

Type-Checking

Announcements

● Written Assignment 2 due today at
5:00PM.

● Programming Project 2 due Friday at
11:59PM.

● Please contact us with questions!
● Stop by office hours!
● Email the staff list!
● Ask on Piazza!

Announcements

● Midterm exam one week from today, July 25th
from 11:00AM – 1:00PM here in Thornton 102.

● Covers material up to and including Earley
parsing.

● Review session in class next Monday.
● Practice exam released; solutions will be

distributed on Monday.
● SCPD Students: Exam will be emailed out on

July 25th at 11:00AM. You can start the exam
any time between 11:00AM on July 25th and
11:00AM on July 26th.

Where We Are

Lexical Analysis

Semantic Analysis

Syntax Analysis

IR Generation

IR Optimization

Code Generation

Optimization

Source
Code

Machine
Code

Review from Last Time
class MyClass implements MyInterface {
 string myInteger;

 void doSomething() {
 int[] x;
 x = new string;

 x[5] = myInteger * y;
 }
 void doSomething() {

 }
 int fibonacci(int n) {
 return doSomething() + fibonacci(n – 1);
 }
}

Review from Last Time
class MyClass implements MyInterface {
 string myInteger;

 void doSomething() {
 int[] x;
 x = new string;

 x[5] = myInteger * y;
 }
 void doSomething() {

 }
 int fibonacci(int n) {
 return doSomething() + fibonacci(n – 1);
 }
}

Interface not
declared

Wrong type

Variable not
declared

Can't multiply
strings

Can't redefine
functions

Can't add void
No main function

Review from Last Time
class MyClass implements MyInterface {
 string myInteger;

 void doSomething() {
 int[] x;
 x = new string;

 x[5] = myInteger * y;
 }
 void doSomething() {

 }
 int fibonacci(int n) {
 return doSomething() + fibonacci(n – 1);
 }
}

Wrong type

Variable not
declared

Can't multiply
strings

Can't redefine
functions

Can't add void
No main function

Review from Last Time
class MyClass implements MyInterface {
 string myInteger;

 void doSomething() {
 int[] x;
 x = new string;

 x[5] = myInteger * y;
 }
 void doSomething() {

 }
 int fibonacci(int n) {
 return doSomething() + fibonacci(n – 1);
 }
}

Wrong type

Variable not
declared

Can't multiply
strings

Can't add void
No main function

Review from Last Time
class MyClass implements MyInterface {
 string myInteger;

 void doSomething() {
 int[] x;
 x = new string;

 x[5] = myInteger * y;
 }
 void doSomething() {

 }
 int fibonacci(int n) {
 return doSomething() + fibonacci(n – 1);
 }
}

Wrong type
Can't multiply

strings

Can't add void
No main function

Review from Last Time
class MyClass implements MyInterface {
 string myInteger;

 void doSomething() {
 int[] x;
 x = new string;

 x[5] = myInteger * y;
 }
 void doSomething() {

 }
 int fibonacci(int n) {
 return doSomething() + fibonacci(n – 1);
 }
}

Wrong type
Can't multiply

strings

Can't add void

What Remains to Check?

● Type errors.
● Today:

● What are types?
● What is type-checking?
● A type system for Decaf.

What is a Type?

● This is the subject of some debate.
● To quote Alex Aiken:

● “The notion varies from language to
language.

● The consensus:
– A set of values.
– A set of operations on those values”

● Type errors arise when operations are
performed on values that do not support
that operation.

Types of Type-Checking

● Static type checking.
● Analyze the program during compile-time to prove the

absence of type errors.
● Never let bad things happen at runtime.

● Dynamic type checking.
● Check operations at runtime before performing them.
● More precise than static type checking, but usually

less efficient.
● (Why?)

● No type checking.
● Throw caution to the wind!

Type Systems

● The rules governing permissible
operations on types forms a type
system.

● Strong type systems are systems that
never allow for a type error.
● Java, Python, JavaScript, LISP, Haskell, etc.

● Weak type systems can allow type
errors at runtime.
● C, C++

Type Wars

● Endless debate about what the “right”
system is.

● Dynamic type systems make it easier to
prototype; static type systems have fewer
bugs.

● Strongly-typed languages are more
robust, weakly-typed systems are often
faster.

Type Wars

● Endless debate about what the “right”
system is.

● Dynamic type systems make it easier to
prototype; static type systems have fewer
bugs.

● Strongly-typed languages are more
robust, weakly-typed systems are often
faster.

● I'm staying out of this!

Our Focus

● Decaf is typed statically and weakly:
● Type-checking occurs at compile-time.
● Runtime errors like dereferencing null or an

invalid object are allowed.

● Decaf uses class-based inheritance.
● Decaf distinguishes primitive types and

classes.

Typing in Decaf

Static Typing in Decaf

● Static type checking in Decaf consists of
two separate processes:
● Inferring the type of each expression from

the types of its components.
● Confirming that the types of expressions in

certain contexts matches what is expected.

● Logically two steps, but you will probably
combine into one pass.

An Example

while (numBitsSet(x + 5) <= 10) {

 if (1.0 + 4.0) {
 /* … */
 }

 while (5 == null) {
 /* … */
 }

}

An Example

while (numBitsSet(x + 5) <= 10) {

 if (1.0 + 4.0) {
 /* … */
 }

 while (5 == null) {
 /* … */
 }

}

An Example

while (numBitsSet(x + 5) <= 10) {

 if (1.0 + 4.0) {
 /* … */
 }

 while (5 == null) {
 /* … */
 }

}

An Example

while (numBitsSet(x + 5) <= 10) {

 if (1.0 + 4.0) {
 /* … */
 }

 while (5 == null) {
 /* … */
 }

}

Well-typed
expression with
wrong type.

An Example

while (numBitsSet(x + 5) <= 10) {

 if (1.0 + 4.0) {
 /* … */
 }

 while (5 == null) {
 /* … */
 }

}

An Example

while (numBitsSet(x + 5) <= 10) {

 if (1.0 + 4.0) {
 /* … */
 }

 while (5 == null) {
 /* … */
 }

} Expression with
type error

Inferring Expression Types

● How do we determine the type of an
expression?

● Think of process as logical inference.

Inferring Expression Types

● How do we determine the type of an
expression?

● Think of process as logical inference.

+

IntConstant IntConstant

137 42

Inferring Expression Types

● How do we determine the type of an
expression?

● Think of process as logical inference.

+

IntConstant IntConstant

137 42

int

Inferring Expression Types

● How do we determine the type of an
expression?

● Think of process as logical inference.

+

IntConstant IntConstant

137 42

int int

Inferring Expression Types

● How do we determine the type of an
expression?

● Think of process as logical inference.

+

IntConstant IntConstant

137 42

int int

int

Inferring Expression Types

● How do we determine the type of an
expression?

● Think of process as logical inference.

Inferring Expression Types

● How do we determine the type of an
expression?

● Think of process as logical inference.

=

Identifierx =

Identifiery BoolConstanttruebool bool

bool

Inferring Expression Types

● How do we determine the type of an
expression?

● Think of process as logical inference.

=

Identifierx =

Identifiery BoolConstanttruebool bool

boolbool

Inferring Expression Types

● How do we determine the type of an
expression?

● Think of process as logical inference.

=

Identifierx =

Identifiery BoolConstanttruebool bool

boolbool

bool

Type Checking as Proofs

● We can think of syntax analysis as
proving claims about the types of
expressions.

● We begin with a set of axioms, then
apply our inference rules to determine
the types of expressions.

● Many type systems can be thought of as
proof systems.

Sample Inference Rules

● “If x is an identifier that refers to an
object of type t, the expression x has
type t.”

● “If e is an integer constant, e has type
int.”

● “If the operands e1 and e2 of e1 + e2 are
known to have types int and int, then
e1 + e2 has type int.”

Postconditions

Preconditions

Formalizing our Notation

● We will encode our axioms and inference
rules using this syntax:

● This is read “if preconditions are true, we

can infer postconditions.”

Examples of Formal Notation

t ∈ FIRST(A)

A → tω is a production.

ε ∈ FIRST(A)

A → ε is a production.

t ∈ FIRST(A)

A → ω is a production.
t ∈ FIRST*(ω)

ε ∈ FIRST(A)

A → ω is a production.
ε ∈ FIRST*(ω)

Formal Notation for Type Systems

● We write

⊢ e : T
if the expression e has type T.

● The symbol ⊢ means “we can infer...”

Our Starting Axioms

Our Starting Axioms

⊢ true : bool ⊢ false : bool

Some Simple Inference Rules

⊢ i : int

i is an integer constant

⊢ s : string

s is a string constant

Some Simple Inference Rules

⊢ d : double

d is a double constant

More Complex Inference Rules

More Complex Inference Rules

⊢ e
1
 + e2 : int

⊢ e
1
 : int

⊢ e
2
 : int

⊢ e
1
 + e2 : double

⊢ e
1
 : double

⊢ e
2
 : double

More Complex Inference Rules

⊢ e
1
 + e2 : int

⊢ e
1
 : int

⊢ e
2
 : int

⊢ e
1
 + e2 : double

⊢ e
1
 : double

⊢ e
2
 : double

If we can show that e1
and e2 have type int…

More Complex Inference Rules

⊢ e
1
 + e2 : int

⊢ e
1
 : int

⊢ e
2
 : int

⊢ e
1
 + e2 : double

⊢ e
1
 : double

⊢ e
2
 : double

If we can show that e1
and e2 have type int…

… then we can show
that e1 + e2 has
type int as well

Even More Complex Inference Rules

Even More Complex Inference Rules

⊢ e
1
 == e2 : bool

 ⊢ e
1
 : T

 ⊢ e
2
 : T

T is a primitive type

⊢ e
1
 != e2 : bool

 ⊢ e
1
 : T

 ⊢ e
2
 : T

T is a primitive type

Why Specify Types this Way?

● Gives a rigorous definition of types independent of any
particular implementation.
● No need to say “you should have the same type rules as my

reference compiler.”

● Gives maximum flexibility in implementation.
● Can implement type-checking however you want, as long as you

obey the rules.

● Allows formal verification of program properties.
● Can do inductive proofs on the structure of the program.

● This is what's used in the literature.
● Good practice if you want to study types.

A Problem

A Problem

⊢ x : ??

x is an identifier.

A Problem

⊢ x : ??

x is an identifier.

How do we know the
type of x if we don't
know what it refers to?

An Incorrect Solution

An Incorrect Solution

⊢ x : T

x is an identifier.
x is in scope with type T.

An Incorrect Solution

int MyFunction(int x) {
 {
 double x;
 }

 if (x == 1.5) {
 /* … */
 }
}

⊢ x : T

x is an identifier.
x is in scope with type T.

An Incorrect Solution

int MyFunction(int x) {
 {
 double x;
 }

 if (x == 1.5) {
 /* … */
 }
}

Facts

⊢ x : T

x is an identifier.
x is in scope with type T.

An Incorrect Solution

int MyFunction(int x) {
 {
 double x;
 }

 if (x == 1.5) {
 /* … */
 }
}

Facts

⊢ x : T

x is an identifier.
x is in scope with type T.

An Incorrect Solution

int MyFunction(int x) {
 {
 double x;
 }

 if (x == 1.5) {
 /* … */
 }
}

Facts
⊢ x : double⊢ x : double

⊢ x : T

x is an identifier.
x is in scope with type T.

An Incorrect Solution

int MyFunction(int x) {
 {
 double x;
 }

 if (x == 1.5) {
 /* … */
 }
}

Facts
⊢ x : double⊢ x : double

⊢ x : T

x is an identifier.
x is in scope with type T.

An Incorrect Solution

int MyFunction(int x) {
 {
 double x;
 }

 if (x == 1.5) {
 /* … */
 }
}

Facts
⊢ x : double

⊢ x : int

⊢ x : T

x is an identifier.
x is in scope with type T.

An Incorrect Solution

int MyFunction(int x) {
 {
 double x;
 }

 if (x == 1.5) {
 /* … */
 }
}

Facts
⊢ x : double

⊢ x : int

⊢ x : T

x is an identifier.
x is in scope with type T.

An Incorrect Solution

⊢ x : T

int MyFunction(int x) {
 {
 double x;
 }

 if (x == 1.5) {
 /* … */
 }
}

Facts
⊢ x : double

⊢ x : int

x is an identifier.
x is in scope with type T.

⊢ d : double

d is a double constant

An Incorrect Solution

⊢ x : T

int MyFunction(int x) {
 {
 double x;
 }

 if (x == 1.5) {
 /* … */
 }
}

Facts
⊢ x : double

⊢ x : int

x is an identifier.
x is in scope with type T.

⊢ d : double

d is a double constant

⊢ 1.5 : double

An Incorrect Solution

⊢ x : T

int MyFunction(int x) {
 {
 double x;
 }

 if (x == 1.5) {
 /* … */
 }
}

Facts
⊢ x : double

⊢ x : int

x is an identifier.
x is in scope with type T.

⊢ 1.5 : double

An Incorrect Solution

int MyFunction(int x) {
 {
 double x;
 }

 if (x == 1.5) {
 /* … */
 }
}

Facts
⊢ x : double

⊢ x : int

⊢ 1.5 : double

⊢ x : T

x is an identifier.
x is in scope with type T.

An Incorrect Solution

int MyFunction(int x) {
 {
 double x;
 }

 if (x == 1.5) {
 /* … */
 }
}

Facts
⊢ x : double

⊢ x : int

⊢ 1.5 : double

⊢ x : T

x is an identifier.
x is in scope with type T.

⊢ e
1
 == e2 : bool

 ⊢ e
1
 : T

 ⊢ e
2
 : T

T is a primitive type

An Incorrect Solution

int MyFunction(int x) {
 {
 double x;
 }

 if (x == 1.5) {
 /* … */
 }
}

Facts
⊢ x : double

⊢ x : int

⊢ 1.5 : double

⊢ x : T

x is an identifier.
x is in scope with type T.

⊢ e
1
 == e2 : bool

 ⊢ e
1
 : T

 ⊢ e
2
 : T

T is a primitive type

⊢ x == 1.5 : bool

An Incorrect Solution

int MyFunction(int x) {
 {
 double x;
 }

 if (x == 1.5) {
 /* … */
 }
}

Facts
⊢ x : double

⊢ x : int

⊢ 1.5 : double

⊢ x : T

x is an identifier.
x is in scope with type T.

⊢ e
1
 == e2 : bool

 ⊢ e
1
 : T

 ⊢ e
2
 : T

T is a primitive type

⊢ x == 1.5 : bool

Strengthening our Inference Rules

● The facts we're proving have no context.
● We need to strengthen our inference

rules to remember under what
circumstances the results are valid.

Adding Scope

● We write

S ⊢ e : T
if, in scope S, expression e has type T.

● Types are now proven relative to the
scope they are in.

Old Rules Revisited

S ⊢ true : bool S ⊢ false : bool

S ⊢ i : int

i is an integer constant

S ⊢ s : string

s is a string constant

S ⊢ d : double

d is a double constant

S ⊢ e
1
 + e2 : int

S ⊢ e
1
 : int

S ⊢ e
2
 : int

S ⊢ e
1
 + e2 : double

S ⊢ e
1
 : double

S ⊢ e
2
 : double

A Correct Rule

S ⊢ x : T

x is an identifier.
x is a variable in scope S with type T.

A Correct Rule

S ⊢ x : T

x is an identifier.
x is a variable in scope S with type T.

Rules for Functions

S ⊢ f(e1, ..., en) : ??

f is an identifier.
f is a non-member function in scope S.

f has type (T
1
, …, T

n
) → U

S e⊢
i
 : T

i
 for 1 ≤ i ≤ n

Rules for Functions

S ⊢ f(e1, ..., en) : ??

f is an identifier.
f is a non-member function in scope S.

f has type (T
1
, …, T

n
) → U

S e⊢
i
 : T

i
 for 1 ≤ i ≤ n

Rules for Functions

S ⊢ f(e1, ..., en) : ??

f is an identifier.
f is a non-member function in scope S.

f has type (T
1
, …, T

n
) → U

S e⊢
i
 : T

i
 for 1 ≤ i ≤ n

Rules for Functions

S ⊢ f(e1, ..., en) : ??

f is an identifier.
f is a non-member function in scope S.

f has type (T
1
, …, T

n
) → U

S e⊢
i
 : T

i
 for 1 ≤ i ≤ n

Rules for Functions

S ⊢ f(e1, ..., en) : ??

f is an identifier.
f is a non-member function in scope S.

f has type (T
1
, …, T

n
) → U

S e⊢
i
 : T

i
 for 1 ≤ i ≤ n

Rules for Functions

S ⊢ f(e1, ..., en) : U

f is an identifier.
f is a non-member function in scope S.

f has type (T
1
, …, T

n
) → U

S e⊢
i
 : T

i
 for 1 ≤ i ≤ n

Rules for Functions

S ⊢ f(e1, ..., en) : U

f is an identifier.
f is a non-member function in scope S.

f has type (T
1
, …, T

n
) → U

S e⊢
i
 : T

i
 for 1 ≤ i ≤ n

Read rules
like this

Rules for Arrays

S ⊢ e1[e2] : T

S e⊢
1
 : T[]

S e⊢
2
 : int

Rule for Assignment

S ⊢ e1 = e2 : T

S e⊢
1
 : T

S e⊢
2
 : T

Rule for Assignment

S ⊢ e1 = e2 : T

S e⊢
1
 : T

S e⊢
2
 : T

Why isn't this rule a problem for this statement?

5 = x;

Rule for Assignment

S ⊢ e1 = e2 : T

S e⊢
1
 : T

S e⊢
2
 : T

If Derived extends Base, will this rule work for this code?

Base myBase;
Derived myDerived;

myBase = myDerived;

Typing with Classes

● How do we factor inheritance into our
inference rules?

● We need to consider the shape of class
hierarchies.

Single Inheritance

Instructor

LecturerProfessor TA

Keith JinchaoAlexAiken

Animal

Man Bear Pig

Multiple Inheritance

Animal

Man Bear Pig

ManBearPig

Instructor

LecturerProfessor TA

Keith JinchaoAlexAiken

Properties of Inheritance Structures

● Any type is convertible to itself. (reflexivity)
● If A is convertible to B and B is convertible to

C, then A is convertible to C. (transitivity)
● If A is convertible to B and B is convertible to

A, then A and B are the same type.
(antisymmetry)

● This defines a partial order over types.

Types and Partial Orders

● We say that A ≤ B if A is convertible to B.
● We have that

● A ≤ A
● A ≤ B and B ≤ C implies A ≤ C
● A ≤ B and B ≤ A implies A = B

Updated Rule for Assignment

S ⊢ e1 = e2 : ??

S e⊢
1
 : T

1

S e⊢
2
 : T

2

T
2
 ≤ T

1

Updated Rule for Assignment

S ⊢ e1 = e2 : ??

S e⊢
1
 : T

1

S e⊢
2
 : T

2

T
2
 ≤ T

1

Updated Rule for Assignment

S ⊢ e1 = e2 : ??

S e⊢
1
 : T

1

S e⊢
2
 : T

2

T
2
 ≤ T

1

Updated Rule for Assignment

S ⊢ e1 = e2 : T1

S e⊢
1
 : T

1

S e⊢
2
 : T

2

T
2
 ≤ T

1

Updated Rule for Assignment

S ⊢ e1 = e2 : T1

S e⊢
1
 : T

1

S e⊢
2
 : T

2

T
2
 ≤ T

1

Can we do better than this?

Updated Rule for Assignment

S ⊢ e1 = e2 : T2

S e⊢
1
 : T

1

S e⊢
2
 : T

2

T
2
 ≤ T

1

Not required in your
semantic analyzer, but easy

extra credit!

Updated Rule for Assignment

S ⊢ e1 = e2 : T2

S e⊢
1
 : T

1

S e⊢
2
 : T

2

T
2
 ≤ T

1

Updated Rule for Comparisons

Updated Rule for Comparisons

S ⊢ e
1
 == e2 : bool

S e⊢
1
 : T

S e⊢
2
 : T

T is a primitive type

Updated Rule for Comparisons

S ⊢ e
1
 == e2 : bool

S e⊢
1
 : T

S e⊢
2
 : T

T is a primitive type

S ⊢ e
1
 == e2 : bool

S e⊢
1
 : T

1

S e⊢
2
 : T

2

T
1
 and T

2
 are of class type.

T
1
 ≤ T

2
 or T

2
 ≤ T

1

Updated Rule for Comparisons

S ⊢ e
1
 == e2 : bool

S e⊢
1
 : T

S e⊢
2
 : T

T is a primitive type

S ⊢ e
1
 == e2 : bool

S e⊢
1
 : T

1

S e⊢
2
 : T

2

T
1
 and T

2
 are of class type.

T
1
 ≤ T

2
 or T

2
 ≤ T

1

Can we unify
these rules?

The Shape of Types

Engine

DieselEngineCarEngine

DieselCarEngine

The Shape of Types

Engine

DieselEngineCarEngine

DieselCarEngine

bool string doubleint

The Shape of Types

Engine

DieselEngineCarEngine

DieselCarEngine

bool string doubleint
Array
Types

Extending Convertibility

● If A is a primitive or array type, A is only
convertible to itself.

● More formally, if A and B are types and A
is a primitive or array type:
● A ≤ B implies A = B
● B ≤ A implies A = B

Updated Rule for Comparisons

S ⊢ e
1
 == e2 : bool

S e⊢
1
 : T

S e⊢
2
 : T

T is a primitive type

S ⊢ e
1
 == e2 : bool

S e⊢
1
 : T

1

S e⊢
2
 : T

2

T
1
 and T

2
 are of class type.

T
1
 ≤ T

2
 or T

2
 ≤ T

1

Updated Rule for Comparisons

S ⊢ e
1
 == e2 : bool

S e⊢
1
 : T

S e⊢
2
 : T

T is a primitive type

S ⊢ e
1
 == e2 : bool

S e⊢
1
 : T

1

S e⊢
2
 : T

2

T
1
 and T

2
 are of class type.

T
1
 ≤ T

2
 or T

2
 ≤ T

1

S ⊢ e
1
 == e2 : bool

S e⊢
1
 : T

1

S e⊢
2
 : T

2

T
1
 ≤ T

2
 or T

2
 ≤ T

1

Updated Rule for Comparisons

S ⊢ e
1
 == e2 : bool

S e⊢
1
 : T

S e⊢
2
 : T

T is a primitive type

S ⊢ e
1
 == e2 : bool

S e⊢
1
 : T

1

S e⊢
2
 : T

2

T
1
 and T

2
 are of class type.

T
1
 ≤ T

2
 or T

2
 ≤ T

1

S ⊢ e
1
 == e2 : bool

S e⊢
1
 : T

1

S e⊢
2
 : T

2

T
1
 ≤ T

2
 or T

2
 ≤ T

1

Updated Rule for Function Calls

S ⊢ f(e1, ..., en) : U

f is an identifier.
f is a non-member function in scope S.

f has type (T
1
, …, T

n
) → U

S e⊢
i
 : R

i
 for 1 ≤ i ≤ n

R
i
 ≤ T

i
 for 1 ≤ i ≤ n

A Tricky Case

S ⊢ null : ??

Back to the Drawing Board

Engine

DieselEngineCarEngine

DieselCarEngine

bool string doubleint
Array
Types

Back to the Drawing Board

Engine

DieselEngineCarEngine

DieselCarEngine

bool string doubleint
Array
Types

null Type

Handling null

● Define a new type corresponding to the
type of the literal null; call it “null
type.”

● Define null type ≤ A for any class type A.

● The null type is (typically) not accessible
to programmers; it's only used internally.

● Many programming languages have
types like these.

A Tricky Case

S ⊢ null : ??

A Tricky Case

S ⊢ null : null type

A Tricky Case

S ⊢ null : null type

Object-Oriented Considerations

S ⊢ new T : T

T is a class type.

S ⊢ NewArray(e, T) : T[]

S ⊢ e : int

S ⊢ this : T

S is in scope of class T.

Object-Oriented Considerations

S ⊢ new T : T

T is a class type.

S ⊢ NewArray(e, T) : T[]

S ⊢ e : int

Why don't we
need to check if

T is void?

S ⊢ this : T

S is in scope of class T.

What's Left?

● We're missing a few language constructs:
● Member functions.
● Field accesses.
● Miscellaneous operators.

● Good practice to fill these in on your
own.

Typing is Nuanced

● The ternary conditional operator ? :
evaluates an expression, then produces
one of two values.

● Works for primitive types:
● int x = random()? 137 : 42;

● Works with inheritance:
● Base b = isB? new Base : new Derived;

● What might the typing rules look like?

A Proposed Rule

S ⊢ cond ? e
1
 : e2 : ??

S ⊢ cond : bool
S e⊢

1
 : T

1

S e⊢
2
 : T

2

T
1
 ≤ T

2
 or T

2
 ≤ T

1

A Proposed Rule

S ⊢ cond ? e
1
 : e2 : ??

S ⊢ cond : bool
S e⊢

1
 : T

1

S e⊢
2
 : T

2

T
1
 ≤ T

2
 or T

2
 ≤ T

1

A Proposed Rule

S ⊢ cond ? e
1
 : e2 : ??

S ⊢ cond : bool
S e⊢

1
 : T

1

S e⊢
2
 : T

2

T
1
 ≤ T

2
 or T

2
 ≤ T

1

A Proposed Rule

S ⊢ cond ? e
1
 : e2 : ??

S ⊢ cond : bool
S e⊢

1
 : T

1

S e⊢
2
 : T

2

T
1
 ≤ T

2
 or T

2
 ≤ T

1

A Proposed Rule

S ⊢ cond ? e
1
 : e2 : max(T

1
, T

2
)

S ⊢ cond : bool
S e⊢

1
 : T

1

S e⊢
2
 : T

2

T
1
 ≤ T

2
 or T

2
 ≤ T

1

A Proposed Rule

S ⊢ cond ? e
1
 : e2 : max(T

1
, T

2
)

S ⊢ cond : bool
S e⊢

1
 : T

1

S e⊢
2
 : T

2

T
1
 ≤ T

2
 or T

2
 ≤ T

1

A Proposed Rule

S ⊢ cond ? e
1
 : e2 : max(T

1
, T

2
)

S ⊢ cond : bool
S e⊢

1
 : T

1

S e⊢
2
 : T

2

T
1
 ≤ T

2
 or T

2
 ≤ T

1

Base

Derived1 Derived2

Super

A Proposed Rule

S ⊢ cond ? e
1
 : e2 : max(T

1
, T

2
)

S ⊢ cond : bool
S e⊢

1
 : T

1

S e⊢
2
 : T

2

T
1
 ≤ T

2
 or T

2
 ≤ T

1

Is this really
what we want?

Base

Derived1 Derived2

Super

A Small Problem

S ⊢ cond ? e
1
 : e2 : max(T

1
, T

2
)

S ⊢ cond : bool
S e⊢

1
 : T

1

S e⊢
2
 : T

2

T
1
 ≤ T

2
 or T

2
 ≤ T

1

Base

Derived1 Derived2

Super

A Small Problem

S ⊢ cond ? e
1
 : e2 : max(T

1
, T

2
)

S ⊢ cond : bool
S e⊢

1
 : T

1

S e⊢
2
 : T

2

T
1
 ≤ T

2
 or T

2
 ≤ T

1

Base

Derived1 Derived2

Base = random()?
 new Derived1 : new Derived2;

Super

A Small Problem

S ⊢ cond ? e
1
 : e2 : max(T

1
, T

2
)

S ⊢ cond : bool
S e⊢

1
 : T

1

S e⊢
2
 : T

2

T
1
 ≤ T

2
 or T

2
 ≤ T

1

Base

Derived1 Derived2

Base = random()?
 new Derived1 : new Derived2;

Super

Least Upper Bounds

● An upper bound of two types A and B is a
type C such that A ≤ C and B ≤ C.

● The least upper bound of two types A and
B is a type C such that:
● C is an upper bound of A and B.
● If C' is an upper bound of A and B, then C ≤ C'.

● When the least upper bound of A and B
exists, we denote it A ∨ B.
● (When might it not exist?)

A Better Rule

S ⊢ cond ? e
1
 : e2 : T

S ⊢ cond : bool
S e⊢

1
 : T

1

S e⊢
2
 : T

2

T = T
1
 ∨ T

2
Base

Derived1 Derived2

Base = random()?
 new Derived1 : new Derived2;

Super

… that still has problems

S ⊢ cond ? e
1
 : e2 : T

S ⊢ cond : bool
S e⊢

1
 : T

1

S e⊢
2
 : T

2

T = T
1
 ∨ T

2

Base1

Derived1 Derived2

Base2

Base = random()?
 new Derived1 : new Derived2;

… that still has problems

S ⊢ cond ? e
1
 : e2 : T

S ⊢ cond : bool
S e⊢

1
 : T

1

S e⊢
2
 : T

2

T = T
1
 ∨ T

2

Base1

Derived1 Derived2

Base2

Base = random()?
 new Derived1 : new Derived2;

Multiple Inheritance is Messy

● Type hierarchy is no longer a tree.
● Two classes might not have a least upper

bound.
● Occurs C++ because of multiple

inheritance and in Java due to interfaces.
● Not a problem in Decaf; there is no

ternary conditional operator.
● How to fix?

Minimal Upper Bounds

● An upper bound of two types A and B is a type C
such that A ≤ C and B ≤ C.

● A minimal upper bound of two types A and B is a
type C such that:
● C is an upper bound of A and B.
● If C' is an upper bound of C, then it is not true that C' < C.

● Minimal upper bounds are not necessarily unique.
● A least upper bound must be a minimal upper bound,

but not the other way around.

A Correct Rule

S ⊢ cond ? e
1
 : e2 : T

S ⊢ cond : bool
S e⊢

1
 : T

1

S e⊢
2
 : T

2

T is a minimal upper bound of T
1
 and T

2

Base1

Derived1 Derived2

Base2

Base1 = random()?
 new Derived1 : new Derived2;

A Correct Rule

S ⊢ cond ? e
1
 : e2 : T

S ⊢ cond : bool
S e⊢

1
 : T

1

S e⊢
2
 : T

2

T is a minimal upper bound of T
1
 and T

2

Base1

Derived1 Derived2

Base2

Base1 = random()?
 new Derived1 : new Derived2;

Can prove both that
expression has type Base1
and that expression has

type Base2.

So What?

● Type-checking can be tricky.
● Strongly influenced by the choice of operators in the

language.
● Strongly influenced by the legal type conversions in a

language.
● In C++, the previous example doesn't compile.
● In Java, the previous example does compile, but the

language spec is enormously complicated.
● See §15.12.2.7 of the Java Language Specification.

Next Time

● Checking Statement Validity
● When are statements legal?
● When are they illegal?

● Practical Concerns
● How does function overloading work?
● How do functions interact with inheritance?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142

