
1

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under 

Creative Commons Attribution 2.5 License.  All rights reserved.
Based on slides and notes created by John Ousterhout, Jerry Cain, Chris Gregg, and others. 

NOTICE RE UPLOADING TO WEBSITES:  This content is protected and may not be shared, 

uploaded, or distributed. (without expressed written permission)

CS111, Lecture 4
Unix V6 Filesystem, Continued

Optional reading:
Operating Systems: Principles and Practice (2nd Edition): Sections 13.1-13.2



2

Announcements

Sections start this week!  Section assignments will be released later today - 
check the course website for your section assignment.  Bring a laptop with you if 
you have one.

• Sections rely on material through each Wed. lecture - the work you do in 
section will pay dividends when you work on the assignment!

• Section credit is awarded based on arriving on time and participating for the 
full section period

• if you have any section accommodation needs (e.g. illness) or need to attend a 
makeup, or have other section-logistics-related questions, please contact your 
section TA



3

Announcements

• Assign0 due tonight at 11:59PM

• Stop by helper hours with any questions!
• “help summaries” summarizing each help session with a TA

• Focus on getting you unstuck – empowering you to further your debugging skills
• For debugging in particular, focusing on test-case-centric debugging, recommended steps to gather 

more information.

• Make sure to sign up in the queue with detailed information about your question or 
issue so that we can effectively help!



4

CS111 Topic 1: Filesystems

Filesystems 
introduction and 

design

Case study: Unix 
V6 Filesystem

Crash Recovery
Filesystem 

System calls and 
file descriptors

Lecture 2 Lecture 3 / Today Lectures 5-6 Lectures 6-7

assign1: implement portions of the Unix v6 filesystem!

Key Question: How can we design filesystems to manage files on disk, and what are 
the tradeoffs inherent in designing them?  How can we interact with the filesystem in 
our programs?



5

Learning Goals

• Explore the design of the Unix V6 filesystem

• Understand the design of the Unix v6 filesystem in how it represents 
directories

• Practice with the full process of going from file path to file data



6

Plan For Today

• Recap: the Unix V6 Filesystem so far

• Practice: doubly-indirect addressing

• Directories

• Lookup

• Practice: lookup



7

Plan For Today

• Recap: the Unix V6 Filesystem so far

• Practice: doubly-indirect addressing

• Directories

• Lookup

• Practice: lookup



8

Unix V6 Filesystem

Every file has an associated inode.  An inode has space for up to 8 block 
numbers for file payload data, and this block number space is used differently 
depending on whether the file is “small mode” or “large mode”

if ((inode.i_mode & ILARG) != 0) { // file is “large mode”



9

Small File Scheme

If the file is small, i_addr stores direct block numbers: numbers of blocks that 
contain payload data.

index 0 1 2 3 4 5 6 7

i_addr 341 33 124 … … … … …

File 
Part 0

Block 341

File 
Part 1

Block 33

File 
Part 2

Block 124 To know how many of 

the 8 numbers are 

used, we can look at the 

size stored in the inode.



10

Large File Scheme

If the file is large, the first 7 entries in i_addr are singly-indirect block numbers 
(block numbers of blocks that contain direct block numbers).  The 8th entry (if 
needed) is a doubly-indirect block number (the number of a block that contains 
singly-indirect block numbers).

index 0 1 2 3 4 5 6 7

i_addr 444 22 34 792 168 976 2467 555

126, 98, 70, 127, 
1252, …

Block 444

File Part 
0

Block 126
1352, 567, …

Block 555

File Part 
1,792

Block 897

… …

897, 4356, 6791, 
…

Block 1352



11

Large File Scheme

Another way to think about it: a file can be represented using at most 7 + 256 = 
263 singly-indirect blocks. The first seven are stored in the inode. The 
remaining 256 are stored in a block whose block number is stored in the inode.

126, 98, 70, 127, 
1252, …

Block 444

File Part 
0

Block 126
1352, 567, …

Block 555

File Part 
1,792

Block 897

… …

897, 4356, 6791, 
…

Block 1352

index 0 1 2 3 4 5 6 7

i_addr 444 22 34 792 168 976 2467 555



12

Large File Scheme

• Max size = (7+256) * 256 * 512 = ~34MB
• Or (7 * 256 * 512) + (256 * 256 * 512) = ~34MB

• Files only use the block numbers they need (depending on their size)

• Note: doubly-indirect is useful (and there are many other possible designs!), 
but it means even more steps to access data.



13

Plan For Today

• Recap: the Unix V6 Filesystem so far

• Practice: doubly-indirect addressing

• Directories

• Lookup

• Practice: lookup



14

Doubly-Indirect Addressing

What is the smallest file size (in bytes) that would require using the doubly-
indirect block to store its data?

Respond on PollEv:

pollev.com/cs111



15



16

Doubly-Indirect Addressing

What is the smallest file size (in bytes) that would require using the doubly-
indirect block to store its data?

Files up to (7 * 256 * 512) bytes are representable using just the 7 singly-
indirect blocks.  Files of (7 * 256 * 512) + 1 or more bytes would need the 
doubly-indirect block as well.



17

Doubly-Indirect Addressing

Inode 16:
• ”large mode”
• size = 18,855,234
• i_addr = [26,35,32,50,58,22,59,30]

Assume we have a the following inode. How do we find the block containing the 
start of its payload data? How about the remainder of its payload data?

Block # … 2 … 26 … 30 … 80 … 87 … 89

Block 
contents

…
Inode
table
start

…

80,41,82,85,
103, 24,45,…

…

87,114,47,48,
122,99,111,
543,…

…

It was the best 
of times, it 
was the worst 
of times… …

89,448,234,99,
…

…

“My father,” 
exclaimed 
Lucie, “you 
are ill!”…

Step 1: Go to block 26 and read block numbers. 

For the first number, 80, go to block 80 and read 

the beginning of the file (the first 512 bytes). 

Then go to block 41 for the next 512 bytes, etc.



18

Doubly-Indirect Addressing

Inode 16:
• ”large mode”
• size = 18,855,234
• i_addr = [26,35,32,50,58,22,59,30]

Assume we have a the following inode. How do we find the block containing the 
start of its payload data? How about the remainder of its payload data?

Block # … 2 … 26 … 30 … 80 … 87 … 89

Block 
contents

…
Inode
table
start

…

80,41,82,85,
103, 24,45,…

…

87,114,47,48,
122,99,111,
543,…

…

It was the best 
of times, it 
was the worst 
of times… …

89,448,234,99,
…

…

“My father,” 
exclaimed 
Lucie, “you 
are ill!”…

Step 2: After 256 blocks, go to block 35, repeat 

the process. Do this a total of 7 times, for blocks 

26, 35, 32, 50, 58, 22, and 59, reading 1792 

blocks.



19

Doubly-Indirect Addressing

Inode 16:
• ”large mode”
• size = 18,855,234
• i_addr = [26,35,32,50,58,22,59,30]

Assume we have a the following inode. How do we find the block containing the 
start of its payload data? How about the remainder of its payload data?

Block # … 2 … 26 … 30 … 80 … 87 … 89

Block 
contents

…
Inode
table
start

…

80,41,82,85,
103, 24,45,…

…

87,114,47,48,
122,99,111,
543,…

…

It was the best 
of times, it 
was the worst 
of times… …

89,448,234,99,
…

…

“My father,” 
exclaimed 
Lucie, “you 
are ill!”…

Step 3: Go to block 30, which is a doubly-indirect 
block. From there, go to block 87, which is a singly-

indirect block, and read all block numbers.  Repeat 

for remaining singly-indirect block numbers in block 
30.



20

Plan For Today

• Recap: the Unix V6 Filesystem so far

• Practice: doubly-indirect addressing

• Directories

• Lookup

• Practice: lookup



21

Directories

Filesystems usually support directories ("folders")

• A directory can contain files and more directories

• A directory is a file container. It needs to store information about what 
files/folders are contained within it.



22

Directories

A Unix V6 directory’s payload data is an unsorted list of 16 byte “directory 
entries”.  Each entry contains the name and inode number of one thing in that 
directory.

• The first two bytes are the inumber

• The last 14 bytes are the name (not necessarily null-terminated!)

struct direntv6 {
  uint16_t d_inumber;
  char     d_name[14];
};

23 myfile.txt

54 song.mp3

1245 prez.pptx

…



23

Directories

How can we store directories on disk?

• Directories have payload data: directory entries (could be many entries)

• Directories have metadata (size, permissions, creation date, …)

Key idea: let’s model a directory as a file.  We’ll pretend it’s a “file” whose 
contents are its directory entries!  Thus each directory will have an inode, too.

Key benefit: we can leverage all the existing logic for how files and inodes work, 
no need for extra work or complexity!

• Inodes can store a field telling us whether something is a directory or file.

• Directories can be “small mode” or “large mode”, just like files



24

Plan For Today

• Recap: the Unix V6 Filesystem so far

• Practice: doubly-indirect addressing

• Directories

• Lookup

• Practice: lookup



25

Now we understand how files and 
folders are stored. But how do 

we find them?

Key Idea: lookup happens by 
going through directories



26

The Directory Hierarchy

• On Unix/Linux, all files live within the root directory, "/"

• We can specify the location of a file via the path to it from the root directory 
(“absolute path”):

/classes/cs111/index.html

Common filesystem task: given a filepath, get the file's contents.

(Alternative – relative path, path to file from where you currently are).



27

The Lookup Process

/classes/cs111/index.html

Start at the 
root directory



28

The Lookup Process

/classes/cs111/index.html

In the root 
directory, find 
the entry 
named 
"classes".



29

The Lookup Process

/classes/cs111/index.html

In the "classes" 
directory, find 
the entry 
named "cs111".



30

The Lookup Process

/classes/cs111/index.html

In the "cs111" 
directory, find the 
entry named 
"index.html". Then 
read its contents.



31

The Lookup Process

The root directory ("/") is set to have inumber 1. That way we always know 
where to go to start traversing. (0 is reserved to mean "NULL" or "no inode").

http://stackoverflow.com/questions/2099121/why-do-inode-numbers-start-from-1-and-not-0


32

The Lookup Process

/classes/cs111/index.html

Go to inode 
with inumber 1 
(root directory).



33

The Lookup Process

/classes/cs111/index.html

In its payload data, 
look for the entry 
“classes” and get 
its inumber.  Go to 
that inode.



34

The Lookup Process

/classes/cs111/index.html

In its payload 
data, look for 
the entry 
“cs111” and get 
its inumber. Go 
to that inode.



35

The Lookup Process

/classes/cs111/index.html

In its payload data, 
look for the entry 
“index.html” and get 
its inumber.  Go to 
that inode and read in 
its payload data.



36

Lookup

Key idea: Unix V6 directories are what map filenames to inode numbers in the 
filesystem.  Filenames are not stored in inodes; they are stored in directories.  
Thefore, file lookup must happen via directories.



37

Plan For Today

• Recap: the Unix V6 Filesystem so far

• Practice: doubly-indirect addressing

• Directories

• Lookup

• Practice: lookup



38

Lookup Practice #1

What is the inode number for the file with path /local/files/story.txt?

Block # … 2 … 24 … 32 … 41 … 62 … 128

Block 
contents

…
Start of inode 

table
…

.         1

..        1
local    12
other    10
remote    9

…

.        12

..        1
file1.txt 4
docs     15
...
("files" 
not here)

…

apps     21
files    14

…

.        14

..       12
story.txt 3
todo.txt 16 …

Once upon a 
time…

…

Inode # 1 … 3 … 12 … 14 … 16

Inode 
contents

Type: dir

Mode: small
Size: 80
i_addr = [24, …]

…

Type: file

Mode: small
Size: 1536
i_addr = [128, 

222, 124, …]

…

Type: dir

Mode: small
Size: 544
i_addr = [32, 41, 

…]

…

Type: dir

Mode: small
Size: 64
i_addr = [62, …]

…

Type: file

Mode: large
Size: 4608
i_addr = [125, …]



39

Lookup Practice #1

What is the inode number for the file with path /local/files/story.txt?

Block # … 2 … 24 … 32 … 41 … 62 … 128

Block 
contents

…
Start of inode 

table
…

.         1

..        1
local    12
other    10
remote    9

…

.        12

..        1
file1.txt 4
docs     15
...
("files" 
not here)

…

apps     21
files    14

…

.        14

..       12
story.txt 3
todo.txt 16 …

Once upon a 
time…

…

Inode # 1 … 3 … 12 … 14 … 16

Inode 
contents

Type: dir

Mode: small
Size: 80
i_addr = [24, …]

…

Type: file

Mode: small
Size: 1536
i_addr = [128, 

222, 124, …]

…

Type: dir

Mode: small
Size: 544
i_addr = [32, 41, 

…]

…

Type: dir

Mode: small
Size: 64
i_addr = [62, …]

…

Type: file

Mode: large
Size: 4608
i_addr = [125, …]



40

Lookup Practice #1

What is the inode number for the file with path /local/files/story.txt?

Block # … 2 … 24 … 32 … 41 … 62 … 128

Block 
contents

…
Start of inode 

table
…

.         1

..        1
local    12
other    10
remote    9

…

.        12

..        1
file1.txt 4
docs     15
...
("files" 
not here)

…

apps     21
files    14

…

.        14

..       12
story.txt 3
todo.txt 16 …

Once upon a 
time…

…

Inode # 1 … 3 … 12 … 14 … 16

Inode 
contents

Type: dir

Mode: small
Size: 80
i_addr = [24, …]

…

Type: file

Mode: small
Size: 1536
i_addr = [128, 

222, 124, …]

…

Type: dir

Mode: small
Size: 544
i_addr = [32, 41, 

…]

…

Type: dir

Mode: small
Size: 64
i_addr = [62, …]

…

Type: file

Mode: large
Size: 4608
i_addr = [125, …]



41

Lookup Practice #1

What is the inode number for the file with path /local/files/story.txt?

Block # … 2 … 24 … 32 … 41 … 62 … 128

Block 
contents

…
Start of inode 

table
…

.         1

..        1
local    12
other    10
remote    9

…

.        12

..        1
file1.txt 4
docs     15
...
("files" 
not here)

…

apps     21
files    14

…

.        14

..       12
story.txt 3
todo.txt 16 …

Once upon a 
time…

…

Inode # 1 … 3 … 12 … 14 … 16

Inode 
contents

Type: dir

Mode: small
Size: 80
i_addr = [24, …]

…

Type: file

Mode: small
Size: 1536
i_addr = [128, 

222, 124, …]

…

Type: dir

Mode: small
Size: 544
i_addr = [32, 41, 

…]

…

Type: dir

Mode: small
Size: 64
i_addr = [62, …]

…

Type: file

Mode: large
Size: 4608
i_addr = [125, …]



42

Lookup Practice #1

What is the inode number for the file with path /local/files/story.txt?

Block # … 2 … 24 … 32 … 41 … 62 … 128

Block 
contents

…
Start of inode 

table
…

.         1

..        1
local    12
other    10
remote    9

…

.        12

..        1
file1.txt 4
docs     15
...
("files" 
not here)

…

apps     21
files    14

…

.        14

..       12
story.txt 3
todo.txt 16 …

Once upon a 
time…

…

Inode # 1 … 3 … 12 … 14 … 16

Inode 
contents

Type: dir

Mode: small
Size: 80
i_addr = [24, …]

…

Type: file

Mode: small
Size: 1536
i_addr = [128, 

222, 124, …]

…

Type: dir

Mode: small
Size: 544
i_addr = [32, 41, 

…]

…

Type: dir

Mode: small
Size: 64
i_addr = [62, …]

…

Type: file

Mode: large
Size: 4608
i_addr = [125, …]



43

Lookup Practice #1

What is the inode number for the file with path /local/files/story.txt?

Block # … 2 … 24 … 32 … 41 … 62 … 128

Block 
contents

…
Start of inode 

table
…

.         1

..        1
local    12
other    10
remote    9

…

.        12

..        1
file1.txt 4
docs     15
...
("files" 
not here)

…

apps     21
files    14

…

.        14

..       12
story.txt 3
todo.txt 16 …

Once upon a 
time…

…

Inode # 1 … 3 … 12 … 14 … 16

Inode 
contents

Type: dir

Mode: small
Size: 80
i_addr = [24, …]

…

Type: file

Mode: small
Size: 1536
i_addr = [128, 

222, 124, …]

…

Type: dir

Mode: small
Size: 544
i_addr = [32, 41, 

…]

…

Type: dir

Mode: small
Size: 64
i_addr = [62, …]

…

Type: file

Mode: large
Size: 4608
i_addr = [125, …]



44

Lookup Practice #1

What is the inode number for the file with path /local/files/story.txt?

Block # … 2 … 24 … 32 … 41 … 62 … 128

Block 
contents

…
Start of inode 

table
…

.         1

..        1
local    12
other    10
remote    9

…

.        12

..        1
file1.txt 4
docs     15
...
("files" 
not here)

…

apps     21
files    14

…

.        14

..       12
story.txt 3
todo.txt 16 …

Once upon a 
time…

…

Inode # 1 … 3 … 12 … 14 … 16

Inode 
contents

Type: dir

Mode: small
Size: 80
i_addr = [24, …]

…

Type: file

Mode: small
Size: 1536
i_addr = [128, 

222, 124, …]

…

Type: dir

Mode: small
Size: 544
i_addr = [32, 41, 

…]

…

Type: dir

Mode: small
Size: 64
i_addr = [62, …]

…

Type: file

Mode: large
Size: 4608
i_addr = [125, …]



45

Lookup Practice #1

What is the inode number for the file with path /local/files/story.txt?

Block # … 2 … 24 … 32 … 41 … 62 … 128

Block 
contents

…
Start of inode 

table
…

.         1

..        1
local    12
other    10
remote    9

…

.        12

..        1
file1.txt 4
docs     15
...
("files" 
not here)

…

apps     21
files    14

…

.        14

..       12
story.txt 3
todo.txt 16 …

Once upon a 
time…

…

Inode # 1 … 3 … 12 … 14 … 16

Inode 
contents

Type: dir

Mode: small
Size: 80
i_addr = [24, …]

…

Type: file

Mode: small
Size: 1536
i_addr = [128, 

222, 124, …]

…

Type: dir

Mode: small
Size: 544
i_addr = [32, 41, 

…]

…

Type: dir

Mode: small
Size: 64
i_addr = [62, …]

…

Type: file

Mode: large
Size: 4608
i_addr = [125, …]



46

Lookup Practice #1

What is the inode number for the file with path /local/files/story.txt?

Block # … 2 … 24 … 32 … 41 … 62 … 128

Block 
contents

…
Start of inode 

table
…

.         1

..        1
local    12
other    10
remote    9

…

.        12

..        1
file1.txt 4
docs     15
...
("files" 
not here)

…

apps     21
files    14

…

.        14

..       12
story.txt 3
todo.txt 16 …

Once upon a 
time…

…

Inode # 1 … 3 … 12 … 14 … 16

Inode 
contents

Type: dir

Mode: small
Size: 80
i_addr = [24, …]

…

Type: file

Mode: small
Size: 1536
i_addr = [128, 

222, 124, …]

…

Type: dir

Mode: small
Size: 544
i_addr = [32, 41, 

…]

…

Type: dir

Mode: small
Size: 64
i_addr = [62, …]

…

Type: file

Mode: large
Size: 4608
i_addr = [125, …]



47

Lookup Practice #2

What is the inode number for the file with path /usr/note.txt?

Block # … 2 … 56 … 67 … 122 … 421 … 545

Block 
contents

…
Start of inode 

table
…

.         1

..        1
bin      13
tmp      10
other     9
usr       3

…

.         3

..        1
apps     21
files    14
…
("note.txt" 
not here)

…

67,421,872,
999,135,346
,…

…

icon.png 30
doc.pdf  15
note.txt 16
… …

565

…

Inode # 1 … 3 … 12 … 14 … 16

Inode 
contents

Type: dir

Mode: small
Size: 96
i_addr = [56, …]

…

Type: dir

Mode: large
Size: 131584
i_addr = [122, 

545, …]

…

Type: dir

Mode: small
Size: 544
i_addr = [32, 41, 

…]

…

Type: dir

Mode: small
Size: 64
i_addr = [62, …]

…

Type: file

Mode: large
Size: 4608
i_addr = [876, …]



48

Lookup Practice #2

What is the inode number for the file with path /usr/note.txt?

Block # … 2 … 56 … 67 … 122 … 421 … 545

Block 
contents

…
Start of inode 

table
…

.         1

..        1
bin      13
tmp      10
other     9
usr       3

…

.         3

..        1
apps     21
files    14
…
("note.txt" 
not here)

…

67,421,872,
999,135,346
,…

…

icon.png 30
doc.pdf  15
note.txt 16
… …

565

…

Inode # 1 … 3 … 12 … 14 … 16

Inode 
contents

Type: dir

Mode: small
Size: 96
i_addr = [56, …]

…

Type: dir

Mode: large
Size: 131584
i_addr = [122, 

545, …]

…

Type: dir

Mode: small
Size: 544
i_addr = [32, 41, 

…]

…

Type: dir

Mode: small
Size: 64
i_addr = [62, …]

…

Type: file

Mode: large
Size: 4608
i_addr = [876, …]



49

Lookup Practice #2

What is the inode number for the file with path /usr/note.txt?

Block # … 2 … 56 … 67 … 122 … 421 … 545

Block 
contents

…
Start of inode 

table
…

.         1

..        1
bin      13
tmp      10
other     9
usr       3

…

.         3

..        1
apps     21
files    14
…
("note.txt" 
not here)

…

67,421,872,
999,135,346
,…

…

icon.png 30
doc.pdf  15
note.txt 16
… …

565

…

Inode # 1 … 3 … 12 … 14 … 16

Inode 
contents

Type: dir

Mode: small
Size: 96
i_addr = [56, …]

…

Type: dir

Mode: large
Size: 131584
i_addr = [122, 

545, …]

…

Type: dir

Mode: small
Size: 544
i_addr = [32, 41, 

…]

…

Type: dir

Mode: small
Size: 64
i_addr = [62, …]

…

Type: file

Mode: large
Size: 4608
i_addr = [876, …]



50

Lookup Practice #2

What is the inode number for the file with path /usr/note.txt?

Block # … 2 … 56 … 67 … 122 … 421 … 545

Block 
contents

…
Start of inode 

table
…

.         1

..        1
bin      13
tmp      10
other     9
usr       3

…

.         3

..        1
apps     21
files    14
…
("note.txt" 
not here)

…

67,421,872,
999,135,346
,…

…

icon.png 30
doc.pdf  15
note.txt 16
… …

565

…

Inode # 1 … 3 … 12 … 14 … 16

Inode 
contents

Type: dir

Mode: small
Size: 96
i_addr = [56, …]

…

Type: dir

Mode: large
Size: 131584
i_addr = [122, 

545, …]

…

Type: dir

Mode: small
Size: 544
i_addr = [32, 41, 

…]

…

Type: dir

Mode: small
Size: 64
i_addr = [62, …]

…

Type: file

Mode: large
Size: 4608
i_addr = [876, …]



51

Lookup Practice #2

What is the inode number for the file with path /usr/note.txt?

Block # … 2 … 56 … 67 … 122 … 421 … 545

Block 
contents

…
Start of inode 

table
…

.         1

..        1
bin      13
tmp      10
other     9
usr       3

…

.         3

..        1
apps     21
files    14
…
("note.txt" 
not here)

…

67,421,872,
999,135,346
,…

…

icon.png 30
doc.pdf  15
note.txt 16
… …

565

…

Inode # 1 … 3 … 12 … 14 … 16

Inode 
contents

Type: dir

Mode: small
Size: 96
i_addr = [56, …]

…

Type: dir

Mode: large
Size: 131584
i_addr = [122, 

545, …]

…

Type: dir

Mode: small
Size: 544
i_addr = [32, 41, 

…]

…

Type: dir

Mode: small
Size: 64
i_addr = [62, …]

…

Type: file

Mode: large
Size: 4608
i_addr = [876, …]



52

Lookup Practice #2

What is the inode number for the file with path /usr/note.txt?

Block # … 2 … 56 … 67 … 122 … 421 … 545

Block 
contents

…
Start of inode 

table
…

.         1

..        1
bin      13
tmp      10
other     9
usr       3

…

.         3

..        1
apps     21
files    14
…
("note.txt" 
not here)

…

67,421,872,
999,135,346
,…

…

icon.png 30
doc.pdf  15
note.txt 16
… …

565

…

Inode # 1 … 3 … 12 … 14 … 16

Inode 
contents

Type: dir

Mode: small
Size: 96
i_addr = [56, …]

…

Type: dir

Mode: large
Size: 131584
i_addr = [122, 

545, …]

…

Type: dir

Mode: small
Size: 544
i_addr = [32, 41, 

…]

…

Type: dir

Mode: small
Size: 64
i_addr = [62, …]

…

Type: file

Mode: large
Size: 4608
i_addr = [876, …]



53

Lookup Practice #2

What is the inode number for the file with path /usr/note.txt?

Block # … 2 … 56 … 67 … 122 … 421 … 545

Block 
contents

…
Start of inode 

table
…

.         1

..        1
bin      13
tmp      10
other     9
usr       3

…

.         3

..        1
apps     21
files    14
…
("note.txt" 
not here)

…

67,421,872,
999,135,346
,…

…

icon.png 30
doc.pdf  15
note.txt 16
… …

565

…

Inode # 1 … 3 … 12 … 14 … 16

Inode 
contents

Type: dir

Mode: small
Size: 96
i_addr = [56, …]

…

Type: dir

Mode: large
Size: 131584
i_addr = [122, 

545, …]

…

Type: dir

Mode: small
Size: 544
i_addr = [32, 41, 

…]

…

Type: dir

Mode: small
Size: 64
i_addr = [62, …]

…

Type: file

Mode: large
Size: 4608
i_addr = [876, …]



54

Lookup Practice #2

What is the inode number for the file with path /usr/note.txt?

Block # … 2 … 56 … 67 … 122 … 421 … 545

Block 
contents

…
Start of inode 

table
…

.         1

..        1
bin      13
tmp      10
other     9
usr       3

…

.         3

..        1
apps     21
files    14
…
("note.txt" 
not here)

…

67,421,872,
999,135,346
,…

…

icon.png 30
doc.pdf  15
note.txt 16
… …

565

…

Inode # 1 … 3 … 12 … 14 … 16

Inode 
contents

Type: dir

Mode: small
Size: 96
i_addr = [56, …]

…

Type: dir

Mode: large
Size: 131584
i_addr = [122, 

545, …]

…

Type: dir

Mode: small
Size: 544
i_addr = [32, 41, 

…]

…

Type: dir

Mode: small
Size: 64
i_addr = [62, …]

…

Type: file

Mode: large
Size: 4608
i_addr = [876, …]



55

Unix V6 Filesystem Summary

• Every file has an inode (stores block numbers and other metadata)
• “small” (up to 8 direct) or “large” (up to 7 singly-indirect and 1 doubly-indirect)

• Every directory also has an inode.  Directories store directory entries.
• Directory entry = inumber + name

• We leverage directories to look up by name

• For looking up by absolute path, we start at root directory (inumber 1)



56

Unix V6 Filesystem Summary

We built layers on top of the low-level readSector and writeSector to implement 
a higher-level filesystem.  We encountered several design ideas:

• Modularity –subdivision of a larger system into a collection of smaller 
subsystems, which themselves may be further subdivided

• Layering –the organization of several modules that interact in some 
hierarchical manner where each layer typically only opens its interface to the 
module above it

• Name resolution – system resolves human-friendly names (paths) to machine-
friendly names (inumbers).  Names let us refer to system resources.

• Virtualization – making one thing look like another (e.g. disk is just an array of 
sectors)



57

Unix V6 Filesystem

The Unix V6 Filesystem is one example of a “multi-level index” filesystem design.

• What are the benefits / drawbacks of the Unix V6 Filesystem design?

Advantages

• Can access all block numbers for a file

• Still supports easy sequential access

• Easy to grow files



58

Unix V6 Filesystem

The Unix V6 Filesystem is one example of a “multi-level index” filesystem design.

• What are the benefits / drawbacks of the Unix V6 Filesystem design?

Disadvantages

• More steps and disk reads to get block data for large files

• More disk space taken up by metadata

• Upper limit on file size (though if larger than disk, doesn’t matter)

• Size change requires restructuring the inode



59

Multi-level Indexes

There are many alternative designs that could be used – some alterations you 
could propose might be:

• What if the block size was different?

• What if inodes stored a different number of block numbers?

• What if the file size scheme (small / large) worked differently?

Example: 4.3 BSD Unix filesystem (evolutionary descendent of V6)

• 4Kb block size

• Inodes store 14 block numbers

• First 12 block numbers always direct, 13th always singly indirect, 14th always 
doubly indirect (no small vs. large schemes)



60

Other Filesystem Design Ideas

Larger block size?  Improves efficiency of I/O and inodes but worsens internal 
fragmentation.  Generally: challenges with both large and small files coexisting.

One idea: multiple block sizes

• Large blocks are 4KB, fragments are 512 bytes (8 fragments fit in a block)

• The last block in a file can be 0-7 fragments

•  One large block can hold fragments from multiple files

• Get the time efficiency benefit of larger blocks, but the internal fragmentation 
benefit of smaller blocks (small files can use fragments)



61

Filesystem Techniques Today

• Filesystem design is a hard problem!  Tradeoffs, challenges with large and small 
files.

• Even larger block sizes (16KB large blocks, 2KB fragments) – disk space cheap, 
internal fragmentation doesn’t matter as much

• Reallocate files as blocks grow – initially allocate blocks one at a time, but 
when a file reaches a certain size, reallocate blocks looking for large contiguous 
clusters

• ext4 is a popular current Linux filesystem – you may notice similarities!

• NTFS (replacement for FAT) is the current Windows filesystem

• APFS (“Apple Filesystem”) is the filesystem for Apple devices

https://opensource.com/article/17/5/introduction-ext4-filesystem
https://opensource.com/article/17/5/introduction-ext4-filesystem


62

Assignment 1

Implement core functions to read from a Unix v6 filesystem disk!

• inode_iget -> fetch a specific inode

• inode_indexlookup -> fetch a specific payload block number 

• file_getblock -> fetch a specified payload block

• directory_findname -> fetch directory entry with the given name

• pathname_lookup -> fetch inumber for the file with the given path



63

Recap

• Recap: the Unix V6 Filesystem so far

• Practice: doubly-indirect addressing

• Directories

• Filename lookup

• Practice: filename lookup

Next time: crash recovery

Lecture 4 takeaway: The 

Unix V6 Filesystem 

represents directories as 

files, with payloads 

containing directory entries.  

Lookup begins at the root 

directory for absolute paths.


	Slide 1: CS111, Lecture 4 Unix V6 Filesystem, Continued
	Slide 2: Announcements
	Slide 3: Announcements
	Slide 4: CS111 Topic 1: Filesystems
	Slide 5: Learning Goals
	Slide 6: Plan For Today
	Slide 7: Plan For Today
	Slide 8: Unix V6 Filesystem
	Slide 9: Small File Scheme
	Slide 10: Large File Scheme
	Slide 11: Large File Scheme
	Slide 12: Large File Scheme
	Slide 13: Plan For Today
	Slide 14: Doubly-Indirect Addressing
	Slide 15
	Slide 16: Doubly-Indirect Addressing
	Slide 17: Doubly-Indirect Addressing
	Slide 18: Doubly-Indirect Addressing
	Slide 19: Doubly-Indirect Addressing
	Slide 20: Plan For Today
	Slide 21: Directories
	Slide 22: Directories
	Slide 23: Directories
	Slide 24: Plan For Today
	Slide 25: Now we understand how files and folders are stored. But how do we find them?
	Slide 26: The Directory Hierarchy
	Slide 27: The Lookup Process
	Slide 28: The Lookup Process
	Slide 29: The Lookup Process
	Slide 30: The Lookup Process
	Slide 31: The Lookup Process
	Slide 32: The Lookup Process
	Slide 33: The Lookup Process
	Slide 34: The Lookup Process
	Slide 35: The Lookup Process
	Slide 36: Lookup
	Slide 37: Plan For Today
	Slide 38: Lookup Practice #1
	Slide 39: Lookup Practice #1
	Slide 40: Lookup Practice #1
	Slide 41: Lookup Practice #1
	Slide 42: Lookup Practice #1
	Slide 43: Lookup Practice #1
	Slide 44: Lookup Practice #1
	Slide 45: Lookup Practice #1
	Slide 46: Lookup Practice #1
	Slide 47: Lookup Practice #2
	Slide 48: Lookup Practice #2
	Slide 49: Lookup Practice #2
	Slide 50: Lookup Practice #2
	Slide 51: Lookup Practice #2
	Slide 52: Lookup Practice #2
	Slide 53: Lookup Practice #2
	Slide 54: Lookup Practice #2
	Slide 55: Unix V6 Filesystem Summary
	Slide 56: Unix V6 Filesystem Summary
	Slide 57: Unix V6 Filesystem
	Slide 58: Unix V6 Filesystem
	Slide 59: Multi-level Indexes
	Slide 60: Other Filesystem Design Ideas
	Slide 61: Filesystem Techniques Today
	Slide 62: Assignment 1
	Slide 63: Recap

