
CS142 Lecture Notes - StateManagement

State Management
Mendel Rosenblum

CS142 Lecture Notes - StateManagement

Our small, read-only photo app is deceptively simple
● Model, View, Controller - All setup on startup and static

○ Can have a nice modular design of view components.
○ Each MVC unit independently fetches their model data.

■ Some duplicate model data fetches (e.g. UserDetail & UserList)

● Add in Session State and object creation and updating
○ Things get more complex for our single page app

● Examples:
○ User add new comments or photos - model data of one view changed by another view
○ Users logs out and logins into the app with a different login name - big change in model data

CS142 Lecture Notes - StateManagement

Session state shared between frontend and backend
● Must be kept in sync between the browser app and the server

○ Who, if anyone, is logged in?

● Server will need to reject any requests from users not logged in
○ Model fetching done only at view/controller startup might not work

● Consider transitions of your photo app
○ Login - Not logged in to logged in

■ At app startup most models are not available (e.g. sidenav user list) but become
available after login is completed.

○ Logout - Logged in to not logged in
■ Requests to web server that worked before will now fail

CS142 Lecture Notes - StateManagement

Models updates
● Consider what happens when new objects like users, photos, or comments

are added.
○ Models change

● Controller fetching model only at startup might not work

● Consider photo app adding a photo or comment
○ Model refresh needed

CS142 Lecture Notes - StateManagement

Components are interested in outside events
● How to keep a modular design but allow controllers to be notified of things

happening outside of it?
○ Example: a view component and an add component

● One option: Explicit communication interfaces in components
○ ReactJS: Pass callback functions around to components

■ <Component commInfo={this.callMeWithInfo.bind(this)} />

● Better option: Listener/emitter pattern
○ Components registers interest (listen) and component detecting change signals (emit)

CS142 Lecture Notes - StateManagement

React listener/emitter pattern: No opinion
● FLUX - Facebook's Application Architecture For Building user interfaces

○ Store state in a "Store" - change with actions, notify view listeners

● Redux https://redux.js.org/ - A predictable state container for JavaScript apps

● Relay https://relay.dev/ - The production-ready GraphQL client for React

https://redux.js.org/
https://relay.dev/

CS142 Lecture Notes - StateManagement

Photo App current Model Data Handling
TopBar

UserDetail

UserPhotos

UserList

Model Data

Model Data

Model Data

Model Data
callback

CS142 Lecture Notes - StateManagement

Photo App with state management
TopBar

UserDetail

UserPhotos

UserList

State Manager

Subscribe: Current User Detail

Subscribe: Context

Subscribe: Current Photos

Set Current User

Subscribe:UserList

Web Server

User Actions

CS142 Lecture Notes - StateManagement

Photo App with offline support
TopBar

UserDetail

UserPhotos

UserList

State Manager

Subscribe: Current User Detail

Subscribe: Context

Subscribe: Current Photos

Set Current User

Subscribe:UserList

Web Server

User Actions

CS142 Lecture Notes - StateManagement

Dealing with other model changes
What happens if another user adds a photo or comment? Options:

1. Do nothing: Easy!
○ User won't see new material until they do something that caused the model to be refreshed
○ Very disconcerting if they don't see their own changes

2. Poll: Periodically check for changes or just refetch the model
○ Can provide a UI widget to trigger model refresh

3. Server push: Have the server push model changes as soon as they occur
○ User sees updates as soon as possible
○ Might conflict with user changes or be disconcerting for the user
○ Implementation is easier with Web Sockets

CS142 Lecture Notes - StateManagement

ReactJS: Photo App with sessions and input
● App needs to track who (if anyone) is logged in

○ Ideally held in some state store
○ OK to keep in the PhotoShare component state (see ReactJS Context mechanism)

● Need to handle the no one logged-in case
○ Handling deep linking with React Router:

{

 this.userIsLoggedIn ?

 <Route path="/users/:id" component={UserDetail} />

 :

 <Redirect path="/users/:id" to="/login-register" />

}

● Need to inform component with to refresh their models
○ Again State management is ideal: OK to use callbacks

https://reactjs.org/docs/context.html

