CS111], Lecture 4

Unix V6 Filesystem, Continued

Optional reading:
Operating Systems: Principles and Practice (2" Edition): Sections 13.1-13.2

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides and notes created by John Ousterhout, Jerry Cain, Chris Gregg, and others.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared, 1
uploaded, or distributed. (without expressed written permission)

Announcements

Sections start this week! Section assignments will be released later today -

check the course website for your section assignment. Bring a laptop with you if
you have one.

* Sections rely on material through each Wed. lecture - the work you do in
section will pay dividends when you work on the assignment!

 Section credit is awarded based on arriving on time and participating for the
full section period

e if you have any section accommodation needs (e.g. iliness) or need to attend a

makeup, or have other section-logistics-related questions, please contact your
section TA

Announcements

e AssignO due tonight at 11:59PM

 Stop by helper hours with any questions!
* “help summaries” summarizing each help session with a TA

* Focus on getting you unstuck — empowering you to further your debugging skills

* For debugging in particular, focusing on test-case-centric debugging, recommended steps to gather
more information.

* Make sure to sign up in the queue with detailed information about your question or
issue so that we can effectively help!

CS111 Topic 1: Filesystems

Key Question: How can we design filesystems to manage files on disk, and what are
the tradeoffs inherent in designing them? How can we interact with the filesystem in
our programs?

Filesystems Filesystem

Case study: Unix

Crash Recovery System calls and
file descriptors

introduction and
design

V6 Filesystem

Lecture 2 Lecture 3 / Today Lectures 5-6 Lectures 6-7

assign1: implement portions of the Unix v6 filesystem!

Learning Goals

* Explore the design of the Unix V6 filesystem

* Understand the design of the Unix v6 filesystem in how it represents
directories

* Practice with the full process of going from file path to file data

Plan For Today

* Recap: the Unix V6 Filesystem so far
* Practice: doubly-indirect addressing

* Directories
* Lookup
* Practice: lookup

Plan For Today

* Recap: the Unix V6 Filesystem so far

Unix V6 Filesystem

Every file has an associated inode. An inode has space for up to 8 block
numbers for file payload data, and this block number space is used differently
depending on whether the file is “small mode” or “large mode”

if ((inode.i_mode & ILARG) != 0) { // file is “large mode”

Inodes

DIOCK SuperplocCk

0 1 2 3 1024 1025 1026 1027 1028 1029

Filesystem metadata File contents

Small File Scheme

If the file is small, i_addr stores direct block numbers: numbers of blocks that
contain payload data.

index 5] 1 2 3 4 5 6 7
i_addr 341 33 124

/1N

Block 341 Block 33 Block 124 To know how many of
. the 8 numbers are
File File File used, we can look at the
Part O Part 1 Part 2 size stored in the inode.

Large File Scheme

If the file is large, the first 7 entries in i_addr are singly-indirect block numbers
(block numbers of blocks that contain direct block numbers). The 8t entry (if
needed) is a doubly-indirect block number (the number of a block that contains
singly-indirect block numbers).

index 0 1 2 3 4 5 6 7

i_addr 444 22 34 792 168 976 | 2467 | 555

/ —
Block 444 Block 555 Block 1352 Block 126 Block 897
126, 98, 70, 127, 1352, 567, ... 897, 4356, 6791,
1232 File Part File Part

0 1,792

10

Large File Scheme

Another way to think about it: a file can be represented using at most 7 + 256 =
263 singly-indirect blocks. The first seven are stored in the inode. The
remaining 256 are stored in a block whose block number is stored in the inode.

index 0 1 2 3 4 5 6 7
i_addr 444 22 34 792 168 976 2467 555
/ «—
Block 444 Block 555 Block 1352 Block 126 Block 897
126, 98, 70, 127, 1352, 567, ... 897, 4356, 6791,
1232 File Part File Part
0 1,792

11

Large File Scheme

e Max size = (7+256) * 256 * 512 = ~¥34MB
e Or (7 *256 * 512) + (256 * 256 * 512) = ~34MB

* Files only use the block numbers they need (depending on their size)

* Note: doubly-indirect is useful (and there are many other possible designs!),
but it means even more steps to access data.

12

Plan For Today

* Practice: doubly-indirect addressing

13

Doubly-Indirect Addressing

What is the smallest file size (in bytes) that would require using the doubly-
indirect block to store its data?

Respond on PollEv: g
pollev.com/cs111 SR

14

What is the smallest file size (in bytes) that would require using the doubly-indirect block to
store its data?

Nobody has responded yet.

Hang tight! Responses are coming in.

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Doubly-Indirect Addressing

What is the smallest file size (in bytes) that would require using the doubly-
indirect block to store its data?

Files up to (7 * 256 * 512) bytes are representable using just the 7 singly-
indirect blocks. Files of (7 * 256 * 512) + 1 or more bytes would need the

doubly-indirect block as well.

16

Doubly-Indirect Addressing

Assume we have a the following inode. How do we find the block containing the
start of its payload data? How about the remainder of its payload data?

Inode 16:

 ”"large mode”
e size =18,855,234
 i_addr=126,35,32,50,58,22,59,30]

Step 1: Go to block 26 and read block numbers.
For the first number, 80, go to block 80 and read
the beginning of the file (the first 512 bytes).
Then go to block 41 for the next 512 bytes, etc.

87

89

Block # 2 30 80
80,41,82,85, 87,114,47,48, It was the best 89,448,234,99, “My father,”
103, 24,45,... 122,99,111, of times, it exclaimed
Inode 543,... was the worst Lucie, “you
Block 17
..| areilll”...

contents

table
start

...| of times...

17

Doubly-Indirect Addressing

Assume we have a the following inode. How do we find the block containing the
start of its payload data? How about the remainder of its payload data?

Inode 16:

 ”"large mode”
e size =18,855,234

Step 2: After 256 blocks, go to block 35, repeat
the process. Do this a total of 7 times, for blocks
26, 35, 32, 50, 58, 22, and 59, reading 1792

e i _addr=1[26,35,32,50,58,22,59,30] | | blocks.
Block # 2 30 80 87 89
80,41,82,85, 87,114,47,48, It was the best 89,448,234,99, “My father,”
103, 24,45,... 122,99,111, of times, it exclaimed
Inode 543,... was the worst Lucie, “you

Block
contents

table
start

...| of times...

...| areilll”...

18

Assume we have a the following inode. How do we find the block containing the

Doubly-Indirect Addressing

start of its payload data? How about the remainder of its payload data?

Inode 16:

 ”"large mode”
e size =18,855,234
 i_addr=126,35,32,50,58,22,59,30]

Step 3: Go to block 30, which is a doubly-indirect

block. From there, go to block 87, which is a singly-
indirect block, and read all block numbers. Repeat
for remaining singly-indirect block numbers in block

30.
Block # 2 30 80 87 89
80,41,82,85, 87,114,47,48, It was the best 89,448,234,99, “My father,”
103, 24,45,... 122,99,111, of times, it exclaimed
Inode 543,... was the worst Lucie, “you
Block

contents

table
start

..| of times...

..| areilll”...

19

Plan For Today

* Directories

Directories

Filesystems usually support directories ("folders")
* A directory can contain files and more directories

e A directory is a file container. It needs to store information about what
files/folders are contained within it.

21

Directories

A Unix V6 directory’s payload data is an unsorted list of 16 byte “directory

entries”. Each entry contains the name and inode number of one thing in that
directory.

* The first two bytes are the inumber
* The last 14 bytes are the name (not necessarily null-terminated!)

23 myfile.txt

struct direntvé {
uintl6_t d_inumber;
char d _name[14]; 1245 | prez.pptx

54 song.mp3

s

22

Directories

How can we store directories on disk?
* Directories have payload data: directory entries (could be many entries)
* Directories have metadata (size, permissions, creation date, ...)

Key idea: let’s model a directory as a file. We’ll pretend it’s a “file” whose
contents are its directory entries! Thus each directory will have an inode, too.

Key benefit: we can leverage all the existing logic for how files and inodes work,
no need for extra work or complexity!

* Inodes can store a field telling us whether something is a directory or file.

* Directories can be “small mode” or “large mode”, just like files
23

Plan For Today

* Lookup

Now we understand how files and
folders are stored. But how do
we find them?

Key Idea: lookup happens by
going through directories

The Directory Hierarchy

* On Unix/Linux, all files live within the root directory, "/"

* We can specify the location of a file via the path to it from the root directory
(“absolute path”):

/classes/cslll/index.html

Common filesystem task: given a filepath, get the file's contents.

(Alternative — relative path, path to file from where you currently are).

26

The Lookup Process

/classes/csl1ll1ll1/index.html

)

Start at the
root directory

27

The Lookup Process

/classes/csl1ll1ll1/index.html

)

In the root
directory, find
the entry
named
"classes".

28

The Lookup Process

/classes/csl1ll1ll1/index.html

)

In the "classes"
directory, find

the entry
named "cs111".

29

The Lookup Process

/classes/csl1ll1ll1/index.html

)

In the "cs111"
directory, find the
entry named
"index.html". Then
read its contents.

30

The Lookup Process

The root directory ("/") is set to have inumber 1. That way we always know
where to go to start traversing. (0 is reserved to mean "NULL" or "no inode").

31

http://stackoverflow.com/questions/2099121/why-do-inode-numbers-start-from-1-and-not-0

The Lookup Process

/classes/csl1ll1ll1/index.html

)

Go to inode
with inumber 1
(root directory).

32

The Lookup Process

/classes/csl1ll1ll1/index.html

)

In its payload data,
look for the entry
“classes” and get
its inumber. Go to
that inode.

33

The Lookup Process

/classes/csl1ll1ll1/index.html

)

In its payload
data, look for
the entry
“cs111” and get
its inumber. Go
to that inode.

34

The Lookup Process

/classes/csl1ll1ll1/index.html

)

In its payload data,
look for the entry
“index.html” and get
its inumber. Goto
that inode and read in
its payload data.

35

Lookup

Key idea: Unix V6 directories are what map filenames to inode numbers in the
filesystem. Filenames are not stored in inodes; they are stored in directories.
Thefore, file lookup must happen via directories.

36

Plan For Today

* Practice: lookup

37

Lookup Practice #1

What is the inode number for the file with path /local/files/story.txt?

Inode # 1 3 12 14 16
Type: dir Type: file Type: dir Type: dir Type: file
Mode: small Mode: small Mode: small Mode: small Mode: large
Inode | size: go | size: 1536 | size: 544 | size: 64 | Size: 4608
contents | i addr = [24, ..] i_addr = [128, i addr = [32, 41, i_addr = [62, ..] i_addr = [125, ..]
222, 124, ..]]
——
Block # 2 24 —32= 41 62 128
1 12 apps 21 14 Once upon a
.o 1 .. 1 files 14 .. 12 time...
: local 12 filel.txt 4 story.txt 3
Block Start of inode y
i .| other 10 |..| docs 15 |... .| todo.txt 16 |..
contents table
remote 9 cee
("files™
not here)

38

Lookup Practice #1

What is the inode number for the file with path /local/files/story.txt?

Inode # 1 3 12 14 16
Type: dir Type: file Type: dir Type: dir Type: file
Mode: small Mode: small Mode: small Mode: small Mode: large
Inode | size: go | size: 1536 | size: 544 | size: 64 | Size: 4608
contents | i addr = [24, ..] i_addr = [128, i addr = [32, 41, i_addr = [62, ..] i_addr = [125, ..]
222, 124, ..]]
——
Block # 2 24 —32= 41 62 128
1 12 apps 21 14 Once upon a
.o 1 .. 1 files 14 .. 12 time...
: local 12 filel.txt 4 story.txt 3
Block Start of inode y
i .| other 10 |..| docs 15 |... .| todo.txt 16 |..
contents table
remote 9 cee
("files™
not here)

39

Lookup Practice #1

What is the inode number for the file with path /local/files/story.txt?

Inode # 1 3 12 14 16
Type: dir Type: file Type: dir Type: dir Type: file
Mode: small Mode: small Mode: small Mode: small Mode: large
Inode | size: go | size: 1536 | size: 544 | size: 64 | Size: 4608
contents | i addr = [24, ..] i_addr = [128, i addr = [32, 41, i_addr = [62, ..] i_addr = [125, ..]
222, 124, ..]]
——
Block # 2 24 —32= 41 62 128
1 12 apps 21 14 Once upon a
.o 1 .. 1 files 14 .. 12 time...
: local 12 filel.txt 4 story.txt 3
Block Start of inode y
i | other 10 |..| docs 15 |... .| todo.txt 16 |..
contents table
remote 9 cee
("files™
not here)

40

Lookup Practice #1

What is the inode number for the file with path /local/files/story.txt?

Inode # 1 3 12 14 16
Type: dir Type: file Type: dir Type: dir Type: file
Mode: small Mode: small Mode: small Mode: small Mode: large
Inode | size: go | size: 1536 | size: 544 | size: 64 | Size: 4608
contents | i addr = [24, ..] i_addr = [128, i addr = [32, 41, i_addr = [62, ..] i_addr = [125, ..]
222, 124, ..]]
——
Block # 2 24 —32= 41 62 128
1 12 apps 21 14 Once upon a
.o 1 .. 1 files 14 .. 12 time...
: local 12 filel.txt 4 story.txt 3
Block Start of inode y
i .| other 10 |..| docs 15 |... .| todo.txt 16 |..
contents table
remote 9 cee
("files™
not here)

41

Lookup Practice #1

What is the inode number for the file with path /local/files/story.txt?

Inode # 1 3 12 14 16
Type: dir Type: file Type: dir Type: dir Type: file
Mode: small Mode: small Mode: small Mode: small Mode: large
Inode | size: go | size: 1536 | size: 544 | size: 64 | Size: 4608
contents | i addr = [24, ..] i_addr = [128, i addr = [32, 41, i_addr = [62, ..] i_addr = [125, ..]
222, 124, ..]]
——
Block # 2 24 —32= 41 62 128
1 12 apps 21 14 Once upon a
.o 1 .. 1 files 14 .. 12 time...
: local 12 filel.txt 4 story.txt 3
Block Start of inode y
i .| other 10 |..] docs 15].. .| todo.txt 16 |..
contents table
remote 9 cee
("files™
not here)

42

Lookup Practice #1

What is the inode number for the file with path /local/files/story.txt?

Inode # 1 3 12 14 16
Type: dir Type: file Type: dir Type: dir Type: file
Mode: small Mode: small Mode: small Mode: small Mode: large
Inode | size: go | size: 1536 | size: 544 | size: 64 | Size: 4608
contents | i addr = [24, ..] i_addr = [128, i addr = [32, 41, i_addr = [62, ..] i_addr = [125, ..]
222, 124, ..]]
——
Block # 2 24 —32= 41 62 128
1 12 apps 21 14 Once upon a
.o 1 .. 1 files 14 .. 12 time...
: local 12 filel.txt 4 story.txt 3
Block Start of inode y
i .| other 10 |..| docs 15 |... .| todo.txt 16 |..
contents table
remote 9 cee
("files™
not here)

43

Lookup Practice #1

What is the inode number for the file with path /local/files/story.txt?

Inode # 1 3 12 14 16
Type: dir Type: file Type: dir Type: dir Type: file
Mode: small Mode: small Mode: small Mode: small Mode: large
Inode | size: go | size: 1536 | size: 544 | size: 64 | Size: 4608
contents | i addr = [24, ..] i_addr = [128, i addr = [32, 41, i_addr = [62, ..] i_addr = [125, ..]
222, 124, ..]]
——
Block # 2 24 —32= 41 62 128
1 12 apps 21 14 Once upon a
.o 1 .. 1 files 14 .. 12 time...
: local 12 filel.txt 4 story.txt 3
Block Start of inode y
i .| other 10 |..| docs 15 |... .| todo.txt 16 |..
contents table
remote 9 cee
("files™
not here)

44

Lookup Practice #1

What is the inode number for the file with path /local/files/story.txt?

Inode # 1 3 12 14 16
Type: dir Type: file Type: dir Type: dir Type: file
Mode: small Mode: small Mode: small Mode: small Mode: large
Inode | size: go | size: 1536 | size: 544 | size: 64 | Size: 4608
contents | i addr = [24, ..] i_addr = [128, i addr = [32, 41, i_addr = [62, ..] i_addr = [125, ..]
222, 124, ..]]
——
Block # 2 24 —32= 41 62 128
1 12 apps 21 14 Once upon a
.o 1 .. 1 files 14 .. 12 time...
: local 12 filel.txt 4 story.txt 3
Block Start of inode y
i .| other 10 |..| docs 15 |... .| todo.txt 16 |..
contents table
remote 9 cee
("files™
not here)

45

Lookup Practice #1

What is the inode number for the file with path /local/files/story.txt?

Inode # 1 3 12 14 16
Type: dir Type: file Type: dir Type: dir Type: file
Mode: small Mode: small Mode: small Mode: small Mode: large
Inode | size: go | size: 1536 | size: 544 | size: 64 | size: 4608
contents | i addr = [24, ..] i_addr = [128, i addr = [32, 41, i_addr = [62, ..] i_addr = [125, ..]
222, 124, ..]]
——
Block # 2 24 —32= 41 62 128
1 12 apps 21 14 Once upon a
.o 1 .. 1 files 14 .. 12 time...
: local 12 filel.txt 4 story.txt 3
Block Start of inode y
. .| other 10 |..| docs 15 |... | todo.txt 16]..
contents table
remote 9 e
("files"
not here)

46

Lookup Practice #2

What is the inode number for the file with path /usr/note.txt?

Inode # 1 3 12 14 16
Type: dir Type: dir Type: dir Type: dir Type: file
Mode: small Mode: large Mode: small Mode: small Mode: large
Inode | size: 96 | size: 131584 | size: 544 | size: 64 | size: 4608
contents | i addr = [56, ..] i_addr = [122, i_addr = [32, 41, i_addr = [62, ..] i_addr = [876, ..]
545, ..] -]
——
Block # 2 56 &7 122 421 545
1 3 67,421,872, icon.png 30 565
.. 1 . 1 999,135,346 doc.pdf 15
: bin 13 apps 21 . note.txt 16
Block Start of inode PP ’
o | tmp 10 |...| files 14 |...
contents table
other 9 .
usr 3 ("note.txt"
not here)

47

Lookup Practice #2

What is the inode number for the file with path /usr/note.txt?

Inode # 1 3 12 14 16
Type: dir Type: dir Type: dir Type: dir Type: file
Mode: small Mode: large Mode: small Mode: small Mode: large
Inode | size: 96 | size: 131584 | size: 544 | size: 64 | size: 4608
contents | i addr = [56, ..] i_addr = [122, i_addr = [32, 41, i_addr = [62, ..] i_addr = [876, ..]
545, ..] -]
——
Block # 2 56 &7 122 421 545
1 3 67,421,872, icon.png 30 565
.. 1 . 1 999,135,346 doc.pdf 15
: bin 13 apps 21 . note.txt 16
Block Start of inode PP ’
o | tmp 10 |...| files 14 |...
contents table
other 9 .
usr 3 ("note.txt"
not here)

48

Lookup Practice #2

What is the inode number for the file with path /usr/note.txt?

Inode # 1 3 12 14 16
Type: dir Type: dir Type: dir Type: dir Type: file
Mode: small Mode: large Mode: small Mode: small Mode: large
Inode | size: 96 | size: 131584 | size: 544 | size: 64 | size: 4608
contents | i addr = [56, ..] i_addr = [122, i_addr = [32, 41, i_addr = [62, ..] i_addr = [876, ..]
545, ..] -]
——
Block # 2 56 &7 122 421 545
1 3 67,421,872, icon.png 30 565
.. 1 . 1 999,135,346 doc.pdf 15
: bin 13 apps 21 . note.txt 16
Block Start of inode PP ’
o | tmp 10 |..| files 14 |...
contents table
other 9 .
usr 3 ("note.txt"
not here)

49

Lookup Practice #2

What is the inode number for the file with path /usr/note.txt?

Inode # 1 3 12 14 16
Type: dir Type: dir Type: dir Type: dir Type: file
Mode: small Mode: large Mode: small Mode: small Mode: large
Inode | size: 96 | size: 131584 | size: 544 | size: 64 | size: 4608
contents | i addr = [56, ..] i_addr = [122, i_addr = [32, 41, i_addr = [62, ..] i_addr = [876, ..]
545, ..] -]
——
Block # 2 56 &7 122 421 545
1 3 67,421,872, icon.png 30 565
.. 1 . 1 999,135,346 doc.pdf 15
: bin 13 apps 21 . note.txt 16
Block Start of inode PP ’
o | tmp 10 |...| files 14 |...
contents table
other 9 .
usr 3 ("note.txt"
not here)

50

Lookup Practice #2

What is the inode number for the file with path /usr/note.txt?

Inode # 1 3 12 14 16
Type: dir Type: dir Type: dir Type: dir Type: file
Mode: small Mode: large Mode: small Mode: small Mode: large
Inode | size: 96 | size: 131584 | size: 544 | size: 64 | size: 4608
contents | i addr = [56, ..] i_addr = [122, i_addr = [32, 41, i_addr = [62, ..] i_addr = [876, ..]
545, ..] -]
——
Block # 2 56 &7 122 421 545
1 3 67,421,872, icon.png 30 565
.. 1 . 1 999,135,346 doc.pdf 15
: bin 13 apps 21 . note.txt 16
Block Start of inode PP ?
o | tmp 10 |...| files 14 |...
contents table
other 9 .
usr 3 ("note.txt"
not here)

51

Lookup Practice #2

What is the inode number for the file with path /usr/note.txt?

Inode # 1 3 12 14 16
Type: dir Type: dir Type: dir Type: dir Type: file
Mode: small Mode: large Mode: small Mode: small Mode: large
Inode | size: 96 | size: 131584 | size: 544 | size: 64 | size: 4608
contents | i addr = [56, ..] i_addr = [122, i_addr = [32, 41, i_addr = [62, ..] i_addr = [876, ..]
545, ..] -]
——
Block # 2 56 &7 122 421 545
1 3 67,421,872, icon.png 30 565
.. 1 . 1 999,135,346 doc.pdf 15
: bin 13 apps 21 . note.txt 16
Block Start of inode PP ?
o | tmp 10 |..| files 14 |...
contents table
other 9 .
usr 3 ("note.txt"
not here)

52

Lookup Practice #2

What is the inode number for the file with path /usr/note.txt?

Inode # 1 3 12 14 16
Type: dir Type: dir Type: dir Type: dir Type: file
Mode: small Mode: large Mode: small Mode: small Mode: large
Inode | size: 96 | size: 131584 | size: 544 | size: 64 | size: 4608
contents | i addr = [56, ..] i_addr = [122, i_addr = [32, 41, i_addr = [62, ..] i_addr = [876, ..]
545, ..] -]
——
Block # 2 56 &7 122 421 545
1 3 67,421,872, icon.png 30 565
.. 1 . 1 999,135,346 doc.pdf 15
: bin 13 apps 21 . note.txt 16
Block Start of inode PP ?
o | tmp 10 |...| files 14 |...
contents table
other 9 .
usr 3 ("note.txt"
not here)

53

Lookup Practice #2

What is the inode number for the file with path /usr/note.txt?

Inode # 1 3 12 14 16
Type: dir Type: dir Type: dir Type: dir Type: file
Mode: small Mode: large Mode: small Mode: small Mode: large
Inode | size: 96 | size: 131584 | size: 544 | size: 64 | size: 4608
contents | i addr = [56, ..] i_addr = [122, i_addr = [32, 41, i_addr = [62, ..] i_addr = [876, ..]
545, ..] -]
——
Block # 2 56 &7 122 421 545
1 3 67,421,872, icon.png 30 565
.. 1 . 1 999,135,346 doc.pdf 15
: bin 13 apps 21 . note.txt 16
Block Start of inode PP ?
o | tmp 10 |...| files 14 |...
contents table
other 9 .
usr 3 ("note.txt"
not here)

54

Unix V6 Filesystem Summary

* Every file has an inode (stores block numbers and other metadata)
e “small” (up to 8 direct) or “large” (up to 7 singly-indirect and 1 doubly-indirect)

* Every directory also has an inode. Directories store directory entries.
* Directory entry = inumber + name

* We leverage directories to look up by name
* For looking up by absolute path, we start at root directory (inumber 1)

55

Unix V6 Filesystem Summary

We built layers on top of the low-level readSector and writeSector to implement
a higher-level filesystem. We encountered several design ideas:

* Modularity —subdivision of a larger system into a collection of smaller
subsystems, which themselves may be further subdivided

* Layering —the organization of several modules that interact in some
hierarchical manner where each layer typically only opens its interface to the
module above it

* Name resolution — system resolves human-friendly names (paths) to machine-
friendly names (inumbers). Names let us refer to system resources.

* Virtualization — making one thing look like another (e.g. disk is just an array of
sectors)

56

Unix V6 Filesystem

The Unix V6 Filesystem is one example of a “multi-level index” filesystem design.
* What are the benefits / drawbacks of the Unix V6 Filesystem design?

Advantages

* Can access all block numbers for a file
* Still supports easy sequential access
e Easy to grow files

57

Unix V6 Filesystem

The Unix V6 Filesystem is one example of a “multi-level index” filesystem design.
* What are the benefits / drawbacks of the Unix V6 Filesystem design?

Disadvantages

* More steps and disk reads to get block data for large files

* More disk space taken up by metadata

* Upper limit on file size (though if larger than disk, doesn’t matter)
* Size change requires restructuring the inode

58

Multi-level Indexes

There are many alternative designs that could be used — some alterations you
could propose might be:

 What if the block size was different?

e What if inodes stored a different number of block numbers?

* What if the file size scheme (small / large) worked differently?

Example: 4.3 BSD Unix filesystem (evolutionary descendent of V6)
* 4Kb block size
* Inodes store 14 block numbers

* First 12 block numbers always direct, 13t always singly indirect, 14t always
doubly indirect (no small vs. large schemes)

59

Other Filesystem Design Ideas

Larger block size? Improves efficiency of I/O and inodes but worsens internal
fragmentation. Generally: challenges with both large and small files coexisting.

One idea: multiple block sizes

* Large blocks are 4KB, fragments are 512 bytes (8 fragments fit in a block)
* The last block in a file can be 0-7 fragments

* One large block can hold fragments from multiple files

* Get the time efficiency benefit of larger blocks, but the internal fragmentation
benefit of smaller blocks (small files can use fragments)

60

Filesystem Techniques Today

* Filesystem design is a hard problem! Tradeoffs, challenges with large and small
files.

e Even larger block sizes (16KB large blocks, 2KB fragments) — disk space cheap,
internal fragmentation doesn’t matter as much

* Reallocate files as blocks grow — initially allocate blocks one at a time, but
when a file reaches a certain size, reallocate blocks looking for large contiguous
clusters

e ext4 is a popular current Linux filesystem — you may notice similarities!
* NTFS (replacement for FAT) is the current Windows filesystem
* APFS (“Apple Filesystem”) is the filesystem for Apple devices

61

https://opensource.com/article/17/5/introduction-ext4-filesystem
https://opensource.com/article/17/5/introduction-ext4-filesystem

Implement core functions to read from a Unix v6 filesystem disk!

* inode_iget -> fetch a specific inode

* inode_indexlookup -> fetch a specific payload block number

* file_getblock -> fetch a specified payload block
 directory_findname -> fetch directory entry with the given name

e pathname_lookup -> fetch inumber for the file with the given path

62

* Recap: the Unix V6 Filesystem so far Lecture 4 takeaway: The

* Practice: doubly-indirect addressing Unix V6 Filesystem

* Directories represents directories as

* Filename lookup files, with payloads

* Practice: filename lookup containing directory entries.
Lookup begins at the root
directory for absolute paths.

Next time: crash recovery

63

	Slide 1: CS111, Lecture 4 Unix V6 Filesystem, Continued
	Slide 2: Announcements
	Slide 3: Announcements
	Slide 4: CS111 Topic 1: Filesystems
	Slide 5: Learning Goals
	Slide 6: Plan For Today
	Slide 7: Plan For Today
	Slide 8: Unix V6 Filesystem
	Slide 9: Small File Scheme
	Slide 10: Large File Scheme
	Slide 11: Large File Scheme
	Slide 12: Large File Scheme
	Slide 13: Plan For Today
	Slide 14: Doubly-Indirect Addressing
	Slide 15
	Slide 16: Doubly-Indirect Addressing
	Slide 17: Doubly-Indirect Addressing
	Slide 18: Doubly-Indirect Addressing
	Slide 19: Doubly-Indirect Addressing
	Slide 20: Plan For Today
	Slide 21: Directories
	Slide 22: Directories
	Slide 23: Directories
	Slide 24: Plan For Today
	Slide 25: Now we understand how files and folders are stored. But how do we find them?
	Slide 26: The Directory Hierarchy
	Slide 27: The Lookup Process
	Slide 28: The Lookup Process
	Slide 29: The Lookup Process
	Slide 30: The Lookup Process
	Slide 31: The Lookup Process
	Slide 32: The Lookup Process
	Slide 33: The Lookup Process
	Slide 34: The Lookup Process
	Slide 35: The Lookup Process
	Slide 36: Lookup
	Slide 37: Plan For Today
	Slide 38: Lookup Practice #1
	Slide 39: Lookup Practice #1
	Slide 40: Lookup Practice #1
	Slide 41: Lookup Practice #1
	Slide 42: Lookup Practice #1
	Slide 43: Lookup Practice #1
	Slide 44: Lookup Practice #1
	Slide 45: Lookup Practice #1
	Slide 46: Lookup Practice #1
	Slide 47: Lookup Practice #2
	Slide 48: Lookup Practice #2
	Slide 49: Lookup Practice #2
	Slide 50: Lookup Practice #2
	Slide 51: Lookup Practice #2
	Slide 52: Lookup Practice #2
	Slide 53: Lookup Practice #2
	Slide 54: Lookup Practice #2
	Slide 55: Unix V6 Filesystem Summary
	Slide 56: Unix V6 Filesystem Summary
	Slide 57: Unix V6 Filesystem
	Slide 58: Unix V6 Filesystem
	Slide 59: Multi-level Indexes
	Slide 60: Other Filesystem Design Ideas
	Slide 61: Filesystem Techniques Today
	Slide 62: Assignment 1
	Slide 63: Recap

