Solutions to Written Assignment 2

1. Give a context-free grammar (CFG) for each of the following languages over the alphabet $\Sigma=\{a, b\}$:
(a) All strings in the language $L:\left\{a^{n} b^{m} a^{2 n} \mid n, m \geq 0\right\}$

$$
\begin{aligned}
S & \rightarrow a S a a \mid B \\
B & \rightarrow b B \mid \epsilon
\end{aligned}
$$

(b) All nonempty strings that start and end with the same symbol.

$$
\begin{aligned}
S & \rightarrow a X a|b X b| a \mid b \\
X & \rightarrow a X|b X| \epsilon
\end{aligned}
$$

(c) All strings with more a's than b's.

$$
\begin{aligned}
S & \rightarrow A a|M S| S M A \\
A & \rightarrow A a \mid \epsilon \\
M & \rightarrow \epsilon|M M| b M a \mid a M b
\end{aligned}
$$

(d) All palindromes (a palindrome is a string that reads the same forwards and backwards).

$$
S \rightarrow a S a|b S b| a|b| \epsilon
$$

2. A history major taking CS143 decided to write a rudimentary CFG to parse the roman numerals 1-99 (i,ii,iii,iv,v,...,ix,x,...,xl,...,lxxx,...,xc,...,xcix). If you are unfamiliar with roman numerals, please have a look at http://en.wikipedia.org/wiki/Roman_numerals and http://literacy.kent.edu/Minigrants/Cinci/romanchart.htm.
Consider the grammar below, with terminals $\{\mathbf{c}, \mathbf{l}, \mathbf{x}, \mathbf{v}, \mathbf{i}\} . \quad c=100, l=50, x=10, v=5, i=1$. Notice that we use lowercase characters here to represent the numerals, to distinguish them from the non-terminals.

$$
\begin{aligned}
S & \rightarrow \mathbf{x} T U|\mathbf{l} X| X \\
T & \rightarrow \mathbf{c} \mid \mathbf{1} \\
X & \rightarrow \mathbf{x} X \mid U \\
U & \rightarrow \mathbf{i} Y|\mathbf{v} I| I \\
Y & \rightarrow \mathbf{x} \mid \mathbf{v} \\
I & \rightarrow \mathbf{i} I \mid \epsilon
\end{aligned}
$$

(a) Draw a parse tree for 47: "xlvii". See Figure 1.
(b) Is this grammar ambiguous?

No

Figure 1: Question 2a: Parse tree for 47: "xlvii"
(c) Write semantic actions for each of the 14 rules in the grammar (remember $X \rightarrow A \mid B$ is short for $X \rightarrow A$ and $X \rightarrow B$) to calculate the decimal value of the input string. You can associate a synthesized attribute val to each of the non-terminals to store its value. The final value should be returned in S.val. Hint: have a look at the calculator examples presented in class.

$$
\begin{array}{rcl}
S & \rightarrow \mathbf{x} T U & \{\text { S.val }=\text { T.val }-10+\text { U.val }\} \\
S & \rightarrow \mathbf{l} X & \{\text { S.val }=\text { X.val }+50\} \\
S & \rightarrow X & \{\text { S.val }=\text { X.val }\} \\
T & \rightarrow \mathbf{c} & \{\text { T.val }=100\} \\
T & \rightarrow \mathbf{l} & \{\text { T.val }=50\} \\
X_{1} & \rightarrow \mathbf{x} X_{2} & \left\{X_{1} . v a l=X_{2} . v a l+10\right\} \\
X & \rightarrow U & \{\text { X.val =U.val }\} \\
U & \rightarrow \mathbf{i} Y & \{\text { U.val }=\text { Y.val }-1\} \\
U & \rightarrow \mathbf{v} I & \{\text { U.val }=\text { I.val }+5\} \\
U & \rightarrow I & \{\text { U.val }=\text { I.val }\} \\
Y & \rightarrow \mathbf{x} & \{\text { Y.val }=10\} \\
Y & \rightarrow \mathbf{v} & \{\text { Y.val }=5\} \\
I_{1} & \rightarrow \mathbf{i} I_{2} & \left\{I_{1} . v a l=I_{2} . v a l+1\right\} \\
I & \rightarrow \epsilon & \{\text { I.val }=0\}
\end{array}
$$

3. (a) Left factor the following grammar:

$$
E \rightarrow \text { int } \mid \text { int }+E \mid \text { int }-E \mid E-(E)
$$

Solution:

$$
\begin{aligned}
& E \rightarrow \text { int } E^{\prime} \mid E-(E) \\
& E^{\prime} \rightarrow \epsilon|+E|-E
\end{aligned}
$$

(b) Eliminate left-recursion from the following grammar:

$$
\begin{aligned}
& A \rightarrow A+B \mid B \\
& B \rightarrow \operatorname{int} \mid(A)
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& A \rightarrow B A^{\prime} \\
& A^{\prime} \rightarrow+B A^{\prime} \mid \epsilon \\
& B \rightarrow \text { int } \mid(A)
\end{aligned}
$$

4. Consider the following $\operatorname{LL}(1)$ grammar, which has the set of terminals $T=\left\{\mathbf{a}, \mathbf{b}, \mathbf{e p},+,{ }^{*},(),\right\}$. This grammar generates regular expressions over $\{\mathrm{a}, \mathrm{b}\}$, with + meaning the RegExp OR operator, and ep meaning the ϵ symbol. (Yes, this is a context free grammar for generating regular expressions!)

$$
\begin{aligned}
E & \rightarrow T E^{\prime} \\
E^{\prime} & \rightarrow+E \mid \epsilon \\
T & \rightarrow F T^{\prime} \\
T^{\prime} & \rightarrow T \mid \epsilon \\
F & \rightarrow P F^{\prime} \\
F^{\prime} & \rightarrow * F^{\prime} \mid \epsilon \\
P & \rightarrow(E)|\mathbf{a}| \mathbf{b} \mid \mathbf{e p}
\end{aligned}
$$

(a) Give the first and follow sets for each non-terminal.

The First and Follow sets of the non-terminals are as follows.

$$
\begin{array}{ll}
\operatorname{First}(E)=\{(, a, b, e p\} & \text { Follow }(E)=\{), \$\} \\
\operatorname{First}\left(E^{\prime}\right)=\{+, \epsilon\} & \text { Follow } \left.\left(E^{\prime}\right)=\{), \$\right\} \\
\operatorname{First}(T)=\{(, a, b, e p\} & \text { Follow }(T)=\{+,), \$\} \\
\operatorname{First}\left(T^{\prime}\right)=\{(, a, b, e p, \epsilon\} & \text { Follow } \left.\left(T^{\prime}\right)=\{+,), \$\right\} \\
\operatorname{First}(F)=\{(, a, b, e p\} & \text { Follow }(F)=\{(, a, b, e p,+,), \$\} \\
\operatorname{First}\left(F^{\prime}\right)=\{*, \epsilon\} & \text { Follow }\left(F^{\prime}\right)=\{(, a, b, e p,+,), \$\} \\
\operatorname{First}(P)=\{(, a, b, e p\} & \text { Follow }(P)=\{(, a, b, e p,+,), *, \$\}
\end{array}
$$

(b) Construct an LL(1) parsing table for the left-factored grammar.

Here is an LL(1) parsing table for the grammar.

	$($	$)$	a	b	$e p$	+	$*$	$\$$
E	$T E^{\prime}$		$T E^{\prime}$	$T E^{\prime}$	$T E^{\prime}$			
E^{\prime}		ϵ				$+E$		ϵ
T	$F T^{\prime}$		$F T^{\prime}$	$F T^{\prime}$	$F T^{\prime}$			
T^{\prime}	T	ϵ	T	T	T	ϵ		ϵ
F	$P F^{\prime}$	$P F^{\prime}$	$P F^{\prime}$	$P F^{\prime}$				
F^{\prime}	ϵ	ϵ	ϵ	ϵ	ϵ	ϵ	$* F^{\prime}$	ϵ
P	(E)		a	b	$e p$			

(c) Show the operation of an $\operatorname{LL}(1)$ parser on the input string $\mathbf{a b}^{*}$.

Stack	Input	Action
$E \$$	$a b * \$$	$T E^{\prime}$
$T E^{\prime} \$$	$a b * \$$	$F T^{\prime}$
$F T^{\prime} E^{\prime} \$$	$a b * \$$	$P F^{\prime}$
$P F^{\prime} T^{\prime} E^{\prime} \$$	$a b * \$$	a
$a F^{\prime} T^{\prime} E^{\prime} \$$	$a b * \$$	terminal
$F^{\prime} T^{\prime} E^{\prime} \$$	$b * \$$	ϵ
$T^{\prime} E^{\prime} \$$	$b * \$$	T
$T E^{\prime} \$$	$b * \$$	$F T^{\prime}$
$F T^{\prime} E^{\prime} \$$	$b * \$$	$P F^{\prime}$
$P F^{\prime} T^{\prime} E^{\prime} \$$	$b * \$$	b
$b F^{\prime} T^{\prime} E^{\prime} \$$	$b * \$$	terminal
$F^{\prime} T^{\prime} E^{\prime} \$$	$* \$$	$* F^{\prime}$
$* F^{\prime} T^{\prime} E^{\prime} \$$	$* \$$	terminal
$F^{\prime} T^{\prime} E^{\prime} \$$	$\$$	ϵ
$T^{\prime} E^{\prime} \$$	$\$$	ϵ
$E^{\prime} \$$	$\$$	ϵ
$\$$	$\$$	$A C C E P T$

5. Consider the following CFG, which has the set of terminals $T=\{$ stmt, $\{\}, ;$,$\} . This grammar describes$ the organization of statements in blocks for a fictitious programming language. Blocks can have zero or more statements and other nested blocks, separated by semicolons, where the last semicolon is optional. (P is the start symbol here.)

$$
\begin{aligned}
P & \rightarrow S \\
S & \rightarrow \operatorname{stmt} \mid\{B \\
B & \rightarrow\} \mid S\} \mid S ; B
\end{aligned}
$$

(a) Construct a DFA for viable prefixes of this grammar using $\operatorname{LR}(0)$ items.

Figure 2 shows a DFA for viable prefixes of the grammar. Note that for simplicity we omitted adding an extra state $S^{\prime} \rightarrow P$.
(b) Identify any shift-reduce and reduce-reduce conflicts in this grammar under the SLR(1) rules. There are no conflicts.
(c) Assuming that an SLR(1) parser resolves shift-reduce conflicts by choosing to shift, show the operation of such a parser on the input string $\{$ stmt $;\}$.

Figure 2: A DFA for viable prefixes of the grammar in Question 5a

Configuration	DFA Halt State	Action
\{stmt; \}\$	1	shift
\{\| stmt; \}\$	2	shift
\{stmt $\mid ;\}$ \$	$5 \quad{ }^{\prime} ; \prime \in \operatorname{Follow}(S)$	reduce $S \rightarrow$ stmt
$\{S \mid ;\}$ \$	7	shift
$\{S ; \mid\} \$$	9	shift
$\{S ;\} \mid \$$	$6 \quad$ ' ' $^{\prime} \in \operatorname{Follow~}(B)$	reduce $B \rightarrow$ \}
$\{S ; B \mid \$$	$10 \quad$ '\$' $\in \operatorname{Follow}(B)$	reduce $B \rightarrow S ; B$
$\{B \mid \$$	$3 \quad ' \$$ ' $\in \operatorname{Follow}(S)$	reduce $S \rightarrow\{B$
$S \mid \$$	$4 \quad$ ' $\mathbf{S}^{\prime} \in \operatorname{Follow}\left(S^{\prime}\right)$	reduce $P \rightarrow S$
$P \mid \$$		$A C C E P T$

