
CS 143 Compilers Handout 7

Solutions to Written Assignment 2

1. Give a context-free grammar (CFG) for each of the following languages over the alphabet Σ = {a, b}:

(a) All strings in the language L : {anbma2n|n,m ≥ 0}

S → aSaa | B
B → bB | ε

(b) All nonempty strings that start and end with the same symbol.

S → aXa | bXb | a | b
X → aX | bX | ε

(c) All strings with more a’s than b’s.

S → Aa |MS | SMA

A → Aa | ε
M → ε |MM | bMa | aMb

(d) All palindromes (a palindrome is a string that reads the same forwards and backwards).

S → aSa | bSb | a | b | ε

2. A history major taking CS143 decided to write a rudimentary CFG to parse the roman nu-
merals 1-99 (i,ii,iii,iv,v,. . . ,ix,x,. . . ,xl,. . . ,lxxx,. . . ,xc,. . . ,xcix). If you are unfamiliar with ro-
man numerals, please have a look at http://en.wikipedia.org/wiki/Roman numerals and
http://literacy.kent.edu/Minigrants/Cinci/romanchart.htm.

Consider the grammar below, with terminals {c, l,x,v, i}. c = 100, l = 50, x = 10, v = 5, i = 1.
Notice that we use lowercase characters here to represent the numerals, to distinguish them from the
non-terminals.

S → xTU | lX | X
T → c | l
X → xX | U
U → iY | vI | I
Y → x | v
I → iI | ε

(a) Draw a parse tree for 47: “xlvii”.

See Figure 1.

(b) Is this grammar ambiguous?

No

Fall 2010/2011 page 1 of 5

CS 143 Compilers Handout 7

S

x T U

l v I

i I

i I

ε

Figure 1: Question 2a: Parse tree for 47: “xlvii”

(c) Write semantic actions for each of the 14 rules in the grammar (remember X → A | B is short
for X → A and X → B) to calculate the decimal value of the input string. You can associate a
synthesized attribute val to each of the non-terminals to store its value. The final value should
be returned in S.val. Hint: have a look at the calculator examples presented in class.

S → xTU {S.val = T.val − 10 + U.val}
S → lX {S.val = X.val + 50}
S → X {S.val = X.val}
T → c {T.val = 100}
T → l {T.val = 50}
X1 → xX2 {X1.val = X2.val + 10}
X → U {X.val = U.val}
U → iY {U.val = Y.val − 1}
U → vI {U.val = I.val + 5}
U → I {U.val = I.val}
Y → x {Y.val = 10}
Y → v {Y.val = 5}
I1 → iI2 {I1.val = I2.val + 1}
I → ε {I.val = 0}

3. (a) Left factor the following grammar:

E → int | int + E | int− E | E − (E)

Solution:
E → int E′ | E − (E)
E′ → ε | + E | − E

(b) Eliminate left-recursion from the following grammar:

A→ A+B | B
B → int | (A)

Fall 2010/2011 page 2 of 5

CS 143 Compilers Handout 7

Solution:
A→ BA′

A′ → +BA′ | ε
B → int | (A)

4. Consider the following LL(1) grammar, which has the set of terminals T = {a,b, ep,+,*, (,)}. This
grammar generates regular expressions over {a, b}, with + meaning the RegExp OR operator, and
ep meaning the ε symbol. (Yes, this is a context free grammar for generating regular expressions!)

E → TE′

E′ → +E | ε
T → FT ′

T ′ → T | ε
F → PF ′

F ′ → *F ′ | ε
P → (E) | a | b | ep

(a) Give the first and follow sets for each non-terminal.

The First and Follow sets of the non-terminals are as follows.

First(E) = {(, a, b, ep} Follow(E) = {), $}
First(E′) = {+, ε} Follow(E′) = {), $}
First(T) = {(, a, b, ep} Follow(T) = {+,), $}
First(T ′) = {(, a, b, ep, ε} Follow(T ′) = {+,), $}
First(F) = {(, a, b, ep} Follow(F) = {(, a, b, ep,+,), $}
First(F ′) = {∗, ε} Follow(F ′) = {(, a, b, ep,+,), $}
First(P) = {(, a, b, ep} Follow(P) = {(, a, b, ep,+,), ∗, $}

(b) Construct an LL(1) parsing table for the left-factored grammar.

Here is an LL(1) parsing table for the grammar.

() a b ep + ∗ $

E TE′ TE′ TE′ TE′

E′ ε +E ε

T FT ′ FT ′ FT ′ FT ′

T ′ T ε T T T ε ε

F PF ′ PF ′ PF ′ PF ′

F ′ ε ε ε ε ε ε ∗F ′ ε

P (E) a b ep

Fall 2010/2011 page 3 of 5

CS 143 Compilers Handout 7

(c) Show the operation of an LL(1) parser on the input string ab*.

Stack Input Action

E$ ab ∗ $ TE′

TE′$ ab ∗ $ FT ′

FT ′E′$ ab ∗ $ PF ′

PF ′T ′E′$ ab ∗ $ a
aF ′T ′E′$ ab ∗ $ terminal
F ′T ′E′$ b ∗ $ ε
T ′E′$ b ∗ $ T
TE′$ b ∗ $ FT ′

FT ′E′$ b ∗ $ PF ′

PF ′T ′E′$ b ∗ $ b
bF ′T ′E′$ b ∗ $ terminal
F ′T ′E′$ ∗$ ∗F ′

∗F ′T ′E′$ ∗$ terminal
F ′T ′E′$ $ ε
T ′E′$ $ ε
E′$ $ ε
$ $ ACCEPT

5. Consider the following CFG, which has the set of terminals T = {stmt,{,}, ;}. This grammar describes
the organization of statements in blocks for a fictitious programming language. Blocks can have zero
or more statements and other nested blocks, separated by semicolons, where the last semicolon is
optional. (P is the start symbol here.)

P → S

S → stmt | {B
B → } | S} | S;B

(a) Construct a DFA for viable prefixes of this grammar using LR(0) items.

Figure 2 shows a DFA for viable prefixes of the grammar. Note that for simplicity we omitted
adding an extra state S′ → P .

(b) Identify any shift-reduce and reduce-reduce conflicts in this grammar under the SLR(1) rules.

There are no conflicts.

(c) Assuming that an SLR(1) parser resolves shift-reduce conflicts by choosing to shift, show the
operation of such a parser on the input string {stmt;}.

Fall 2010/2011 page 4 of 5

CS 143 Compilers Handout 7

{

P->.S
S->.stmt
S->.{B

S->{.B
B->.}
B->.S}
B->.S;B
S->.stmt
S->.{B

B->S;.B
B->.}
B->.S}
B->.S;B
S->.stmt
S->.{B

B->S.}
B->S.;B

S->stmt.

P->S.

B->}.

S->{B. B->S}. B->S;B.

B

S

stmt

stmt
}

S

}

}

S

;

B

stmt

{

1

2

3

4

5

6

7

8 10

9

{

Figure 2: A DFA for viable prefixes of the grammar in Question 5a

Configuration DFA Halt State Action

| {stmt; }$ 1 shift
{| stmt; }$ 2 shift
{stmt |; }$ 5 ′;′ ∈ Follow(S) reduce S → stmt
{S |; }$ 7 shift
{S; |}$ 9 shift
{S; } | $ 6 ′$′ ∈ Follow(B) reduce B →}
{S;B | $ 10 ′$′ ∈ Follow(B) reduce B → S;B
{B | $ 3 ′$′ ∈ Follow(S) reduce S → {B
S | $ 4 ′$′ ∈ Follow(S′) reduce P → S
P | $ ACCEPT

Fall 2010/2011 page 5 of 5

