CS111, Lecture 2

Introduction to Filesystems

Optional reading:

Operating Systems: Principles and Practice (2" Edition): Chapter 11,
Section 12.1, 12.2 and Section 13.3 (up through page 567)

While you’re waiting — get set up with PollEverywhere! Visit pollev.stanford.edu to set up your account.
When responding, make sure to allow location permissions, as location is required to confirm credit.

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides and notes created by John Ousterhout, Jerry Cain, Chris Gregg, and others.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared,]_
uploaded, or distributed. (without expressed written permission)

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

PollEverywhere

* Today we're doing a “trial run” of using PollEverywhere for poll questions

Not counted for attendance (that starts next lecture), just a chance to try it out

Canvas Gradebook records lecture scores

Responses not anonymized, but we look only at aggregated results and totals

Poll responses require being present in the lecture room to receive credit

 Alternative option instead of lecture credit is to shift the full 5% weight to the final exam

e Visit pollev.stanford.edu to log in (or use the PollEverywhere app) and sign in
with your @stanford.edu email — NOT your personal email!

* Compatible with any device with a web browser, mobile app also available.

* Poll questions in slides will automatically activate the poll and respond at
pollev.com/cs111.

* Polls will prompt for location check-in; check in just prior to responding.

https://pollev.stanford.edu/

Announcements

* AssignO released - see course website for more information

* No late submissions accepted (except for OAE/Head TA accommodations — during the
guarter, extension requests must be received in advance of the assignment on-time
deadline, or as soon as possible if extenuating circumstances occur later, or extenuating
circumstances prevent reaching out prior to the deadline.)

* Remember to input your section preferences by 11:59PM Thurs! Link is on the
course website (under “Sections”).

* Helper Hours now scheduled, starting this week! Tea hours also starting!

* Please let us know about OAE accommodations or midterm conflicts as soon
as possible — see our midterm conflict form on the Midterm page of the course
website, and our OAE letter submission form at the bottom of the course
homepage.

Topic 1: Filesystems - How can
we design filesystems to manage files

on disk, and what are the tradeoffs
inherent in designing them? How
can we interact with the filesystem in
our programs?

CS111 Topic 1: Filesystems

Filesystems - How can we design filesystems to manage files on disk, and what
are the tradeoffs inherent in designing them? How can we interact with the
filesystem in our programs?

Why is answering this question important?
* Helps us understand what filesystems do (today and next time)

* Provides insight into the challenges and tradeoffs in designing large systems
(next few lectures)

e Shows us how we can directly manipulate files in our programs (next week)

assign1: implement layers of the Unix v6 filesystem to read a file from disk given its
path.

CS111 Topic 1: Filesystems

Filesystems - How can we design filesystems to manage files on disk, and what are
the tradeoffs inherent in designing them? How can we interact with the filesystem in
our programs?

Filesystem
Crash Recovery System calls and
file descriptors

FlES S Case study: Unix

introduction and
design

V6 Filesystem

Today Lectures 3-4 Lectures 5-6 Lectures 6-7

assign1: implement portions of the Unix v6 filesystem!

Learning Goals

* Understand the key responsibilities and requirements of a filesystem
* Get practice identifying tradeoffs in different filesystem designs
* Explore the design of the Unix V6 filesystem

Plan For Today

* Filesystems Introduction

* Methods for Storing Files
* Contiguous Allocation
 Linked Files
* Windows FAT
* Multi-level indexes

* The Unix V6 Filesystem
* Inodes

Plan For Today

* Filesystems Introduction

10

Filesystems

A filesystem is the portion of the OS that manages the disk.

* A hard drive (or, more commonly these days, flash storage) is persistent
storage — it can store data between power-offs.

Memory (RAM) Disk
* Fast, less space (e.g. 8-32GB), more * Slower, more space (e.g. 256GB —
expensive to buy per GB 1024GB), cheaper to buy per GB
* Byte-addressable: can quickly access * Sector-addressable: cannot read/write
any byte of data by address, but not just one byte of data — can only
individual bits by address read/write “sectors” of data at a time
* Not persistent: cannot store data * Persistent: stores data between

between power-offs power-offs 3

Hard Drives

Magnetic disks (hard drives) have been the
standard storage mechanism for files.

* Spinning, magnetically-coated platters

* Actuator arm positions heads, which can read
and write data on the magnetic surfaces

* Moving parts means risk of damage from
sudden movement, dust, etc.

Actuator Arm

Actuator

Platters

Head

12

Hard Drives

Hard drives have peculiar performance
characteristics that have a big impact on how
we build filesystems.

e Reading and writing requires seeking (moving
arm to position heads over desired track) and
waiting for desired location to pass
underneath. Want to minimize this time.

* We can only read data in chunks of sectors.
Example of virtualization, making one thing
look like another.

Actuator

Actuator Arm

sectorO sectorl sector?2 sector3 sector4

sector 5

sector 6

Platters

Head

13

Hard Disks are Sector-Addressable

sectorO sectorl sector2 sector3 sectord4d sector5 sector6

If we are the OS, the hard disk creators might provide this API (“application
programming interface”) — a set of public functions - to interface with the disk:

void readSector(size_t sectorNumber, void *data);
void writeSector(size_t sectorNumber, const void *data);

This is all we get! We (the OS) must build a filesystem by layering functions on
top of these to ultimately allow us to read, write, lookup, and modify entire files.,,

Filesystem Functionality

We want to read/write file on disk and have them persist even when the device
is off. This may include operations like:

* creating a new file on disk
* looking up the location of a file on disk

* Reading/editing all or part of an existing file from disk — e.g.,
sequential/random access

e creating folders on disk
 getting the contents of folders on disk

15

Filesystems

Functions for user programs to read/write files

Filesystem

readSector and writeSector

16

Filesystem Challenges

Problems addressed by modern file systems:

* Disk space management:
* Fast access to files (minimize seeks)
* Sharing space between users
* Efficient use of disk space

* Naming: how do users select files?
* Reliability: information must survive OS crashes and hardware failures.
* Protection: isolation between users, controlled sharing.

17

Flash Storage

Recently, flash storage (“SSD”) has become
more popular and commonplace, especially
with the growth in mobile devices.

* Much faster (100x faster access), but more
expensive

* No moving parts, so more reliable

* |ssues with wear-out; once a chunk of the
drive has been erased many times (~100k), it
no longer stores info reliably.

* Typically, still use an interface of
reading/writing in units of sectors.

“ ENONTY

-
-
-
.
-
3
L3
.

https://www.samsung.com/us/computing/memory-

~ V-NANDSSD AMSUNG e
>. PCle 4.0 NVMe M.2 :
: . _ R

I x::.A‘-.

storage/solid-state-drives/980-pro-pcie-4-0-nvme-ssd-1tb-

mz-v8p1t0b-am/

18

Plan For Today

* Methods for Storing Files

19

Sectors and Blocks

A filesystem generally defines its own unit of data, a "block," that it reads/writes
at a time.

e "Sector" = hard disk storage unit

e "Block" = filesystem storage unit (1 or more sectors) - software abstraction

Pros of larger block size? Smaller block size?

* more efficient I/O if larger, but less internal fragmentation if smaller
block 0 block 1 block 2
Example: the block

size could be defined
as two sectors

sectorO sectorl sector2 sector3 sectord4 sector5 sector6 20

Storing Files on Disk

Two types of data we will be working with:
1. file payload data - contents of files (e.g. text in documents, pixels in images)

2. file metadata - information about files (e.g. name, size)

Key insight: both must be stored on the hard disk. Otherwise, we will not have
it across power-offs! (E.g. without storing metadata we would lose all filenames
after shutdown). This means some blocks must store data other than payload

data.

21

Storing Files on Disk

Two types of data we will be working with:

1. file payload data - contents of files (e.g. text in documents, pixels in
images)

2. file metadata - information about files (e.g. name, size)

Key insight: both must be stored on the hard disk. Otherwise, we will not have
it across power-offs! (E.g. without storing metadata we would lose all filenames
after shutdown). This means some blocks must store data other than payload

data.

22

Contiguous Allocation

First key question: should we store files contiguously on disk? What would it
look like if we did?

 Called contiguous allocation — allocate a file in one contiguous group of blocks
* For each file, keep track of the number of its first block and its length

* Keep a free list of unused areas of the disk

e For our purposes, we won’t allocate partial blocks (only give out full blocks)

e Example: IBM 0OS/360

* Advantages?

block O block 1 block 2 block 3 block 4 block 5 block 6
23

Contiguous Allocation

First key question: should we store files contiguously on disk? What would it
look like if we did?

 Called contiguous allocation — allocate a file in one contiguous group of blocks

Advantages:

* simple

 can read sequentially or easily jump to any location in file (“random access”)
e all data in one place (few seeks)

What about disadvantages?

block O block 1 block 2 block 3 block 4 block 5 block 6 24

Contiguous Allocation

First key question: should we store files contiguously on disk? What would it
look like if we did?

 Called contiguous allocation — allocate a file in one contiguous group of blocks

Disadvantages:
* hard to grow files

* hard to lay out files on disk — we may not be able to squeeze a new file in a
block of free space (external fragmentation — no single space is large enough,
but enough aggregate space is available)

 Also internal fragmentation (space allocated is larger than needed) if we
allocate in units of blocks

block O block 1 block 2 block 3 block 4 block 5 block 6 23

Fragmentation

* Internal Fragmentation: space allocated for a file is larger than what is
needed. A file may not take up all the space in the blocks it’s using. E.g. block
= 512 bytes, but file is only 300 bytes. (you could share blocks between
multiple files, but this gets complex)

 External Fragmentation (issue with contiguous allocation): no single space is
large enough to satisfy an allocation request, even though enough aggregate
free disk space is available

26

Linked Files

First key question: should we store files contiguously on disk? What would it
look like if we didn’t?

* Problem: we need to know what blocks are associated with what files

One idea: linked files — like a linked list
e Each block contains file data as well as the location of the next block

* For each file, keep track of the number of its first block in separate location
* Approximate examples: TOPS-10, Xerox Alto
* Advantages?

File O Start: 10 File O File 2 File 1 File 2 File O File 2
File 1 Start: 12
Eile 2 Start: 13 Next: 14 | Next: END | Next: END | Next: 15 | Next: END | Next: 11

block 10 block 11 block 12 block 13 block 14 block 15 27

Linked Files

First key question: should we store files contiguously on disk? What would it
look like if we didn’t? One idea: linked files — like a linked list

e Each block contains file data as well as the location of the next block

Advantages:

* Easy to grow files

* Easier to fit files in available space — less fragmentation
e Still supports simple sequential access

What about disadvantages?

File O Start: 10 File O File 2 File 1 File 2 File O File 2
File 1 Start: 12
Eile 2 Start: 13 Next: 14 | Next: END | Next: END | Next: 15 | Next: END | Next: 11

block 10 block 11 block 12 block 13 block 14 block 15 28

First key question: should we store files contiguously on disk? What would it

look like if we didn’t?
One idea: linked files — like a linked list
e Each block contains file data as well as the location of the next block

Disadvantages:

Linked Files

e Can’t easily jump to any arbitrary location in the file

* Data scattered throughout disk (more seeks vs. contiguous allocation)

File O Start: 10
File 1 Start: 12
File 2 Start: 13

File O File 2 File 1 File 2 File O File 2
Next: 14 Next: END Next: END Next: 15 Next: END Next: 11
block 10 block 11 block 12 block 13 block 14 block 15

Linked Files

First key question: should we store files contiguously on disk? What would it
look like if we didn’t?

One idea: linked files — like a linked list
e Each block contains file data as well as the location of the next block
Disadvantages:

e Can’t easily jump to any arbitrary location in the file
* Data scattered throughout disk (more seeks)

File O Start: 10 File O File 2 File 1 File 2 File O File 2
File 1 Start: 12
Eile 2 Start: 13 Next: 14 | Next: END | Next: END | Next: 15 | Next: END | Next: 11

block 10 block 11 block 12 block 13 block 14 block 15 30

Windows FAT

First key question: should we store files In-Memory File Allocation Table
contiguously on disk? What would it look
like if we didn’t? 10 14
Interesting idea: what if we instead stored 11{ END
the links in one big table in memory? 12| END
 Windows (DOS) FAT: like linked allocation, 13 15

except links aren’t in blocks, they are in a 141 END

“file allocation table” in memory and disk 15 11

(originally 16 bits per entry)

File O Start: 10 File O File 2

File 1 Start: 12 ..
—Next: 14 | Next:END | Next: END Next: END | Next IT—

File 2 Start: 13
block 10 block 11 olock 14 block 15

Windows FAT

First key question: should we store files
contiguously on disk? What would it look
like if we didn’t?

(originally 16 bits per entry)

14

File O Start: 10

File 2 Start: 13

10

Interesting idea: what if we instead stored 111 END
the links in one big table in memory? 12| END
» Windows (DOS) FAT: like linked allocation, 13 15
except links aren’t in blocks, they are in a 14 END
“file allocation table” in memory and disk 15 11

Disk
File 1 Start: 12 ...| FileO File 2 File 1 File 2 File O File 2
block 10 block 11 block 12 block 13 block 14 block 15

In-Memory File Allocation Table

Windows FAT

First key question: should we store files
contiguously on disk? What would it look

like if we didn’t? File Allocation

Interesting idea: what if we instead stored Tfab'e

the links in one big table in memory? ? r:e .

* Windows (DOS) FAT: like linked allocation, 2| end - .
except links aren’t in blocks, they are in a 3| end 6 4 3
“file allocation table” in memory and disk ;‘ 3d File B:

(originally 16 bits per entry) . ez
* Still keep track of each file’s first block 7| free 1 2

* (Still used today for flash sticks, digital
cameras, many embedded devices)

* Advantages? 33

Windows FAT

First key question: should we store files
contiguously on disk? What would it look
like if we didn’t? File Allocation

. . . . Table
* Windows (DOS) FAT: like linked allocation, o
except links aren’t in blocks, they arein a 1 r;e o
. . . I .
“file allocation table” in memory > end _ _
Advantages: 3 | end 6 4 3
41 3
* Can more quickly jump to various 5 end File B:
locations in a file 6| 4
. . 7 f 1 2
* Still supports easy sequential access ree

What about disadvantages?

34

Windows FAT

First key question: should we store files
contiguously on disk? What would it look
like if we didn’t? File Allocation

* Windows (DOS) FAT: like linked allocation, Table
except links aren’t in blocks, they are in a ? frge -
“file allocation table” in memory (and > end == _
also stored on disk) 30 end 5 4 3
Disadvantages: I —_—
» Data scattered throughout disk (more 6| 4
seeks vs. contiguous allocation) 7| free 1 2

e Still need to jump through table to get to
an arbitrary location in the file

* Must store table in memory 35

Windows FAT

First key question: should we store files
contiguously on disk? What would it look
like if we didn’t? File Allocation

* Windows (DOS) FAT: like linked allocation, Table
except links aren’t in blocks, they are in a ? frge -
“file allocation table” in memory (and > end A _ _
also stored on disk) 30 end 5 4 3
Disadvantages: I —_—
» Data scattered throughout disk (more 6| 4
seeks vs. contiguous allocation) 7| free 1 2

* Still need to jump through table to get
to an arbitrary location in the file

* Must store table in memory 36

File Payload Data

First key question: should we store files contiguously on disk? What would it

look like if we didn’t?
Interesting idea: what if did not have a file allocation table or links, and instead
we stored all the block numbers for a file in order? That way we could quickly

jump to any point in the file.

ile0: 10, 14
ilel:12
File 2: 13, 15, 11

-
o

“

File O File 2 File 1 File 2 File O File 2

37

block 10 block 11 block 12 block 13 block 14 block 15

File Payload Data

First key question: should we store files contiguously on disk? What would it
look like if we didn’t?

* Multi-level indexes: store all block numbers for a given file (but how?)
e Example: 4.3 BSD Unix, Unix V6 Filesystem (~1975)

* More modern ext2 and ext3 Linux file systems based on this idea; Windows NTFS also
uses a tree-based structure, though slightly different

File 0: 10, 14
File1:12
File 2: 13, 15, 11

File O File 2 File 1 File 2 File O File 2

block 10 block 11 block 12 block 13 block 14 block 15 38

Plan For Today

* The Unix V6 Filesystem

39

Unix V6 Filesystem

Key Idea: files don’t need to be stored contiguously on disk, but we want to
store all the block numbers in order that make up the data for a file.

Where could we store this information for each file for easy lookup?

Let’s reserve some space on disk to store this information for each file,
separately from its payload data. This per-file space is called an inode.

IS S

File contents

40

An inode ("index node") is a grouping of data about a single file, stored on disk.

* Various filesystems (e.g. Unix v6, contiguous allocation/linked files, but not
FAT) store file metadata in inodes

* In Unix v6, an inode contains an ordered list of block numbers that store the
file’s payload data, and also stores other metadata like file size.

e Unix v6 stores inodes contiguously in a reserved space called the inode table,
which starts at block 2. (block 0 is "boot block" containing hard drive info,
block 1 is "superblock" containing filesystem info).

* Inodes can be read into memory when used for quicker access

41

Unix V6 Inodes

The Unix v6 filesystem stores inodes on disk together in the inode table for
quick access.

* Unix v6 Inodes are 32 bytes big, and 1 block = 1 sector =512 bytes, so 16
inodes/block.

* Typically, at most 10% of the drive stores metadata.
* Filesystem goes from filename to inode number ("inumber") to file data.

[IDeroiock
u I

0 1 2 3 1024 1025 1026 1027 1028 1029

Inodes

Filesystem metadata File contents 42

Unix V6 Inodes

We need inodes to be a fixed size, and not too large. So how should we store
the block numbers? How many should there be?

1. if variable number, there's no fixed inode size
2. if fixed number, this limits maximum file size

The inode design here has space for 8 block numbers, which are stored in
order. (i.e. first block number stores first chunk of file, etc.). But we will see
later how we can build on this to support very large files.

43

* Filesystems Introduction Lecture 2 takeaway:
* Methods for Storing Files Filesystems need to store

* Contiguous Allocation both file metadata and

* Linked Files load dat Th

. Windows FAT payload data. There are

. Multi-level indexes various ways to store
* The Unix V6 Filesystem payload data, each with

* Inodes different pros/cons. The Unix

V6 filesystem uses inodes to

Next time: more about the Unix v6 store file data, including
Filesystem

block numbers.

44

	Default Section
	Slide 1: CS111, Lecture 2 Introduction to Filesystems
	Slide 2

	PollEv
	Slide 3: PollEverywhere

	Filesystems
	Slide 4: Announcements
	Slide 5
	Slide 6: CS111 Topic 1: Filesystems
	Slide 7: CS111 Topic 1: Filesystems
	Slide 8: Learning Goals
	Slide 9: Plan For Today
	Slide 10: Plan For Today
	Slide 11: Filesystems
	Slide 12: Hard Drives
	Slide 13: Hard Drives
	Slide 14: Hard Disks are Sector-Addressable
	Slide 15: Filesystem Functionality
	Slide 16: Filesystems
	Slide 17: Filesystem Challenges
	Slide 18: Flash Storage
	Slide 19: Plan For Today
	Slide 20: Sectors and Blocks
	Slide 21: Storing Files on Disk
	Slide 22: Storing Files on Disk
	Slide 23: Contiguous Allocation
	Slide 24: Contiguous Allocation
	Slide 25: Contiguous Allocation
	Slide 26: Fragmentation
	Slide 27: Linked Files
	Slide 28: Linked Files
	Slide 29: Linked Files
	Slide 30: Linked Files
	Slide 31: Windows FAT
	Slide 32: Windows FAT
	Slide 33: Windows FAT
	Slide 34: Windows FAT
	Slide 35: Windows FAT
	Slide 36: Windows FAT
	Slide 37: File Payload Data
	Slide 38: File Payload Data
	Slide 39: Plan For Today
	Slide 40: Unix V6 Filesystem
	Slide 41: Inodes
	Slide 42: Unix V6 Inodes
	Slide 43: Unix V6 Inodes

	Closing
	Slide 44: Recap

