
CS142 Lecture Notes - Sessions

Sessions
Mendel Rosenblum

CS142 Lecture Notes - Sessions

How do we know what user sent request?
● Would like to authenticate user and have that information available each time

we process a request.

● More generally web apps would like to keep state per active browser
○ Called session state

● Concretely:

expressApp.get('/user/:user_id', function (httpRequest, httpResponse) …
// Need to make a decision to accept the request or reject it

var sessionState = GetSessionState(httpRequest);

CS142 Lecture Notes - Sessions

Where could we get the session state from?

Web Browser Web Server

 HTTP

Storage System

In
te

rn
et

LA
N

3

HereNot Here - StatelessMaybe Here?

CS142 Lecture Notes - Sessions

Session state lookup problem
● HTTP request just come into a web server

○ Not a lot information to uniquely identify "session"

● Solution: Include something in the request to tells us the session

○ Care must taken to avoid forgeries

● Early HTTP solution: Cookies
○ State set by web server that browser attaches to every request

○ Useful but with a checkered history

● Modern browser support local storage API

CS142 Lecture Notes - Sessions

HTTP Cookies: Basic Idea
● Web server adds Set-Cookie: to HTTP response header

Set-Cookie: cookie_name1=cookie_value1

Set-Cookie: cookie_name2=cookie_value2; expires=Sun, 16 Jul 2016 06:23:41 GMT

Each cookie is just a name-value pair.

● Future requests from browser to same server should include the Cookie:header

Cookie: cookie_name1=cookie_value1; cookie_name2=cookie_value2

CS142 Lecture Notes - Sessions

Cookie contents
● Cookie: name and data

○ Domain for this cookie: server, port (optional), URL prefix (optional)

○ The cookie is only included in requests matching its domain

○ Expiration date: browser can delete old cookies

● Limits:
○ Data size limited by browsers (typically < 4 KB)

○ Browsers limit the number of cookies per server (around 50)

CS142 Lecture Notes - Sessions

Cookies as web app storage
● User can:

○ View cookies
○ Modify/corrupt cookies
○ Delete cookies
○ Create cookies
○ Lose cookies to hackers

● Simply switching browsers looks like you deleted the app's cookies
○ Cookies have been used in bad ways (more later in class): Users are suspicious of them

● Pretty unreliable web app storage
○ Limited to hint, shortcut, etc. that can be recovered if missing
○ While actively communicating with web app: Session cookies

CS142 Lecture Notes - Sessions

Session state with cookies
● Early web frameworks (e.g. Rails) supported storing session state in cookies

○ Rails provided session, a JavaScript-like object, that you could store anything

session[:user_id] = "mendel"

● Rails packaged session into a cookie and added to HTTP response
○ Data will be available in all future requests from the same browser

● Rails automatically checks for a session cookie at the start of each request:
○ Cookie exists? use it to find session data
○ No cookie? Create new session, new cookie

● End of each request: save session data where it can be found by future
requests. (where?)

CS142 Lecture Notes - Sessions

Session state in cookies
● Early approach: Store session state in cookie

○ Since cookies can be viewed, changed, deleted, stolen, etc. care must be taken. Example:
■ session.user_id = "mendel";

■ session.password = "foobar";

○ Using cryptography you can:
■ Hide content from viewers, hackers
■ Detect forgeries and changes
■ Can't do much about deletions

● An alternative is to put a pointer to the session state in the cookie:
Set-Cookie: session=0x4137fd6a; Expires=Wed, 09 Jun 2012 10:18:14 GMT

Less transfer overhead but still need to protect with cryptography

CS142 Lecture Notes - Sessions

Options for storing session state
● Web server's memory

○ Fastest access
○ May be too large (many active users)
○ Makes load balancing across web servers hard

● Storage system
○ Easy shared across all the web servers
○ May be overkill: Don't need the super reliability of storage system
○ May be too much load for the storage system (Need on every request)

● Specialized storage system
○ Support fast fetching of small, short-lived data
○ Example: memcache, redis - in memory key-value stores

CS142 Lecture Notes - Sessions

var session = require('express-session');

● ExpressJS has a middleware layer for dealing with the session state
○ Stores a sessionID safely in a cookie
○ Store session state in a session state store
○ Like Rails, handles creation and fetching of session state for your request handlers

● Usage:

app.use(session({secret: 'badSecret'}));

secret is used to cryptographically sign the sessionID cookie

app.get('/user/:user_id', function (httpRequest, httpResponse) …
httpRequest.session is an object you can read or write

CS142 Lecture Notes - Sessions

Express session usage example
● Login handler route can store into httpRequest.session.user_id

● All other handlers read httpRequest.session.user_id
○ If not set error or redirect to login page
○ Otherwise we know who is logged in

● Can put other per-session state in httpRequest.session

● On logged out you will want to destroy the session

httpRequest.session.destroy(function (err) { });

CS142 Lecture Notes - Sessions

Express Session: Session Store
● Default session store is in the Node.js memory

○ OK for development but not production

● Has session store backends for many storage systems

● Hooking up to MongoDB via Mongoose

var MongoStore = require('connect-mongo')(express);

expressApp.use(session({

 store: new MongoStore({ mongooseConnection: mongoose.connection })

}));

CS142 Lecture Notes - Sessions

Cookie storage replacement: Web Storage API
● sessionStorage - Per origin storage available when page is open

● localStorage - Per origin storage with longer lifetime

● Standard key-value interface:

localStorage.appSetting = 'Anything';

localStorage.setItem('appSetting', 'Anything');

sessionStorage['app2Setting'] = 2;

● Limited space (~10MB) and similar reliability issues to cookies

