CS111, Lecture 7

File Descriptors and System Calls

Optional reading:
Operating Systems: Principles and Practice (2" Edition): Sections 13.1-13.2

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides and notes created by John Ousterhout, Jerry Cain, Chris Gregg, and others.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared, 1
uploaded, or distributed. (without expressed written permission)

CS198 Section Leading!

cs198@cs.stanford.edu
https://docs.google.com/presentation/d/1jzb7xIxl

0eTCIhT839XT2MYUBEeEETF6D80ViJ6ZP1Tw/edit?

usp=sharing
cs198.stanford.edu — application due 1/26

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides and notes created by John Ousterhout, Jerry Cain, Chris Gregg, and others.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared,
uploaded, or distributed. (without expressed written permission)

mailto:cs198@cs.stanford.edu
https://docs.google.com/presentation/d/1jzb7xIxI0eTClhT839XT2MYUBeEETF6D80ViJ6ZP1Tw/edit?usp=sharing
https://docs.google.com/presentation/d/1jzb7xIxI0eTClhT839XT2MYUBeEETF6D80ViJ6ZP1Tw/edit?usp=sharing
https://docs.google.com/presentation/d/1jzb7xIxI0eTClhT839XT2MYUBeEETF6D80ViJ6ZP1Tw/edit?usp=sharing

CS111 Topic 1: Filesystems

Key Question: How can we design filesystems to manage files on disk, and what are
the tradeoffs inherent in designing them? How can we interact with the filesystem in
our programs?

Filesystem
Crash Recovery System calls and
file descriptors

FlES S Case study: Unix

V6 Filesystem

introduction and
design

Lecture 2 Lecture 3-4 Lecture 5-6 Today

assign2: implement a program that can repair a filesystem after a crash, and explore
some of the security and ethical implications of OSes / filesystems.

Crash Recovery

* The block cache can store any kind of block — inode block, block from the log,
singly-indirect block, directory entries, etc.

* We must write the log entry for an operation to disk before writing the
operation to disk. One way to do this is to remember dependencies in the
block cache between the operation’s blocks and their log entry blocks, to make
sure to write the log entry first.

* For a transaction, we want to write all the transaction’s log entries before
doing any of its operations

* Logging doesn’t guarantee that everything is preserved, but it does guarantee
that what'’s there is consistent (separates durability — data will be preserved —
from consistency — state is consistent)

* A chance we crash even mid-operation (e.g. mid-writing a single block)

Learning Goals

* Learn about the open, close, read and write functions that let us interact with
files

e Get familiar writing programs that read, write and create files

* Learn what the operating system manages for us so that we can interact with
files

Plan For Today

e System calls

* open() and close()

* Practice: creating files
* read() and write()

* Practice: copying files

cp -r /afs/ir/class/cslll/lecture-code/lect7 . 6

e System calls

Plan For Today

cp -r /afs/ir/class/cslll/lecture-code/lect7 .

System Calls and Kernel vs. User Mode

System calls are public functions implemented by the operating system that you
can use in your program.

 System calls do privileged tasks — tasks we cannot do on our own (e.g. call
readSector). OS can run code in privileged “kernel mode” where it can do
things regular programs cannot. User programs run in regular “user mode”.

» System switches to “kernel mode” when system call runs, switches back to “user mode”
after

* The operating system kernel runs the code for a system call, completely
isolating the system-level interaction from the (potentially harmful) user
program.

* We are going to examine the system calls for interacting with files. When
writing production code, you will often use higher-level methods that build on
these (like C++ streams or FILE *), but let's see how they work!

Call open to open a file:

int open(const char *pathname, int flags);

e pathname: path to open
* flags: bitwise OR of options specifying the behavior for opening the file
* returns a file descriptor representing the opened file, or -1 on error

Many possible flags! (see manual page for full list).

* Must have exactly 1 of: O_RDONLY (read-only), O_WRONLY (write-only),
O_RDWR (read and write). These say how you will use the file in this program.

Example: Opening a File

// open file to read from
. = open("filetoread.txt", O_RDONLY);

// open file to write to
. = open("filetowrite.txt", O WRONLY);

// open file to write to and also clear any existing contents
. = open("filetowrite.txt", O WRONLY | O TRUNC);

(O_TRUNC - if the file exists already, truncate (clear) it.)

10

Call open to open a file:

int open(const char *pathname, int flags, mode t mode);

You can also create a new file if the specified file doesn’t exist, by including
O_CREAT as one of the flags. You must also specify a third mode parameter.

* mode: the permissions to attempt to set for a created file, e.g. 0644 (octal!)

Aside: how are there multiple signatures for open in C? See here.

11

https://stackoverflow.com/questions/15151396/open-system-call-polymorphism

Example: Opening a File

// 0644 means "I can read/write the file, others can only read it"

// open file to write to and create if it doesn’t exist
. = open("filetowrite.txt", O WRONLY | O CREAT, 0644);

// open file to write to, which must not already exist
. = open("newfiletowrite.txt", O WRONLY | O CREAT | O EXCL, 0644);

(O_EXCL (pairs with O_CREAT) - the file must be created from scratch. Fail if the file already
exists.)

12

File Descriptors

A file descriptor is like a "ticket number" representing your currently-open file.

* It is a unigue number assigned by the operating system to refer to that
instance of that file in this program.

* When you wish to refer to the file (e.g. read from it, write to it) you must
provide the file descriptor.

e Each program has its own file descriptors

* You can have multiple file descriptors for the same file - every time you call
open, you get a new file descriptor.

* The OS remembers information associated with each of your file descriptors,
like where in the file you currently are (if reading/writing). E.g. separate
locations in the file for each file descriptor.

* file descriptors are assigned in ascending order (next FD is lowest unused) 13

Call close to close a file when you’re done with it:

int close(int fd);

* fd: the file descriptor you'd like to close.
e Returns: 0 on success, -1 on error (we usually won’t error-check close)

Important to close files when done with them to preserve system resources.
* You can use valgrind to check if you forgot to close any files. (--track-fds=yes)

14

Plan For Today

* Practice: creating files

cp -r /afs/ir/class/cslll/lecture-code/lect7 . 15

Example: Creating a File (touch)

// ./touch newfile.txt
int main(int argc, char *argv[]) {
int fd = open(argv[1l], O _WRONLY | O_CREAT | O_EXCL, 0644);

// If an error occurs, print out an error message

if (fd == -1) {
printf("There was a problem creating \"%s\"!\n", argv[1l]);
return 1;
}
// Close the file, we are done with it (no error checking)
close(fd);
return 0;

}
. touch.c 16

Example: Creating a File (touch)

int fd = open(argv[1], O_WRONLY | O_CREAT | O_EXCL, 0644);

A

Open the
file to be
written to

“Tur G« UVJTTCO 1A'}

Example: Creating a File (touch)

int fd = open(argv[1], O_WRONLY | O_CREAT | O_EXCL, 0644);

2

If the file
doesn’t exist,
create it

Example: Creating a File (touch)

int fd = open(argv[1], O_WRONLY | O_CREAT | O_EXCL, 0644);

If it does
exist, throw
an error

T O 1T Ul AR |

Example: Creating a File (touch)

int fd = open(argv[1], O_WRONLY | O_CREAT | O_EXCL, 0644);

(_L’T \ Yo\ "1 \n I'!I\o

If we create a new file, it should
have these permissions

—

Example: Creating a File (touch)

// ./touch newfile.txt
int main(int argc, char *argv[]) {
int fd = open(argv[1l], O _WRONLY | O_CREAT | O_EXCL, 0644);

// If an error occurs, print out an error message

if (fd == -1) {
printf("There was a problem creating \"%s\"!\n", argv[1l]);
return 1;
}
// Close the file, we are done with it (no error checking)
close(fd);
return 0;

}
. touch.c 21

Example: Creating a File (touch)

// ./touch newfile.txt
int main(int argc, char *argv[]) {
int fd = open(argv[1l], O_WRONLY | O_CREAT | O_EXCL, 0644);

// If an error occurs, prin ut an error message

if (fd == -1) {
printf("There was goesk ating \"%s\"!\n", argv[1l]);
return 1; Specify how
} we are going
to use this
// Close the file, we ., . . tth it (no error checking)
close(fd); file in this
return 0O; program |

}
. touch.c 22

Example: Creating a File (touch)

// ./touch newfile.txt
int main(int argc, char *argv[]) {
int fd = open(argv[1l], O _WRONLY | O_CREAT | O_EXCL, 0644);

// If an error occurs, print out an error message

if (fd == -1) {
printf("There was a problem creating \"%s\"! wl11),
return 1; '
} permissions
// Close the file, we are done with it (no ernt for eve.ryc?ne
close(fd); on disk if
return 0; this call

creates a

}
. touch.c new file

23

* read() and write()

Plan For Today

cp -r /afs/ir/class/cslll/lecture-code/lect7 .

24

Call read to read bytes from an open file:

ssize_t read(int fd, void *buf, size_t count);

* fd: the file descriptor for the file you'd like to read from

* buf: the memory location where the read-in bytes should be put

e count: the number of bytes you wish to read

* returns -1 on error, 0 if at end of file, or nonzero if bytes were read (will never return
0 but not be at end of file)

Key idea: read may not read all the bytes you ask it to! This is not necessarily an error
—e.g. if there aren’t that many bytes, or if interrupted. The return value tells you how
many were read. If we must have all bytes, we can call read more.

Key idea #2: the operating system keeps track of where in a file a file descriptor is

reading from. So the next time you read, it will resume where you left off. e

Call write to write bytes to an open file:

ssize t write(int fd, const void *buf, size t count);

* fd: the file descriptor for the file you'd like to write to

* buf: the memory location storing the bytes that should be written

e count: the number of bytes you wish to write from buf

* returns -1 on error, or otherwise the number of bytes that were written (nonzero
assuming count > 0)

Key idea: write may not write all the bytes you ask it to! This is not necessarily an
error — e.g. if not enough space, or if interrupted. The return value tells you how many
were written. If we must write all bytes, we can call write more.

Key idea #2: the operating system keeps track of where in a file a file descriptor is

writing to. So the next time you write, it will write to where you left off. .

Example: Copy

Let's write an example program copy that emulates the built-in cp command. [t
takes in two command line arguments (file names) and copies the contents of

the first file to the second.
E.g. ./copy source.txt dest.txt

1. Open the source file and the destination file and get file descriptors

2. Read each chunk of data from the source file and write it to the destination
file

(note: we won’t worry as much about error-checking open/close/read/write, but

full version here includes error checking).

copy-soln.c and copy-soln-full.c (with error checking)

27

https://cs111.stanford.edu/lecture-code/lect7/copy-soln-full.c

Example: Copy

The copy program copies the contents of a source file to a specified destination.
static const int kDefaultPermissions = 0644;

int main(int argc, char *argv[]) {
int sourceFD = open(argv[1l], O RDONLY);
int destinationFD = open(argv[2], O WRONLY | O CREAT | O EXCL,
kDefaultPermissions);
if (destinationFD == -1) {
printf("%s: destination file could not be created.\n", argv[2]);
return 1;

¥

copyContents(sourceFD, destinationFD);

close(sourceFD);
close(destinationFD);
return 0;

Example: Copy

The copy program copies the contents of a source file to a specified destination.
static const int kDefaultPermissions = 0644;

int main(int argc, char *argv[]) {
int sourceFD = open(argv[1l], O RDONLY);
int destinationFD = open(argv[2], O _WRONLY | O CREAT | O_EXCL,
kDefaultPermissions);

if (destinationFD == -1) {
printf("%s: destination file could not be created.\n", argv[2]);
return 1;

}

copyContents(sourceFD, destinationFD);

close(sourcefD); “create the file to write to, and

close(destinationFD); : PRpL)
return 0; it must not already exist

Example: Copy

The copy program emulates cp; it copies the contents of a source file to a
specified destination.

void copyContents(int sourceFD, int destinationFD) {

// Goal: while there’s more data from source, read the next
// chunk and write it to the destination.

30

Example: Copy (With Error)

The copy program emulates cp; it copies the contents of a source file to a
specified destination.

void copyContents(int sourceFD, int destinationFD) {
while (true) {

char buffer[kCopyIncrement];

ssize t bytesRead = read(sourcefFD, buffer, sizeof(buffer));
if (bytesRead == 0) break;
write(destinationFD, buffer, bytesRead);

31

Example: Copy (With Error)

The copy program emulates cp; it copies the contents of a source file to a
specified destination.

void copyContents(int sourceFD, int destinationFD) {

while (true) {
char buffer[kCopyIncrement];
ssize t bytesRead = read(sourceFD, buffer, sizeof(buffer));
if (bytesRead == 0) break;
write(destinationFD, buffer, bytesRead);

¥ Loop through the source file
one chunk at a time — for each
chunk, write it to the
destination file.

52

Example: Copy (With Error)

The copy program emulates cp; it copies the contents of a source file to a
specified destination.

void copyContents(int sourceFD, int destinationFD) {
while (true) {

char buffer[kCopyIncrement];

ssize t bytesRead = read(sourceFD, buffer, sizeof(buffer));
if (bytesRead == 0) break;

write(destinationFD, buffer, bytesRead);

Read a chunk of at most
kCopylncrement (arbitrary
amount) bytes at a time.

o]

Example: Copy (With Error)

The copy program emulates cp; it copies the contents of a source file to a
specified destination.

void copyContents(int sourceFD, int destinationFD) {
while (true) {
char buffer[kCopyIncrement];
ssize_t bytesRead = read(sourcefFD, buffer, sizeof(buffer));
if (bytesRead == @) break;
write(destinationFD, buffer, bytesRead);

Read a chunk of bytes. If read
returns O, there are no more
bytes to read.

34

Example: Copy (With Error)

The copy program emulates cp; it copies the contents of a source file to a
specified destination.

void copyContents(int sourceFD, int destinationFD) {
while (true) {
char buffer[kCopyIncrement];
ssize t bytesRead = read(sourceFD, buffer, sizeof(buffer));
if (bytesRead == 0) break;
write(destinationFD, buffer, bytesRead);

Now we write this chunk of bytes
to the destination file.

B85

Example: Copy (With Error)

The copy program emulates cp; it copies the contents of a source file to a
specified destination.

void copyContents(int sourceFD, int destinationFD) {
while (true) {
char buffer[kCopyIncrement];
ssize_t bytesRead = read(sourcefFD, buffer, sizeof(buffer));
if (bytesRead == @) break;
write(destinationFD, buffer, bytesRead);

h Cool behavior: the next time
through the loop when we call
read, it will automatically read the
next chunk of bytes from the file!

36

Example: Copy (With Error)

The copy program emulates cp; it copies the contents of a source file to a
specified destination.

void copyContents(int sourceFD, int destinationFD) {
while (true) {
char buffer[kCopyIncrement];
ssize t bytesRead = read(sourcefFD, buffer, sizeof(buffer));
if (bytesRead == 0) break;
write(destinationFD, buffer, bytesRead);

Problem: write may not actually write all bytesRead bytes! This could
cause us to not transfer over all bytes.
Fix: call write in a loop, keep calling it until it writes all bytes.

B/

Example: Copy (With Error)

The copy program emulates cp; it copies the contents of a source file to a
specified destination.

void copyContents(int sourceFD, int destinationFD) {
while (true) {
char buffer[kCopyIncrement];
ssize t bytesRead = read(sourcefFD, buffer, sizeof(buffer));
if (bytesRead == 0) break;
write(destinationFD, buffer, bytesRead);
}

Observation: read may not actually read kCopylncrement bytes. Should we
wrap the call to read in a loop as well?

Not necessary here: chunk size doesn’t really matter - we’ll get remaining
bytes next time through the loop.

38

Example: Copy

The copy program emulates cp; it copies the contents of a source file to a
specified destination.

void copyContents(int sourceFD, int destinationFD) {
while (true) {
char buffer[kCopyIncrement];
ssize t bytesRead = read(sourcefFD, buffer, sizeof(buffer));
if (bytesRead == 0) break;
writeAllBytes(destinationFD, buffer, bytesRead);

} We cannot just call write, as it may not write all the bytes in one go —
we will make a helper that calls write in a loop until all these bytes are

written.

39

Example: Copy

The copy program emulates cp; it copies the contents of a source file to a
specified destination.

void copyContents(int sourceFD, int destinationFD) { .. }

void writeAllBytes(int destinationFD, char buf[], int nbytes) {
size t bytesWritten = 0;
while (bytesWritten < nbytes) {

¥

} Now we write this chunk of

We must loop until write
writes them all.

bytes to the destination file.

40

Example: Copy

The copy program emulates cp; it copies the contents of a source file to a
specified destination.

void copyContents(int sourceFD, int destinationFD) { .. }

void writeAllBytes(int destinationFD, char buf[], int nbytes) {
size t bytesWritten = 0;
while (bytesWritten < nbytes) {
ssize t count = write(...);
bytesWritten += count;

41

Example: Copy

The copy program emulates cp; it copies the contents of a source file to a
specified destination.

void copyContents(int sourceFD, int destinationFD) { .. }

void writeAllBytes(int destinationFD, char buf[], int nbytes) {
size t bytesWritten = 0;
while (bytesWritten < nbytes) {
ssize_t count = write(destinationFD, buffer + bytesWritten,
nbytes - bytesWritten);

bytesWritten += count; :) :
} Since write may write only

} some of the bytes, we need to
just give it the rest of the bytes
that it hasn’t written yet.

42

Example: Copy

The copy program emulates cp; it copies the contents of a source file to a
specified destination.

void copyContents(int sourceFD, int destinationFD) { .. }

void writeAllBytes(int destinationFD, char buf[], int nbytes) {
size t bytesWritten = 0;
while (bytesWritten < nbytes) {
ssize_t count = write(destinationFD, buffer + bytesWritten,
nbytes - bytesWritten);
bytesWritten += count;

} Cool behavior: each time through the loop, write knows where we
left off writing in the file from before. However, it doesn’t know
what to write — we must do pointer arithmetic to specify that.

43

Example: Copy

The copy program emulates cp; it copies the contents of a source file to a
specified destination.

void copyContents(int sourceFD, int destinationFD) { .. }

void writeAllBytes(int destinationFD, char buf[], int nbytes) {
size t bytesWritten = 0;
while (bytesWritten < nbytes) {

ssize t count = write(destinationFD, buffer + bytesWritten,

nbytes - bytesWritten);
bytesWritten += count;

44

Example: Copy

void copyContents(int sourceFD, int destinationFD) {
while (true) {
char buffer[kCopyIncrement];
ssize t bytesRead = read(sourceFD, buffer, sizeof(buffer));
if (bytesRead == 0) break;
writeAllBytes(destinationFD, buffer, bytesRead);
}
}
void wrlteAllBytes(lnt destinationFD, char buf[], int nbytes) {
size t bytesWritten = 0;
while (bytesWritten < nbytes) {
ssize t count = write(destinationFD, buffer + bytesWritten,

nbytes - bytesWritten);
bytesWritten += count;

Example: Copy

Would it also work if we used sizeof(buffer) like below?

void copyContents(int sourceFD, int destinationFD) {
while (true) {
char buffer[kCopyIncrement];
ssize t bytesRead = read(sourceFD, buffer, sizeof(buffer));
if (bytesRead == 0) break; sizeof(buffer)
writeAllBytes(destinationFD, buffer, bytesRead);
}
}
void wrlteAllBytes(lnt destinationFD, char buf[], int nbytes) {
size t bytesWritten = 0;
while (bytesWritten < nbytes) {

ssize t count = write(destinationFD, buffer + bytesWritten,
nbytes - bytesWritten);

bytesWritten += count;

) ’ Respond on PollEv:
} pollev.com/cs111

Al 46

Would using sizeof(buffer) in this way also work?

Yes - we are reading bytes into the buffer, and we want to write the entire contents of the buffer each time

No - read may not read enough bytes to fill the whole buffer, and therefore we shouldn't write all bytes in the
buffer

No - read may read more bytes than fit in the buffer, and therefore sizeof(buffer) is not the right amount

No - we should use (sizeof(buffer) - bytesRead) to ensure the correct number of bytes are written each time

0%

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

* System calls Lecture 7 takeaway: System

* open() and close() calls are functions provided

* Practice: creating files by the operating system to do

* read() and write() tasks we cannot do ourselves.
* Practice: copying files open, close, read and write

are 4 system calls that work
via file descriptors to work
with files.

Next time: introduction to
multiprocessing

cp -r /afs/ir/class/cslll/lecture-code/lect7 . 55

	Slide 1: CS111, Lecture 7 File Descriptors and System Calls
	Slide 2: CS198 Section Leading!
	Slide 3: CS111 Topic 1: Filesystems
	Slide 4: Crash Recovery
	Slide 5: Learning Goals
	Slide 6: Plan For Today
	Slide 7: Plan For Today
	Slide 8: System Calls and Kernel vs. User Mode
	Slide 9: open()
	Slide 10: Example: Opening a File
	Slide 11: open()
	Slide 12: Example: Opening a File
	Slide 13: File Descriptors
	Slide 14: close()
	Slide 15: Plan For Today
	Slide 16: Example: Creating a File (touch)
	Slide 17: Example: Creating a File (touch)
	Slide 18: Example: Creating a File (touch)
	Slide 19: Example: Creating a File (touch)
	Slide 20: Example: Creating a File (touch)
	Slide 21: Example: Creating a File (touch)
	Slide 22: Example: Creating a File (touch)
	Slide 23: Example: Creating a File (touch)
	Slide 24: Plan For Today
	Slide 25: read()
	Slide 26: write()
	Slide 27: Example: Copy
	Slide 28: Example: Copy
	Slide 29: Example: Copy
	Slide 30: Example: Copy
	Slide 31: Example: Copy (With Error)
	Slide 32: Example: Copy (With Error)
	Slide 33: Example: Copy (With Error)
	Slide 34: Example: Copy (With Error)
	Slide 35: Example: Copy (With Error)
	Slide 36: Example: Copy (With Error)
	Slide 37: Example: Copy (With Error)
	Slide 38: Example: Copy (With Error)
	Slide 39: Example: Copy
	Slide 40: Example: Copy
	Slide 41: Example: Copy
	Slide 42: Example: Copy
	Slide 43: Example: Copy
	Slide 44: Example: Copy
	Slide 45: Example: Copy
	Slide 46: Example: Copy
	Slide 47
	Slide 55: Recap

