Implementation of Lexical Analysis

Lecture 4

Written Assignments

• WA1 assigned today
• Due in one week
 - By 5pm
 - Turn in
 ◦ In class
 ◦ In box outside 411 Gates
 ◦ Electronically

Tips on Building Large Systems

• KISS (Keep It Simple, Stupid!)
• Don’t optimize prematurely
• Design systems that can be tested
• It is easier to modify a working system than to get a system working

Outline

• Specifying lexical structure using regular expressions
 • Finite automata
 ◦ Deterministic Finite Automata (DFAs)
 ◦ Non-deterministic Finite Automata (NFAs)
 • Implementation of regular expressions
 RegExp => NFA => DFA => Tables

Notation

• There is variation in regular expression notation
• Union: \(A | B \) \(= A + B \)
• Option: \(A + \varepsilon \) \(= A? \)
• Range: \('a'+b'+...+z' \) \(= [a-z] \)
• Excluded range: \(\text{complement of } [a-z] \) \(= [\sim a-z] \)

Regular Expressions in Lexical Specification

• Last lecture: a specification for the predicate \(s \in L(R) \)
• But a yes/no answer is not enough!
• Instead: partition the input into tokens
• We adapt regular expressions to this goal
Regular Expressions \Rightarrow Lexical Spec. (1)

1. Write a rexp for the lexemes of each token
 - Number = digit +
 - Keyword = 'if' + 'else' + ...
 - Identifier = letter (letter + digit)*
 - OpenPar = '('
 - ...

Regular Expressions \Rightarrow Lexical Spec. (2)

2. Construct \(R \), matching all lexemes for all tokens
 \[R = \text{Keyword} + \text{Identifier} + \text{Number} + ... \]
 \[= R_1 + R_2 + ... \]

Regular Expressions \Rightarrow Lexical Spec. (3)

3. Let input be \(x_1 ... x_n \)
 For \(1 \leq i \leq n \) check
 \[x_1 ... x_i \in L(R) \]
4. If success, then we know that
 \[x_1 ... x_i \in L(R_j) \text{ for some } j \]
5. Remove \(x_1 ... x_i \) from input and go to (3)

Ambiguities (1)

- There are ambiguities in the algorithm
- How much input is used? What if
 - \(x_1 ... x_i \in L(R) \) and also
 - \(x_1 ... x_k \in L(R) \)
- Rule: Pick longest possible string in \(L(R) \)
 - The "maximal munch"

Ambiguities (2)

- Which token is used? What if
 - \(x_1 ... x_i \in L(R) \) and also
 - \(x_1 ... x_k \in L(R) \)
- Rule: use rule listed first (\(j \) if \(j \leq k \))
 - Treats "if" as a keyword, not an identifier

Error Handling

- What if
 - No rule matches a prefix of input?
 - Problem: Can't just get stuck ...
- Solution:
 - Write a rule matching all "bad" strings
 - Put it last (lowest priority)
Summary

- Regular expressions provide a concise notation for string patterns
- Use in lexical analysis requires small extensions
 - To resolve ambiguities
 - To handle errors
- Good algorithms known
 - Require only single pass over the input
 - Few operations per character (table lookup)

Finite Automata

- Regular expressions = specification
- Finite automata = implementation
- A finite automaton consists of
 - An input alphabet Σ
 - A set of states S
 - A start state s_0
 - A set of accepting states $F \subseteq S$
 - A set of transitions $state \rightarrow input$ state

Finite Automata

- Transition $s_1 \rightarrow a s_2$
- Is read
 - In state s_1 on input "a" go to state s_2
- If end of input and in accepting state => accept
- Otherwise => reject

Finite Automata State Graphs

- A state
- The start state
- An accepting state
- A transition

A Simple Example

- A finite automaton that accepts only "1"

Another Simple Example

- A finite automaton accepting any number of 1's followed by a single 0
- Alphabet: {0,1}
And Another Example

- Alphabet \{0,1\}
- What language does this recognize?

Epsilon Moves

- Another kind of transition: \(\varepsilon\)-moves

\[
\begin{align*}
A & \xrightarrow{\varepsilon} B \\
E & \xrightarrow{\varepsilon} B
\end{align*}
\]

- Machine can move from state A to state B without reading input

Deterministic and Nondeterministic Automata

- Deterministic Finite Automata (DFA)
 - One transition per input per state
 - No \(\varepsilon\)-moves

- Nondeterministic Finite Automata (NFA)
 - Can have multiple transitions for one input in a given state
 - Can have \(\varepsilon\)-moves

Execution of Finite Automata

- A DFA can take only one path through the state graph
 - Completely determined by input

- NFAs can choose
 - Whether to make \(\varepsilon\)-moves
 - Which of multiple transitions for a single input to take

Acceptance of NFAs

- An NFA can get into multiple states

\[
\begin{align*}
0 & \rightarrow 0 \\
1 & \rightarrow 1 \\
0 & \rightarrow 0
\end{align*}
\]

- Input: 1 0 0

Rule: NFA accepts if it can get to a final state

NFA vs. DFA (1)

- NFAs and DFAs recognize the same set of languages (regular languages)

- DFAs are faster to execute
 - There are no choices to consider
NFA vs. DFA (2)

• For a given language NFA can be simpler than DFA

\[
\text{NFA}
\]

\[
\text{DFA}
\]

• DFA can be exponentially larger than NFA

Regular Expressions to Finite Automata

• High-level sketch

\[
\text{NFA}
\]

\[
\text{DFA}
\]

Lexical Specification

Table-driven Implementation of DFA

Regular Expressions to NFA (1)

• For each kind of rexp, define an NFA
 - Notation: NFA for rexp \(M\)

\[
\text{M}
\]

• For \(\epsilon\)

\[
\epsilon
\]

• For input \(a\)

\[
a
\]

Regular Expressions to NFA (2)

• For \(AB\)

\[
A \rightarrow B
\]

• For \(A + B\)

\[
A \cup B
\]

Regular Expressions to NFA (3)

• For \(A^*\)

\[
A^*
\]

Example of RegExp -> NFA conversion

• Consider the regular expression \((1+0)^*1\)

• The NFA is

\[
(1+0)^*1
\]
NFA to DFA: The Trick

- Simulate the NFA
- Each state of DFA
 - a non-empty subset of states of the NFA
- Start state
 - the set of NFA states reachable through ε-moves from NFA start state
- Add a transition $S \xrightarrow{a} S'$ to DFA iff
 - S is the set of NFA states reachable from any state in S after seeing the input a, considering ε-moves as well

NFA to DFA, Remark

- An NFA may be in many states at any time
- How many different states?
- If there are N states, the NFA must be in some subset of those N states
- How many subsets are there?
 - $2^N - 1$ = finitely many

Implementation

- A DFA can be implemented by a 2D table T
 - One dimension is "states"
 - Other dimension is "input symbol"
 - For every transition $S_i \xrightarrow{a} S_k$ define $T[i,a] = k$
- DFA "execution"
 - If in state S_i and input a, read $T[i,a] = k$ and skip to state S_k
 - Very efficient

Implementation (Cont.)

- NFA → DFA conversion is at the heart of tools such as flex
- But, DFAs can be huge
- In practice, flex-like tools trade off speed for space in the choice of NFA and DFA representations