
CS142 Lecture Notes - Session Attacks

Session Attacks
Mendel Rosenblum

CS142 Lecture Notes - Session Attacks

Session State
● Session state is used to control access in web servers

app.get(..., function (request, response) {

 if (request.session.login_name

● Typically derived from cookies in the request header

Cookie:connect.sid=s%3AckNzy0kByJYvsW5mR06ECGs1YXYojCXM.VvNg0rI3rguSElNZNtdGrMBrDvbW

4kvn641bqpcF4ec

Host: localhost:3000

● Consider what would happen if an attacker could guess or seal this cookie
Session Hijacking

CS142 Lecture Notes - Session Attacks

Session Hijacking
● If an attacker can guess or steal the id associated with your session, he/she

can impersonate you.

● Example: predictable session id
○ Server picks session id by incrementing a counter for each new session.
○ Attacker opens connection to server, gets session id.
○ Subtract 1 from session id: can hijack the previous session opened to the server.

● Solution: session ids must be unpredictable.
○ Don't build your own mechanism! Use something provided by your framework.
○ Rails: id = MD5(current time, random nonce)
○ Express Session: Uses module uid-safe - cryptographically secure UID (not predictable)

Roll your own: app.use(session({genid: function (request) { ….

CS142 Lecture Notes - Session Attacks

Need to use HTTPS to protect cookies
● Even if session id chosen carefully, network attackers can read cookies from

unencrypted connections
○ Sessions not using HTTPS inherently vulnerable to network attacks.

● HTTP/HTTPS upgrade problem:
○ Suppose session starts out with HTTP, converts to HTTPS after login

○ Network attacker could have read session id during HTTP portion of session

○ Once logging is complete, attacker can use the id to hijack the logged in session

● Change the session id after any change in privilege or security level

CS142 Lecture Notes - Session Attacks

Browser quirk involving cookies
● Cookies sent with all HTTP requests to our web server

○ Even if our app is not the current one being shown!

● Sometime want this: Consider a deep-linking bookmark or the back button
○ Desirable if it automatically picks up the session cookie

● Implication: Other sites/apps running concurrently can generate HTTP
requests to our web servers!

CS142 Lecture Notes - Session Attacks

Cross-Site Request Forgery (CSRF)
● Attackers can potentially hijack sessions without even knowing session ids:

○ Scenario:
■ Visit your bank's site, start up web app, log in.
■ Then visit the attacker's site (e.g. discussion forum with links, forms, etc.)
■ Attacker's page includes JavaScript that submits form to your bank.
■ When form gets submitted, browser includes bank's web app cookies, including the

session id.
■ Bank transfers money to attacker's account.
■ The form can be in an iframe that is invisible, so you never know the attack occurred.

● This is called Cross-Site Request Forgery (CSRF) (Sea-surf)
○ Untrusted site uses trust that was given to user's browser

CS142 Lecture Notes - Session Attacks

CSRF Defences
● CSRF was a big issue when frameworks used form submission for input

○ Ruby solution: server can mark forms that came from its pages
■ Every form must contain an additional authentication token as a hidden field
■ Server includes valid token in forms in pages that it generates (hidden form field).
■ Server checks token when form posted, rejects forms without proper token.

● JavaScript frameworks solutions
○ Don't accept POST submission directly from forms

■ Photo App: POST request have bodies of JSON strings

○ HTTP GET should not have side effects
■ Dangerous: Easy to trick the user into clicking on something

○ Have JavaScript include special HTTP request header property with secret
■ Module csurf - Adds XSRF-TOKEN to request headers

CS142 Lecture Notes - Session Attacks

 Untrusted Trusted

Web Browser
Web Server /
Application server

 HTTP

Storage System

In
te

rn
et

LA
N

8CS142 Lecture Notes - HTML

CS142 Lecture Notes - Session Attacks

Data Tampering
● Server sends information to browser (cookies, HTML with links & forms)

○ Server can't trust what it gets back: User can view or modify anything provided by server
○ Examples:

■ Session information in cookies
■ CSRF defence (hidden form fields)

● Option #1: Server only uses information as a hint (must validate and correct)
○ Means we have a store all the information on server

● Option #2: Use cryptography to detect any tampering or forging
○ Message Authentication Codes (MACs)

CS142 Lecture Notes - Session Attacks

 Message Authentication Codes (MACs)
● MAC function takes arbitrary-length text, secret key, produces a MAC that

provides a unique signature for the text.
Think: Cryptography secure checksum

● Without knowing the secret key, cannot generate a valid MAC.

● Server includes MAC with data sent to the browser.

● Browser must return both MAC and data.

● Server can check the MAC using its secret key to detect tampering.
Server checks input from browser and if MAC doesn't match tosses it (e.g. session cookie)

CS142 Lecture Notes - Session Attacks

Using MACs in web servers
● MACs are useful if we need:

○ Authentication - Know that we (the web server) authored the information
○ Integrity - Known that it wasn't tampered with

● Need encryption if we want confidentiality

● If we need all three: encrypt then MAC

● Crypto APIs exist for doing these but somewhat of a pain to use

