Bottom-Up Parsing

What is Bottom-Up Parsing?

* Idea: Apply productions in reverse to convert
the user's program to the start symbol.

« As with top-down, could be done with a DFS or
BFS, though this is rarely done in practice.

« We'll be exploring four directional, predictive
bottom-up parsing techniques:

* Directional: Scan the input from left-to-right.

« Predictive: Guess which production should be
inverted.

Bottoms Up!

One View of a Bottom-Up Parse

E-T

E-E+T
T — int
T - (E)

int + int + int + int

A Second View of a Bottom-Up Parse

E-T int + (int + int + int)
E-E+T =T + (int + int + int)
I —int = E + (int + int + int)
T - (E) =FE + (T + int + int)
= E + (E + int + int)
=>FE + (E + T + int)
= FE + (E + int)
=FE + (E + T)
= E + (E)
=>FE + T

A Second View of a Bottom-Up Parse

E-T
E-E+T T
T — int F
T - (E) T
E
T
E
T
E
T

A left-to-right, bottom-up parse is a
rightmost derivation traced in reverse.

A Third View of a Bottom-Up Parse

int + (int + int + int)

4

+ + + + + + + +

(int + int + int)
(int + int + int)
(T + int + int)

(E + int + int)
(E + T + int)
(E + int)

(E + T)

(E)

T

Each step in this bottom—up

parse is called a reduction.

We reduce a substring of

the senfential form back to
a nonferminal,

=T + (int + int + int)

A Third View of a Bottom-Up Parse

int + (int + int + int)

(int + int + int)
(T + int + int)

P

l
T
+ + + + + + + +

(E + int + int) int
(E + T + int) |~
(E + int) - int
(E + T) -
(E)
T .

- F int

int + (int + [int + int)

=T + (int + int + int)

A Third View of a Bottom-Up Parse

int + (int + int + int)

(int + int + int)
(T + int + int)

P

l
T
+ + + + + + + +

(E + int + int) int
(E + T + int) |~
(E + int) - int
(E + T) -
(E)
T .

- F int

int + (int + [int + int)

=T + (int + int + int)

A Third View of a Bottom-Up Parse

int + (int + int + int)

(int + int + int)
(T + int + int)

P

l
T
+ + + + + + + +

(E + int + int) int
(E + T + int) |~
(E + int) - int
(E + T) -
(E)
T .

- F int

int + (int + [int + int)

A Third View of a Bottom-Up Parse

+ + + + 4+ + + + +

(int + int + int)
(int + int + int)
(T + int + int)
(E + int + int)
(E + T + int)

(E + int)

(E + T)

(E)

T

int

int

int

int

int

A Third View of a Bottom-Up Parse

+ + + + 4+ + + + +

(int + int + int)
(int + int + int)
(T + int + int)
(E + int + int)
(E + T + int)

(E + int)

(E + T)

(E)

T

int

int

int

int

int

A Third View of a Bottom-Up Parse

(int + int + int)
(T + int + int)

P

U
2
+ + + + + + + +

(E + int + int)
(E + T + int) |~
(E + int) - int
(E + T) -
(E)
T .

- F int

int + (int + [int + int)

A Third View of a Bottom-Up Parse

(int + int + int)
(T + int + int)

P

U
2
+ + + + + + + +

(E + int + int)
(E + T + int) |~
(E + int) - int
(E + T) -
(E)
T :

- F int

int + (int + [int + int)

A Third View of a Bottom-Up Parse

+ + + + + + +

(T + int + int)
(E + int + int)
(E + T + int)
(E + int)

(E + T)

(E)

T

[

.l.

P

int

int

int

int

int

A Third View of a Bottom-Up Parse

+ + + + + + +

(T + int + int)
(E + int + int)
(E + T + int)
(E + int)

(E + T)

(E)

T

T

[

.l.

P

int

int

int

int

int

int

A Third View of a Bottom-Up Parse

+ + + + + +

(E + int + int)
(E + T + int)
(E + int)

(E + T)

(E)

T

[

P

int

int

int

int

int

int

A Third View of a Bottom-Up Parse

+ + + + + +

(E + int + int)
(E + T + int)
(E + int)

(E + T)

(E)

T

[

P

int

int

int

int

int

int

A Third View of a Bottom-Up Parse

+ + + + +

(E + T + int)
(E + int)

(E + T)

(E)

T

[

.l.

P

int

int

int

int

int

A Third View of a Bottom-Up Parse

+ + + + +

(E + T + int)
(E + int)

(E + T)

(E)

T

int

int

int

int

A Third View of a Bottom-Up Parse

=E + (E + int)
=>E + (E + T)
= E + (E)

=>FE + T

= E

int + (int + [int + int)

A Third View of a Bottom-Up Parse

=>E + (E + int)
=>E + (E + T)
= E + (E)

=>FE + T

= E

int + (int + [int + int)

A Third View of a Bottom-Up Parse

=>E + (E + T)
= E + (E)
=>E + T

= E

int + (int + [int + int)

A Third View of a Bottom-Up Parse

=>E + (E + T)
= E + (E)
=>E + T

= E

int + (int + [int + int)

A Third View of a Bottom-Up Parse

= E + (E)
>FE + T

int + (int + [int + int)

A Third View of a Bottom-Up Parse

= E + (E)
>FE + T

int + (int + [int + int)

A Third View of a Bottom-Up Parse

=>FE + T

int + (int + [int + int)

A Third View of a Bottom-Up Parse

e

E + T

=>FE + T

int + (int + [int + int)

A Third View of a Bottom-Up Parse
.. E

int + (int + [int + int)

Handles

 The handle of a parse tree T is the
leftmost complete cluster of leaf nodes.

« A left-to-right, bottom-up parse works by
iteratively searching for a handle, then
reducing the handle.

Summarizing Our Intuition

* Our first intuition (reconstructing the parse
tree bottom-up) motivates how the parsing
should work.

* Our second intuition (rightmost derivation
in reverse) describes the order in which we
should build the parse tree.

e Our third intuition (handle pruning) is the
basis for the bottom-up parsing algorithms
we will explore.

A Detail about Handles

E-F
E-E+F
F-F=*T
F-T
T - int
T - (E)

int + int * int

A Detail about Handles

E-F
E-E+F
F-F=*T
F-T
T - int
T - (E)

int + int * int

A Detail about Handles

E-F
E-E+F
F-F=*T
F-T
T - int
T - (E)

int + int * int

A Detail about Handles

E-F
E-E+F
F-F=*T
F-T
T — int
T - (E)

int + int * int

A Detail about Handles

E-F
E-E+F
F-F=*T
F-T
T — int
T - (E)

int + int * int

A Detail about Handles

E-F
E-E+F
F-F=*T
F-T
T — int
T - (E)

int + int * int

A Detail about Handles

E-F
E-E+F
F-F=*T
F-T
T — int
T - (E)

int + int * int

A Detail about Handles

E-F
E-E+F
F-F=*T
F-T
T — int
T - (E)

int| + int int

A Detail about Handles

E-F
E-E+F
F-F=*T
F-T
T — int
T - (E)

int

int

int

This reducTion
wasn't a handle:

<—J

The leftmost reduction
isn't always the handle.

Finding Handles

« Where do we look for handles?
« Where in the string might the handle be?
« How do we search for possible handles?

e Once we know where to search, how do we
identify candidate handles?

« How do we recognize handles?

e Once we've found a candidate handle, how
do we check that it really is the handle?

Question One:

Where are handles?

Where are Handles?

« Recall: A left-to-right, bottom-up parse traces a
rightmost derivation in reverse.

 Each time we do a reduction, we are reversing a
production applied to the rightmost nonterminal
symbol.

« Suppose that our current sentential form is ayw,
where p is the handle and A — p is a production
rule.

» After reducing y back to A, we have the string aAw.

 Thus w must consist purely of terminals, since
otherwise the reduction we just did was not for the
rightmost terminal.

Why This Matters

 Suppose we want to parse the string p.

 We will break yp into two parts, a and w,
where

 a consists of both terminals and nonterminals,
and

* w consists purely of terminals.
e Our search for handles will concentrate
purely in a.

* As necessary, we will start moving terminals
from w over into a.

Shift/Reduce Parsing

« The bottom-up parsers we will consider are called
shift/reduce parsers.

« Contrast with the LL(1) predict/match parser.
« Idea: Split the input into two parts:

« Left substring is our work area; all handles must be
here.

» Right substring is input we have not yet processed;
consists purely of terminals.

« At each point, decide whether to:

« Move a terminal across the split (shift)
« Reduce a handle (reduce)

A Sample Shift/Reduce Parse

E-F
E-E+F
F-F=*T
F-T
T — int
T - (E)

int + int * int| + |int

A Sample Shift/Reduce Parse

E-F
E-E+F
F-F=*T
F-T
T — int
T - (E)

int + |int * int <+ | int

A Sample Shift/Reduce Parse

E-F
E-E+F
F-F=*T
F-T
T — int

R

int

-l ¢ int| * lint + lint

A Sample Shift/Reduce Parse

E-F
E-E+F
F-F=*T
F-T
T - int
T - (E)

int

-l ¢ int| * lint + lint

A Sample Shift/Reduce Parse

E-F
E-E+F
F-F=*T
F-T
T - int
T - (E)

int

- + int| * int + | int

A Sample Shift/Reduce Parse

E-F
E-E+F
F-F=*T
F-T
T - int
T - (E)

int| +

- + int * int + int

A Sample Shift/Reduce Parse

E-F
E-E+F
F-F=*T
F-T
T - int
T - (E)

int + int

- + int * int + int

A Sample Shift/Reduce Parse

:

+ int

E-F
E-E+F
F-F=*T
F-T
T - int
T - (E)

A Sample Shift/Reduce Parse

int int

E-F
E-E+F
F-F=*T
F-T

T - int
T - (E)

.|.

A Sample Shift/Reduce Parse

int

E-F
E-E+F
F-F=*T
F-T
T - int
T - (E)

+ int

* |int+int

A Sample Shift/Reduce Parse

int int

E-F
E-E+F
F-F=*T
F-T

T - int
T - (E)

* int

.|.

A Sample Shift/Reduce Parse

E-F
E-E+F
F-o-F*T
F-T
T - int
T - (E)

.

+ * int

| + |int

A Sample Shift/Reduce Parse

' I \J !
int int * int

E-F
E-E+F
F-o-F*T
F-T
T - int
T - (E)

.l.

A Sample Shift/Reduce Parse

E-F
E-E+F
F-o-F*T
F-T
T - int
T - (E)

*

int

int + int

A Sample Shift/Reduce Parse

E-F
E-E+F
F-o-F*T
F-T
T - int
T - (E)

*

int| +

int + int

A Sample Shift/Reduce Parse

E-F
E-E+F
F-o-F*T
F-T
T - int
T - (E)

*

int + int

int + int

A Sample Shift/Reduce Parse

E-F
E-E+F
F-o-F*T
F-T
T - int
T - (E)

A Sample Shift/Reduce Parse

E-F
E-E+F
F-o-F*T
F-T
T - int
T - (E)

A Sample Shift/Reduce Parse

E-F
E-E+F
F-o-F*T
F-T
T - int
T - (E)

*

int + int

int + int

An Important Observation

« All of the reductions we applied were to the far
right end of the left area.

« This is not a coincidence; all reductions are always
applied all the way to the end of the left area.

 Inductive proof sketch:

 After no reduces, the first reduction can be done at the
right end of the left area.

« After at least one reduce, the very right of the left area
is a nonterminal. This nonterminal must be part of the
next reduction, since we're tracing a rightmost
derivation backwards.

An Important Corollary

» Since reductions are always at the right
side of the left area, we never need to shift
from the left to the right.

 No need to “uncover” something to do a
reduction.

« Consequently, shift/reduce parsing means

« Shift: Move a terminal from the right to the
left area.

 Reduce: Replace some number of symbols at
the right side of the left area.

Simplifying our Terminology

« All activity in a shift/reduce parser is at
the far right end of the left area.

 Idea: Represent the left area as a stack.

e Shift: Push the next terminal onto the
stack.

 Reduce: Pop some number of symbols
from the stack, then push the
appropriate nonterminal.

Finding Handles

e Where do we look for handles?
« At the top of the stack.
« How do we search for handles?

 What algorithm do we use to try to discover
a handle?

« How do we recognize handles?

 Once we've found a possible handle, how do
we confirm that it's correct?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70

