Solutions to Written Assignment 2

- 1. Give a context-free grammar (CFG) for each of the following languages over the alphabet $\Sigma = \{a, b\}$:
 - (a) All strings in the language $L : \{a^n b^m a^{2n} | n, m \ge 0\}$

$$\begin{array}{rrrr} S & \rightarrow & aSaa \mid B \\ B & \rightarrow & bB \mid \epsilon \end{array}$$

(b) All nonempty strings that start and end with the same symbol.

$$\begin{array}{rcl} S & \rightarrow & aXa \mid bXb \mid a \mid b \\ X & \rightarrow & aX \mid bX \mid \epsilon \end{array}$$

(c) All strings with more a's than b's.

$$\begin{array}{rcl} S & \rightarrow & Aa \mid MS \mid SMA \\ A & \rightarrow & Aa \mid \epsilon \\ M & \rightarrow & \epsilon \mid MM \mid bMa \mid aMb \end{array}$$

(d) All palindromes (a palindrome is a string that reads the same forwards and backwards).

$$S \rightarrow aSa \mid bSb \mid a \mid b \mid \epsilon$$

2. A history major taking CS143 decided to write a rudimentary CFG to parse the roman numerals 1-99 (i,ii,iii,iv,v,...,ix,x,...,xl,...,lxxx,...,xcix). If you are unfamiliar with roman numerals, please have a look at http://en.wikipedia.org/wiki/Roman_numerals and http://literacy.kent.edu/Minigrants/Cinci/romanchart.htm.

Consider the grammar below, with terminals $\{\mathbf{c}, \mathbf{l}, \mathbf{x}, \mathbf{v}, \mathbf{i}\}$. c = 100, l = 50, x = 10, v = 5, i = 1. Notice that we use lowercase characters here to represent the numerals, to distinguish them from the non-terminals.

$$S \rightarrow \mathbf{x}TU \mid \mathbf{I}X \mid X$$
$$T \rightarrow \mathbf{c} \mid \mathbf{I}$$
$$X \rightarrow \mathbf{x}X \mid U$$
$$U \rightarrow \mathbf{i}Y \mid \mathbf{v}I \mid I$$
$$Y \rightarrow \mathbf{x} \mid \mathbf{v}$$
$$I \rightarrow \mathbf{i}I \mid \epsilon$$

- (a) Draw a parse tree for 47: "xlvii". See Figure 1.
- (b) Is this grammar ambiguous? No

Figure 1: Question 2a: Parse tree for 47: "xlvii"

(c) Write semantic actions for each of the 14 rules in the grammar (remember $X \to A \mid B$ is short for $X \to A$ and $X \to B$) to calculate the decimal value of the input string. You can associate a synthesized attribute *val* to each of the non-terminals to store its value. The final value should be returned in *S.val*. Hint: have a look at the calculator examples presented in class.

$$\begin{array}{lll} S & \rightarrow \mathbf{x}TU & \{S.val = T.val - 10 + U.val\} \\ S & \rightarrow \mathbf{I}X & \{S.val = X.val + 50\} \\ S & \rightarrow X & \{S.val = X.val\} \\ T & \rightarrow \mathbf{c} & \{T.val = 100\} \\ T & \rightarrow \mathbf{l} & \{T.val = 50\} \\ X_1 & \rightarrow \mathbf{x}X_2 & \{X_1.val = X_2.val + 10\} \\ X & \rightarrow U & \{X.val = U.val\} \\ U & \rightarrow \mathbf{i}Y & \{U.val = U.val\} \\ U & \rightarrow \mathbf{i}Y & \{U.val = Y.val - 1\} \\ U & \rightarrow \mathbf{v}I & \{U.val = I.val + 5\} \\ U & \rightarrow I & \{U.val = I.val\} \\ Y & \rightarrow \mathbf{x} & \{Y.val = 10\} \\ Y & \rightarrow \mathbf{v} & \{Y.val = 5\} \\ I_1 & \rightarrow \mathbf{i}I_2 & \{I_1.val = I_2.val + 1\} \\ I & \rightarrow \epsilon & \{I.val = 0\} \end{array}$$

3. (a) Left factor the following grammar:

 $E \rightarrow int \mid int + E \mid int - E \mid E - (E)$

Solution:

 $\begin{array}{l} E \rightarrow int \; E' \mid E - (E) \\ E' \rightarrow \epsilon \mid + E \mid - E \end{array}$

(b) Eliminate left-recursion from the following grammar:

$$A \to A + B \mid B$$
$$B \to int \mid (A)$$

Fall 2010/2011

CS 143 Compilers

Solution:

 $A \to BA'$ $A' \to +BA' \mid \epsilon$ $B \to int \mid (A)$

4. Consider the following LL(1) grammar, which has the set of terminals $T = \{\mathbf{a}, \mathbf{b}, \mathbf{ep}, +, *, (,)\}$. This grammar generates regular expressions over $\{\mathbf{a}, \mathbf{b}\}$, with + meaning the RegExp OR operator, and **ep** meaning the ϵ symbol. (Yes, this is a context free grammar for generating regular expressions!)

$$E \rightarrow TE'$$

$$E' \rightarrow +E \mid \epsilon$$

$$T \rightarrow FT'$$

$$T' \rightarrow T \mid \epsilon$$

$$F \rightarrow PF'$$

$$F' \rightarrow *F' \mid \epsilon$$

$$P \rightarrow (E) \mid \mathbf{a} \mid \mathbf{b} \mid \mathbf{ep}$$

(a) Give the first and follow sets for each non-terminal.

The First and Follow sets of the non-terminals are as follows.

$First(E) = \{(a, b, ep\}$	$Follow(E) = \{\}, \$\}$
$\operatorname{First}(E') = \{+, \epsilon\}$	$Follow(E') = \{\}, \$\}$
$First(T) = \{(, a, b, ep\}$	$Follow(T) = \{+, \}$
$First(T') = \{(a, b, ep, \epsilon\}$	$Follow(T') = \{+, \},$
$First(F) = \{(a, b, ep\}$	Follow $(F) = \{(, a, b, ep, +,), \$\}$
$\operatorname{First}(F') = \{*, \epsilon\}$	$Follow(F') = \{(, a, b, ep, +,), \$\}$
$First(P) = \{(a, b, ep\}$	Follow $(P) = \{(, a, b, ep, +,), *, \$\}$

(b) Construct an LL(1) parsing table for the left-factored grammar.Here is an LL(1) parsing table for the grammar.

	()	a	b	ep	+	*	\$
E	TE'		TE'	TE'	TE'			
E'		ϵ				+E		ϵ
T	FT'		FT'	FT'	FT'			
T'	Т	ϵ	Т	Т	T	ϵ		ϵ
F	PF'		PF'	PF'	PF'			
F'	ϵ	ϵ	ϵ	ϵ	ϵ	ϵ	*F'	ϵ
P	(E)		a	b	ep			

(c) Show the operation of an LL(1) parser on the input string ab^* .

Stack	Input	Action
E	ab * \$	TE'
TE'\$	ab*\$	FT'
FT'E'\$	ab*\$	PF'
PF'T'E'\$	ab*\$	a
aF'T'E'\$	ab*\$	terminal
F'T'E'\$	b *	ϵ
T'E'\$	b *	T
TE'\$	b *	FT'
FT'E'\$	b *	PF'
PF'T'E'\$	b *	b
bF'T'E'\$	b *	terminal
F'T'E'\$	*\$	*F'
*F'T'E'\$	*\$	terminal
F'T'E'\$	\$	ϵ
T'E'\$	\$	ϵ
E'\$	\$	ϵ
\$	\$	ACCEPT

5. Consider the following CFG, which has the set of terminals $T = {\text{stmt}, {,};}$. This grammar describes the organization of statements in blocks for a fictitious programming language. Blocks can have zero or more statements and other nested blocks, separated by semicolons, where the last semicolon is optional. (P is the start symbol here.)

$$\begin{array}{rcl} P & \rightarrow & S \\ S & \rightarrow & \mathbf{stmt} \mid \{B \\ B & \rightarrow & \} \mid S\} \mid S;B \end{array}$$

- (a) Construct a DFA for viable prefixes of this grammar using LR(0) items. Figure 2 shows a DFA for viable prefixes of the grammar. Note that for simplicity we omitted adding an extra state $S' \rightarrow P$.
- (b) Identify any shift-reduce and reduce-reduce conflicts in this grammar under the SLR(1) rules. There are no conflicts.
- (c) Assuming that an SLR(1) parser resolves shift-reduce conflicts by choosing to shift, show the operation of such a parser on the input string {stmt;}.

Figure 2: A DFA for viable prefixes of the grammar in Question 5a

Configuration	DFA Halt State	Action
$ \{stmt;\}$	1	shift
$\{ stmt; \}$ \$	2	shift
${stmt ; }$	5 ';' $\in Follow(S)$	reduce $S \to stmt$
${S ;}$	7	shift
$\{S; \}$ \$	9	shift
$\{S;\} \mid \$$	6 $'\$' \in Follow(B)$	reduce $B \rightarrow \}$
$\{S; B \mid \$$	10 $'\$' \in Follow(B)$	reduce $B \to S; B$
$\{B \mid \$$	3 $'\$' \in Follow(S)$	reduce $S \to \{B$
$S \mid \$$	$4 '\$' \in Follow(S')$	reduce $P \to S$
$P \mid \$$		ACCEPT