init process (PID 1) as their parent.

20

Make sure to clean up after your zombie
children.
(wait, what?)

21

Which output is *not* possible?

int main() {
 pid_t pidOrZero1 = fork();
 if (pidOrZero1 == 0) {
 printf("Hello 1!\n");
 return 0;
 }

 pid_t pidOrZero2 = fork();
 if (pidOrZero2 == 0) {
 printf("Hi 2!\n");
 return 0;
 }

 waitpid(pidOrZero1, NULL, 0);
 printf("Goodbye 1\n");
 waitpid(pidOrZero2, NULL, 0);
 printf("Goodbye 2\n");
 return 0;
}

A)
Hello 1!
Hi 2!
Goodbye 1
Goodbye 2

B)
Hi 2!
Hello 1!
Goodbye 1
Goodbye 2

C)
Hello 1!
Goodbye 1
Hi 2!
Goodbye 2

D)
Hi 2!
Goodbye 1
Hello 1!
Goodbye 2

Respond on PollEv:

pollev.com/cs111

22

23

How do these differ?

int main() {
 pid_t pidOrZero1 = fork();
 if (pidOrZero1 == 0) {
 printf("Hello 1!\n");
 return 0;
 }

 pid_t pidOrZero2 = fork();
 if (pidOrZero2 == 0) {
 printf("Hi 2!\n");
 return 0;
 }

 waitpid(pidOrZero1, NULL, 0);
 printf("Goodbye 1\n");
 waitpid(pidOrZero2, NULL, 0);
 printf("Goodbye 2\n");
 return 0;
}

int main() {
 pid_t pidOrZero1 = fork();
 if (pidOrZero1 == 0) {
 printf("Hello 1!\n");
 return 0;
 }

 waitpid(pidOrZero1, NULL, 0);
 printf("Goodbye 1\n");

 pid_t pidOrZero2 = fork();
 if (pidOrZero2 == 0) {
 printf("Hi 2!\n");
 return 0;
 }

 waitpid(pidOrZero2, NULL, 0);
 printf("Goodbye 2\n");
 return 0;
}

vs

24

Plan For Today

• Recap: fork()

• waitpid() and waiting for child processes

• Demo: waiting for children

• execvp()

• Building our first shell

cp -r /afs/ir/class/cs111/lecture-code/lect9 .

25

Waiting for Children

Problem: if we have multiple children and want to wait on all of them, in what
order do we wait on them to finish?

One idea: keep an array of child pids, and call waitpid on each in a loop.

This works, though the child processes may not finish in this order.

cleanup-orders.c

26

Waiting for Children

Problem: if we have multiple children and want to wait on all of them, in what
order do we wait on them to finish?

Ideally we could say ”wait until one of my children finishes”.

• A parent can pass -1 as the PID to waitpid to wait on any one of its children.

• Key Idea: the children may terminate in any order!

• If waitpid returns -1 and sets errno to ECHILD, this means there are no more
children.

• We can do this in a loop to wait on all children in the order they exit

Let’s see a demo!

cleanup-orders.c

27

Plan For Today

• Recap: fork()

• waitpid() and waiting for child processes

• Demo: waiting for children

• execvp()

• Building our first shell

cp -r /afs/ir/class/cs111/lecture-code/lect9 .

28

execvp()

The most common use for fork is not to spawn multiple processes to split up
work, but instead to run a completely separate program under your control and
communicate with it. This is the behavior of a shell!

29

execvp()

execvp is a function that lets us run another program in the current process.

int execvp(const char *path, char *argv[])

It runs the executable at path, completely wiping/clearing out the current process.

• If successful, execvp never returns in the calling process

• If unsuccessful, execvp returns -1

To run another executable, we must specify the (NULL-terminated) arguments to be
passed into its main function, via the argv parameter.

• For our programs, path and argv[0] will be the same

execvp has many variants (see man execvp) but we’ll just be using execvp.

30

execvp()

// execvp-demo.c
int main(int argc, char *argv[]) {
 printf("Hello, world!\n");
 char *args[] = {"/bin/ls", "-l", "/usr/class/cs111/lecture-code",
 NULL};
 execvp(args[0], args);
 printf("This only prints if an error occurred.\n");
 return 0;
}

$./execvp-demo
Hello, world!
total 4
drwx------ 2 troccoli operator 2048 Oct 9 16:21 lect5
drwx------ 2 troccoli operator 2048 Oct 13 22:19 lect9

31

How is execvp useful?

• This is the way that we can run other programs

• However, we often don’t want to wipe the current process clean

• Instead: we will usually fork off a child process and call execvp there. The child
process will be consumed, but that’s ok

• Key idea: the process is still the child process, and the parent can still wait on
it. It’s just running another program.

32

Plan For Today

• Recap: fork()

• waitpid() and waiting for child processes

• Demo: waiting for children

• execvp()

• Building our first shell

cp -r /afs/ir/class/cs111/lecture-code/lect9 .

33

Implementing a Shell

A shell is essentially a program that repeats asking the user for a command and
running that command

How do we run a command entered by the user?

1. Call fork to create a child process

2. In the child, call execvp with the command to execute

3. In the parent, wait for the child with waitpid

For assign3, you’ll use this pattern to build your own shell, stsh ("Stanford shell")
with various functionality of real Unix shells.

34

Implementing a Shell

while (true) {
 char *user_command = … // user input
 if (strcmp(user_command, "sort") == 0) {
 // code for sort here
 } else if (strcmp(user_command, "ls") == 0) {
 // code for ls functionality here
 }
 ...
}

Why do we need execvp? Why can’t we implement a shell like this?

• Would need to implement every possible command’s logic (yikes!)

• Couldn’t run a command the shell doesn’t know about (e.g. own programs)

35

Recap

• Recap: fork()

• waitpid() and waiting for child
processes

• Demo: waiting for children

• execvp

• Our first shell

Next time: how processes can
communicate with pipes

Lecture 9 takeaway: waitpid

lets a parent process wait for

a child process to finish.

execvp takes over the calling

process to run the specified

program. Shells work by

spawning child processes

with fork that call execvp,

and then waiting for them to

finish with waitpid.

	Default Section
	Slide 1: CS111, Lecture 9 Multiprocessing System Calls
	Slide 2: CS111 Topic 2: Multiprocessing

	Filesystems
	Slide 3: Learning Goals
	Slide 4: Plan For Today
	Slide 5: Plan For Today
	Slide 6: fork()
	Slide 7: Child runs until the end of the program
	Slide 8: Child runs until the end of the program
	Slide 9: Process Clones
	Slide 10: Our Goal: Shell
	Slide 11: Our Goal: Shell
	Slide 12: Our Goal: Shell
	Slide 13: Plan For Today
	Slide 14: It would be nice if there was a function we could call that would "stall" our program until the child is finished.
	Slide 15: waitpid()
	Slide 16: waitpid()
	Slide 17: waitpid()
	Slide 18: waitpid()
	Slide 19: waitpid()
	Slide 20: Make sure to clean up after your zombie children. (wait, what?)
	Slide 21: Which output is *not* possible?
	Slide 22
	Slide 23: How do these differ?
	Slide 24: Plan For Today
	Slide 25: Waiting for Children
	Slide 26: Waiting for Children
	Slide 27: Plan For Today
	Slide 28: execvp()
	Slide 29: execvp()
	Slide 30: execvp()
	Slide 31: How is execvp useful?
	Slide 32: Plan For Today
	Slide 33: Implementing a Shell
	Slide 34: Implementing a Shell

	Closing
	Slide 35: Recap

