
CS142 Lecture Notes - FrontEnd

Front End Programming
Mendel Rosenblum

CS142 Lecture Notes - FrontEnd

Brief history of Web Applications
● Initially: static HTML files only with HTML forms for input

● Common Gateway Interface (CGI)

○ Certain URLs map to executable programs that generate web page

○ Program exits after Web page complete

○ Introduced the notion of stateless servers: each request independent, no state
carried over from previous requests. (Made scale-out architectures easier)

○ Perl typically used for writing CGI programs

CS142 Lecture Notes - FrontEnd

First-generation web app frameworks
Examples: (PHP, ASP.net, Java servlets)

● Incorporate language runtime system directly into Web server

● Templates: mix code and HTML - HTML/CSS describes view

● Web-specific library packages:
○ URL handling
○ HTML generation
○ Sessions
○ Interfacing to databases

CS142 Lecture Notes - FrontEnd

Second-generation frameworks
Examples: (Ruby on Rails, Django):

● Model-view-controller: stylized decomposition of applications

● Object-relational mapping (ORM): simplify the use of databases (make
database tables and rows appear as classes and objects)

○ Easier fetching of dynamic data

CS142 Lecture Notes - FrontEnd

Third-generation frameworks
Example: AngularJS

● JavaScript frameworks running in browser - More app-like web apps
○ Interactive, quick responding applications - Don't need server round-trip

● Frameworks not dependent on particular server-side capabilities
○ Node.js - Server side JavaScript
○ No-SQL database (e.g. MongoDB)

● Many of the concepts of previous generations carry forward
○ Model-view-controller
○ Templates - HTML/CSS view description

CS142 Lecture Notes - FrontEnd

Model-View-Controller (MVC) Pattern
● Model: manages the application's data

○ JavaScript objects. Photo App: User names, pictures, comments, etc.

● View: what the web page looks like
○ HTML/CSS. Photo App: View Users, View photo with comments

● Controller: fetch models and control view, handle user interactions
○ JavaScript code. Photo App: DOM event handlers, web server communication

MVC pattern been around since the late 1970's
○ Originally conceived in the Smalltalk project at Xerox PARC

CS142 Lecture Notes - FrontEnd

View Generation
● Web App: Ultimately need to generate HTML and CSS

● Templates are commonly used technique. Basic ideas:
○ Write HTML document containing parts of the page that are always the same.
○ Add bits of code that generate the parts that are computed for each page.
○ The template is expanded by executing code snippets, substituting the results into the

document.

● Benefits of templates (Compare with direct JavaScript to DOM programming)

○ Easy to visualize HTML structure
○ Easy to see how dynamic data fits in
○ Can do either on server or browser

CS142 Lecture Notes - FrontEnd

AngularJS view template (HTML/CSS)
...

<body>

 <div class="greetings">

Hello {{models.user.firstName}},

</div>

 <div class="photocounts">

You have {{models.photos.count}} photos to review.

</div>

</body>

Angular has rich templating language (loops, conditions, subroutines, etc.). Later...

CS142 Lecture Notes - FrontEnd

Controllers
● Third-generation: JavaScript running in browser

Responsibilities:

● Connect models and views
○ Server communication: Fetch models, push updates

● Control view templates
○ Manage the view templates being shown

● Handle user interactions
○ Buttons, menus, and other interactive widgets

CS142 Lecture Notes - FrontEnd

AngularJS controller (JavaScript function)
function userGreetingView ($scope, $modelService) {

 $scope.models = {};

 $scope.models.users = $modelService.fetch("users");

 $scope.models.photos = $modelService.fetch("photos");

 $scope.okPushed = function okPushed() {

 // Code for ok button pushing

 }

}

Angular creates $scope and calls controller function called when view is
instantiated

CS142 Lecture Notes - FrontEnd

Model Data
● All non-static information needed by the view templates or controllers

● Traditionally tied to application's database schema
○ Object Relational Mapping (ORM) - A model is a table row

● Web application's model data needs are specified by the view designers

But need to be persisted by the database

● Conflict: Database Schemas don't like changing frequently but web
application model data might (e.g. user will like this view better if we add …
and lose ...)

CS142 Lecture Notes - FrontEnd

Angular doesn't specify model data (JavaScript objs)
● Angular provides support for fetching data from a web server

○ REST APIs
○ JSON frequently used

On Server:
● Mongoose's Object Definition Language (ODL) has "models"

var userSchema = new Schema({

 firstName: String,

 lastName: String,

});

var User = mongoose.model('User', userSchema);

CS142 Lecture Notes - FrontEnd

Fourth-generation frameworks
Examples: React.js, Vue.js, Angular(v2)

● Many of the concepts of previous generations carry forward
○ JavaScript in browser
○ Model-view-controllers
○ Templates

● Focus on JavaScript components rather than pages/HTML
○ Views apps as assembled reusable components rather than pages.
○ Software engineering focus: modular design, reusable components, testability, etc.

● Virtual DOM
○ Render view into DOM-like data structure (not real DOM)
○ Benefits: Performance, Server-side rendering, Native apps

