Bottom-Up Parsing



What is Bottom-Up Parsing?

* Idea: Apply productions in reverse to convert
the user's program to the start symbol.

« As with top-down, could be done with a DFS or
BFS, though this is rarely done in practice.

« We'll be exploring four directional, predictive
bottom-up parsing techniques:

* Directional: Scan the input from left-to-right.

« Predictive: Guess which production should be
inverted.



Bottoms Up!
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A left-to-right, bottom-up parse is a
rightmost derivation traced in reverse.
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Handles

 The handle of a parse tree T is the
leftmost complete cluster of leaf nodes.

« A left-to-right, bottom-up parse works by
iteratively searching for a handle, then
reducing the handle.



Summarizing Our Intuition

* Our first intuition (reconstructing the parse
tree bottom-up) motivates how the parsing
should work.

* Our second intuition (rightmost derivation
in reverse) describes the order in which we
should build the parse tree.

e Our third intuition (handle pruning) is the
basis for the bottom-up parsing algorithms
we will explore.
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The leftmost reduction
isn't always the handle.



Finding Handles

« Where do we look for handles?
« Where in the string might the handle be?
« How do we search for possible handles?

e Once we know where to search, how do we
identify candidate handles?

« How do we recognize handles?

e Once we've found a candidate handle, how
do we check that it really is the handle?



Question One:

Where are handles?



Where are Handles?

« Recall: A left-to-right, bottom-up parse traces a
rightmost derivation in reverse.

 Each time we do a reduction, we are reversing a
production applied to the rightmost nonterminal
symbol.

« Suppose that our current sentential form is ayw,
where p is the handle and A — p is a production
rule.

» After reducing y back to A, we have the string aAw.

 Thus w must consist purely of terminals, since
otherwise the reduction we just did was not for the
rightmost terminal.



Why This Matters

 Suppose we want to parse the string p.

 We will break yp into two parts, a and w,
where

 a consists of both terminals and nonterminals,
and

* w consists purely of terminals.
e Our search for handles will concentrate
purely in a.

* As necessary, we will start moving terminals
from w over into a.



Shift/Reduce Parsing

« The bottom-up parsers we will consider are called
shift/reduce parsers.

« Contrast with the LL(1) predict/match parser.
« Idea: Split the input into two parts:

« Left substring is our work area; all handles must be
here.

» Right substring is input we have not yet processed;
consists purely of terminals.

« At each point, decide whether to:

« Move a terminal across the split (shift)
« Reduce a handle (reduce)
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An Important Observation

« All of the reductions we applied were to the far
right end of the left area.

« This is not a coincidence; all reductions are always
applied all the way to the end of the left area.

 Inductive proof sketch:

 After no reduces, the first reduction can be done at the
right end of the left area.

« After at least one reduce, the very right of the left area
is a nonterminal. This nonterminal must be part of the
next reduction, since we're tracing a rightmost
derivation backwards.



An Important Corollary

» Since reductions are always at the right
side of the left area, we never need to shift
from the left to the right.

 No need to “uncover” something to do a
reduction.

« Consequently, shift/reduce parsing means

« Shift: Move a terminal from the right to the
left area.

 Reduce: Replace some number of symbols at
the right side of the left area.



Simplifying our Terminology

« All activity in a shift/reduce parser is at
the far right end of the left area.

 Idea: Represent the left area as a stack.

e Shift: Push the next terminal onto the
stack.

 Reduce: Pop some number of symbols
from the stack, then push the
appropriate nonterminal.



Finding Handles

e Where do we look for handles?
« At the top of the stack.
« How do we search for handles?

 What algorithm do we use to try to discover
a handle?

« How do we recognize handles?

 Once we've found a possible handle, how do
we confirm that it's correct?
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