Type-Checking

Announcements

- Written Assignment 2 due **today** at 5:00PM.
- Programming Project 2 due Friday at 11:59PM.
- Please contact us with questions!
 - Stop by office hours!
 - Email the staff list!
 - Ask on Piazza!

Announcements

- Midterm exam one week from today, July 25th from 11:00AM 1:00PM here in Thornton 102.
- Covers material up to and including Earley parsing.
- Review session in class next Monday.
- Practice exam released; solutions will be distributed on Monday.
- SCPD Students: Exam will be emailed out on July 25th at 11:00AM. You can start the exam any time between 11:00AM on July 25th and 11:00AM on July 26th.

Where We Are

Lexical Analysis

Syntax Analysis

Semantic Analysis

IR Generation

IR Optimization

Code Generation

Optimization

Machine Code

```
class MyClass implements MyInterface {
    string myInteger;
    void doSomething() {
        int[] x;
        x = new string;
        x[5] = myInteger * y;
    void doSomething() {
    int fibonacci(int n) {
        return doSomething() + fibonacci(n - 1);
```

```
class MyClass implements MyInterface
         string myInteger;
                                                Interface not
                                                   declared
         void doSomething()
              int[] x;
                                                Wrong type
              x = new string; <
Can't multiply
  strings
                   → myInteger * y;
                                                Variable not
         void doSomething()
                                                 declared
                                  Can't redefine
                                     functions
         int fibonacci(int n)
              return doSomething() + fibonacci(n - 1);
                                           Can't add void
                                        No main function
```

```
class MyClass implements MyInterface {
         string myInteger;
         void doSomething() {
              int[] x;
                                               Wrong type
              x = new string;
Can't multiply
  strings
                   → myInteger * y;
                                               Variable not
         void doSomething()
                                                declared
                                  Can't redefine
                                    functions
         int fibonacci(int n)
              return doSomething() + fibonacci(n - 1);
                                          Can't add void
                                       No main function
```

```
class MyClass implements MyInterface {
         string myInteger;
         void doSomething() {
             int[] x;
                                              Wrong type
             x = new string; <
Can't multiply
  strings
                   → myInteger
                                              Variable not
                                                declared
         void doSomething() {
         int fibonacci(int n) {
             return doSomething() + fibonacci(n - 1);
                                          Can't add void
                                      No main function
```

```
class MyClass implements MyInterface {
         string myInteger;
         void doSomething() {
             int[] x;
                                             Wrong type
             x = new string; <
Can't multiply
  strings
             x[5] → myInteger * y;
         void doSomething() {
         int fibonacci(int n) {
             return doSomething() + fibonacci(n - 1);
                                         Can't add void
                                      No main function
```

```
class MyClass implements MyInterface {
         string myInteger;
        void doSomething() {
             int[] x;
                                             Wrong type
             x = new string; <
Can't multiply
  strings
             x[5] → myInteger * y;
        void doSomething() {
         int fibonacci(int n) {
             return doSomething() + fibonacci(n - 1);
                                        Can't add void
```

What Remains to Check?

- Type errors.
- Today:
 - What are types?
 - What is type-checking?
 - A type system for Decaf.

What is a Type?

- This is the subject of some debate.
- To quote Alex Aiken:
 - "The notion varies from language to language.
 - The consensus:
 - A set of values.
 - A set of operations on those values"
- Type errors arise when operations are performed on values that do not support that operation.

Types of Type-Checking

Static type checking.

- Analyze the program during compile-time to prove the absence of type errors.
- Never let bad things happen at runtime.

Dynamic type checking.

- Check operations at runtime before performing them.
- More precise than static type checking, but usually less efficient.
- (Why?)

No type checking.

Throw caution to the wind!

Type Systems

- The rules governing permissible operations on types forms a type system.
- Strong type systems are systems that never allow for a type error.
 - Java, Python, JavaScript, LISP, Haskell, etc.
- Weak type systems can allow type errors at runtime.
 - C, C++

Type Wars

- *Endless* debate about what the "right" system is.
- Dynamic type systems make it easier to prototype; static type systems have fewer bugs.
- Strongly-typed languages are more robust, weakly-typed systems are often faster.

Type Wars

- *Endless* debate about what the "right" system is.
- Dynamic type systems make it easier to prototype; static type systems have fewer bugs.
- Strongly-typed languages are more robust, weakly-typed systems are often faster.
- I'm staying out of this!

Our Focus

- Decaf is typed statically and weakly:
 - Type-checking occurs at compile-time.
 - Runtime errors like dereferencing **null** or an invalid object are allowed.
- Decaf uses class-based inheritance.
- Decaf distinguishes primitive types and classes.

Typing in Decaf

Static Typing in Decaf

- Static type checking in Decaf consists of two separate processes:
 - Inferring the type of each expression from the types of its components.
 - Confirming that the types of expressions in certain contexts matches what is expected.
- Logically two steps, but you will probably combine into one pass.

```
while (numBitsSet(x + 5) \le 10) {
    if (1.0 + 4.0) {
      /* ... */
    while (5 == null) {
        /* ... */
```

```
while (numBitsSet(x + 5) <= 10) {
    if (1.0 + 4.0) {
     /* ... */
    while (5 == null) {
        /* ... */
```

```
while (numBitsSet(x + 5) \le 10)
    if (1.0 + 4.0) {
      /* ... */
    while (5 == null) {
        /* ... */
```

```
while (numBitsSet(x + 5) \le 10) {
    if (1.0 + 4.0) {
/* ... */
                               Well-typed
    while (5 == null) { expression with
                            wrong type.
         /* ... */
```

```
while (numBitsSet(x + 5) \le 10) {
    if (1.0 + 4.0) {
      /* ... */
    while (5 == null) {
        /* ... */
```

```
while (numBitsSet(x + 5) \le 10) {
    if (1.0 + 4.0) {
        /* ... */
    while (5 == null) {
/* ... */
                           Expression with
                             type error
```

- How do we determine the type of an expression?
- Think of process as logical inference.

- How do we determine the type of an expression?
- Think of process as logical inference.

- How do we determine the type of an expression?
- Think of process as logical inference.

- How do we determine the type of an expression?
- Think of process as logical inference.

- How do we determine the type of an expression?
- Think of process as logical inference.

- How do we determine the type of an expression?
- Think of process as logical inference.

- How do we determine the type of an expression?
- Think of process as logical inference.

- How do we determine the type of an expression?
- Think of process as logical inference.

- How do we determine the type of an expression?
- Think of process as logical inference.

Type Checking as Proofs

- We can think of syntax analysis as proving claims about the types of expressions.
- We begin with a set of axioms, then apply our inference rules to determine the types of expressions.
- Many type systems can be thought of as proof systems.

Sample Inference Rules

- "If x is an identifier that refers to an object of type t, the expression x has type t."
- "If e is an integer constant, e has type int."
- "If the operands e₁ and e₂ of e₁ + e₂ are known to have types int and int, then e₁ + e₂ has type int."

Formalizing our Notation

• We will encode our axioms and inference rules using this syntax:

Preconditions
Postconditions

• This is read "if *preconditions* are true, we can infer *postconditions*."

Examples of Formal Notation

 $\mathbf{A} \rightarrow \mathbf{t} \boldsymbol{\omega}$ is a production.

 $t \in FIRST(A)$

 $\mathbf{A} \rightarrow \mathbf{\epsilon}$ is a production.

 $\varepsilon \in FIRST(A)$

 $\mathbf{A} \rightarrow \boldsymbol{\omega}$ is a production. $\mathbf{t} \in \text{FIRST*}(\boldsymbol{\omega})$

 $t \in FIRST(A)$

 $\mathbf{A} \rightarrow \boldsymbol{\omega}$ is a production. $\boldsymbol{\varepsilon} \in \text{FIRST*}(\boldsymbol{\omega})$

 $\varepsilon \in FIRST(A)$

Formal Notation for Type Systems

We write

 $\vdash \mathbf{e} : \mathbf{T}$

if the expression **e** has type **T**.

• The symbol ⊢ means "we can infer..."

Our Starting Axioms

Our Starting Axioms

⊢ true : bool

⊢ false : bool

Some Simple Inference Rules

Some Simple Inference Rules

i is an integer constant

 $\vdash i$: int

s is a string constant

 $\vdash s: string$

d is a double constant

 $\vdash d : double$

 $\vdash e_{\scriptscriptstyle 1} : int$

 $\vdash e_{2} : int$

 $\vdash e_1 + e_2 : int$

 $\vdash e_1 : double$

 $\vdash e_2 : double$

 $\vdash e_1 + e_2 : double$

If we can show that e_1 and e_2 have type int...

 $\vdash e_1 : double$

 $\vdash e_2 : double$

 $\vdash e_1 + e_2 : double$

$$\vdash e_1 : T$$

 $\vdash e_2 : T$

T is a primitive type

$$\vdash e_1 == e_2 : bool$$

$$\vdash e_1 : T$$

$$\vdash e_2 : T$$

T is a primitive type

$$\vdash e_1 != e_2 : bool$$

Why Specify Types this Way?

- Gives a **rigorous definition of types** independent of any particular implementation.
 - No need to say "you should have the same type rules as my reference compiler."
- Gives maximum flexibility in implementation.
 - Can implement type-checking however you want, as long as you obey the rules.
- Allows formal verification of program properties.
 - Can do inductive proofs on the structure of the program.
- This is what's used in the literature.
 - Good practice if you want to study types.

A Problem

A Problem

x is an identifier.

 $\vdash x : ??$

A Problem

x is an identifier.

How do we know the type of x if we don't know what it refers to?

x is an identifier.x is in scope with type T.

 $\vdash x : \mathsf{T}$

x is an identifier.x is in scope with type T.

```
\vdash x : \mathsf{T}
int MyFunction(int x) {
          double x;
     if (x == 1.5) {
         /* ... */
```

x is an identifier.x is in scope with type T.

```
\vdash x : \mathsf{T}
```

Facts

```
x is an identifier.x is in scope with type T.
```

```
\vdash x : \mathsf{T}
int MyFunction(int x) {
          double x;
     if (x == 1.5) {
         /* ... */
```

Facts

x is an identifier. x is in scope with type T.

```
\vdash x : \mathsf{T}
int MyFunction(int x) {
          double x;
     if (x == 1.5) {
          /* ... */
```

Facts

 $\vdash x : double$

x is an identifier. x is in scope with type T.

```
\vdash x : \mathsf{T}
```

Facts

 $\vdash x : double$

x is an identifier. x is in scope with type T.

```
\vdash x : \mathsf{T}
```

Facts

 $\vdash x : double$

 $\vdash x : int$

x is an identifier. x is in scope with type T.

```
\vdash x : \mathsf{T}
```

Facts

 $\vdash x : double$

 $\vdash x : int$

x is an identifier. x is in scope with type T.

 $\vdash x : \mathsf{T}$

d is a double constant

 $\vdash d : double$

Facts

 $\vdash x : double$

 $\vdash x : int$

x is an identifier. x is in scope with type T.

 $\vdash x : \mathsf{T}$

d is a double constant

 $\vdash d$: double

Facts

 $\vdash x : double$

 $\vdash x:$ int

x is an identifier. x is in scope with type T.

```
\vdash x : \mathsf{T}
```

Facts

 $\vdash x : double$

 $\vdash x : int$

x is an identifier. x is in scope with type T.

```
\vdash x : \mathsf{T}
```

Facts

 $\vdash x : double$

 $\vdash x : int$

x is an identifier.
x is in scope with type T.

```
\vdash x : \mathsf{T}
```

```
\vdash e_1 : T
\vdash e_2 : T
T is a primitive type
```

```
\vdash e_1 == e_2 : bool
```

Facts

 $\vdash x : double$

 $\vdash x : int$

x is an identifier. x is in scope with type T.

 $\vdash x : \mathsf{T}$

```
\vdash e_1 : T
\vdash e_2 : T
T is a primitive type
```

 $\vdash e_1 == e_2 : bool$

Facts

 $\vdash x : double$

 $\vdash x : int$

 \vdash 1.5: double

 $\vdash x == 1.5 : bool$

x is an identifier.
x is in scope with type T.

```
\vdash x : \mathsf{T}
```

```
\vdash e_1 : T
\vdash e_2 : T
T is a primitive type
```

```
\vdash e_1 == e_2 : bool
```

Facts

 $\vdash x : double$

 $\vdash x : int$

 \vdash 1.5: double

-x == 1.5 : bool

Strengthening our Inference Rules

- The facts we're proving have no *context*.
- We need to strengthen our inference rules to remember under what circumstances the results are valid.

Adding Scope

We write

 $S \vdash e : T$

if, in scope **S**, expression **e** has type **T**.

• Types are now proven relative to the scope they are in.

Old Rules Revisited

S ⊢ true : bool

S ⊢ false : bool

i is an integer constant

s is a string constant

 $S \vdash i : int$

 $S \vdash s : string$

d is a double constant

 $S \vdash d : double$

 $S \vdash e_1 : double$

 $S \vdash e_2 : double$

 $S \vdash e_1 : int$

 $S \vdash e_2 : int$

 $S \vdash e_1 + e_2 : double$

 $S \vdash e_1 + e_2 : int$

A Correct Rule

x is an identifier.x is a variable in scope S with type T.

 $S \vdash x : T$

A Correct Rule

x is an identifier.

x is a variable in scope S with type T.

 $S \vdash x : T$

 $S \vdash f(e_1, ..., e_n) : ??$

f is an identifier.

$$S \vdash f(e_1, ..., e_n) : ??$$

f is an identifier.
f is a non-member function in scope S.

$$S \vdash f(e_1, ..., e_n) : ??$$

f is an identifier. f is a non-member function in scope S. f has type $(T_1, ..., T_n) \rightarrow U$

 $S \vdash f(e_1, ..., e_n) : ??$

```
f is an identifier.

f is a non-member function in scope S.

f has type (T_1, ..., T_n) \rightarrow U

S \vdash e_i : T_i \text{ for } 1 \leq i \leq n

S \vdash f(e_1, ..., e_n) : ??
```

```
f is an identifier.

f is a non-member function in scope S.

f has type (T_1, ..., T_n) \rightarrow U

S \vdash e_i : T_i \text{ for } 1 \leq i \leq n

S \vdash f(e_1, ..., e_n) : U
```


Rules for Arrays

 $S \vdash e_1 : T[]$

 $S \vdash e_2 : int$

 $S \vdash e_1[e_2] : T$

Rule for Assignment

 $S \vdash e_1 : T$

 $S \vdash e_2 : T$

 $S \vdash e_1 = e_2 : T$

Rule for Assignment

$$S \vdash e_1 : T$$

$$S \vdash e_2 : T$$

$$S \vdash e_1 = e_2 : T$$

Why isn't this rule a problem for this statement?

$$5 = x;$$

Rule for Assignment

$$S \vdash e_{1} : T$$

$$S \vdash e_{2} : T$$

$$S \vdash e_{1} = e_{2} : T$$

If Derived extends Base, will this rule work for this code?

```
Base myBase;
Derived myDerived;

myBase = myDerived;
```

Typing with Classes

- How do we factor inheritance into our inference rules?
- We need to consider the shape of class hierarchies.

Single Inheritance

Multiple Inheritance

Properties of Inheritance Structures

- Any type is convertible to itself. (reflexivity)
- If A is convertible to B and B is convertible to C, then A is convertible to C. (transitivity)
- If A is convertible to B and B is convertible to A, then A and B are the same type.
 (antisymmetry)
- This defines a partial order over types.

Types and Partial Orders

- We say that $A \leq B$ if A is convertible to B.
- We have that
 - A ≤ A
 - $A \le B$ and $B \le C$ implies $A \le C$
 - $A \le B$ and $B \le A$ implies A = B

 $S \vdash e_1 = e_2 : ??$

$$S \vdash e_1 : T_1$$

 $S \vdash e_2 : T_2$

$$S \vdash e_1 = e_2 : ??$$

$$S \vdash e_1 : T_1$$

$$S \vdash e_2 : T_2$$

$$T_2 \leq T_1$$

$$S \vdash e_1 = e_2 : ??$$

$$S \vdash e_1 : T_1$$

$$S \vdash e_2 : T_2$$

$$T_2 \leq T_1$$

$$S \vdash e_1 = e_2 : T_1$$

$$S \vdash e_1 : T_1$$

 $S \vdash e_2 : T_2$
 $T_2 \leq T_1$
 $S \vdash e_1 = e_2 : T_1$
Can we do better than this?

$$S \vdash e_1 : T_1$$

$$S \vdash e_2 : T_2$$

$$T_2 \leq T_1$$

$$S \vdash e_1 = e_2 : T_2$$

$$S \vdash e_1 : T_1$$

$$S \vdash e_2 : T_2$$

$$T_2 \leq T_1$$

$$S \vdash e_1 = e_2 : T_2$$

Not required in your semantic analyzer, but easy extra credit!

$$S \vdash e_1 : T$$

 $S \vdash e_2 : T$
T is a primitive type

 $S \vdash e_1 == e_2 : bool$

$$S \vdash e_1 : T$$

 $S \vdash e_2 : T$
T is a primitive type

$$S \vdash e_1 == e_2 : bool$$

$$S \vdash e_1 : T_1$$

 $S \vdash e_2 : T_2$
 T_1 and T_2 are of class type.
 $T_1 \leq T_2$ or $T_2 \leq T_1$
 $S \vdash e_1 == e_2 : bool$

Can we unify these rules?

$$S \vdash e_1 : T$$

 $S \vdash e_2 : T$
T is a primitive type

$$S \vdash e_1 == e_2 : bool$$

$$S \vdash e_1 : T_1$$

 $S \vdash e_2 : T_2$
 T_1 and T_2 are of class type.
 $T_1 \leq T_2$ or $T_2 \leq T_1$

 $S \vdash e_1 == e_2 : bool$

The Shape of Types

The Shape of Types

The Shape of Types

Extending Convertibility

- If A is a primitive or array type, A is only convertible to itself.
- More formally, if A and B are types and A is a primitive or array type:
 - $A \le B \text{ implies } A = B$
 - $B \le A \text{ implies } A = B$

$$S \vdash e_1 : T$$

 $S \vdash e_2 : T$
T is a primitive type

$$S \vdash e_1 == e_2 : bool$$

$$S \vdash e_1 : T_1$$

$$S \vdash e_2 : T_2$$

$$T_1 \text{ and } T_2 \text{ are of class type.}$$

$$T_1 \leq T_2 \text{ or } T_2 \leq T_1$$

$$S \vdash e_1 == e_2 : \text{bool}$$

$$S \vdash e_1 : T$$

 $S \vdash e_2 : T$
T is a primitive type

$$S \vdash e_1 == e_2 : bool$$

$$S \vdash e_1 : T_1$$

 $S \vdash e_2 : T_2$
 T_1 and T_2 are of class type.
 $T_1 \leq T_2$ or $T_2 \leq T_1$
 $S \vdash e_1 == e_2 : bool$

$$S \vdash e_1 : T_1$$

$$S \vdash e_2 : T_2$$

$$T_1 \leq T_2 \text{ or } T_2 \leq T_1$$

$$S \vdash e_1 == e_2 : bool$$

Updated Rule for Comparisons

$$S \vdash e_1 : T$$

 $S \vdash e_2 : T$
T is a primitive type

$$S \vdash e_1 == e_2 : bool$$

$$S \vdash e_1 : T_1$$

 $S \vdash e_2 : T_2$
 T_1 and T_2 are of class type.
 $T_1 \leq T_2$ or $T_2 \leq T_1$
 $S \vdash e_1 == e_2 : bool$

$$S \vdash e_1 : T_1$$

$$S \vdash e_2 : T_2$$

$$T_1 \leq T_2 \text{ or } T_2 \leq T_1$$

$$S \vdash e_1 == e_2 : \text{bool}$$

Updated Rule for Function Calls

```
f is an identifier.

f is a non-member function in scope S.

f has type (T_1, ..., T_n) \rightarrow U

S \vdash e_i : R_i \text{ for } 1 \le i \le n

R_i \le T_i \text{ for } 1 \le i \le n

S \vdash f(e_1, ..., e_n) : U
```

 $S \vdash null : ??$

Back to the Drawing Board

Back to the Drawing Board

Handling null

- Define a new type corresponding to the type of the literal null; call it "null type."
- Define **null** type \leq A for any class type A.
- The **null** type is (typically) not accessible to programmers; it's only used internally.
- Many programming languages have types like these.

 $S \vdash null : ??$

 $S \vdash null : null type$

 $S \vdash null : null type$

Object-Oriented Considerations

S is in scope of class T.

 $S \vdash this : T$

T is a class type.

 $S \vdash new T : T$

 $S \vdash e : int$

 $S \vdash NewArray(e, T) : T[]$

Object-Oriented Considerations

S is in scope of class T.

 $S \vdash this : T$

T is a class type.

 $S \vdash new T : T$

 $S \vdash e : int$

 $S \vdash NewArray(e, T) : T[]$

Why don't we need to check if T is void?

What's Left?

- We're missing a few language constructs:
 - Member functions.
 - Field accesses.
 - Miscellaneous operators.
- Good practice to fill these in on your own.

Typing is Nuanced

- The ternary conditional operator?: evaluates an expression, then produces one of two values.
- Works for primitive types:
 - int x = random()? 137 : 42;
- Works with inheritance:
 - Base b = isB? new Base : new Derived;
- What might the typing rules look like?

 $S \vdash cond : bool$

```
S \vdash cond : bool

S \vdash e_1 : T_1

S \vdash e_2 : T_2
```

```
S \vdash cond : bool

S \vdash e_1 : T_1

S \vdash e_2 : T_2

T_1 \leq T_2 \text{ or } T_2 \leq T_1
```

```
S \vdash cond : bool

S \vdash e_1 : T_1

S \vdash e_2 : T_2

T_1 \leq T_2 \text{ or } T_2 \leq T_1
```

 $S \vdash cond ? e_1 : e_2 : max(T_1, T_2)$

```
S \vdash cond : bool

S \vdash e_1 : T_1

S \vdash e_2 : T_2

T_1 \leq T_2 \text{ or } T_2 \leq T_1
```

 $S \vdash cond ? e_1 : e_2 : max(T_1, T_2)$

```
S \vdash cond : bool

S \vdash e_1 : T_1

S \vdash e_2 : T_2

T_1 \leq T_2 \text{ or } T_2 \leq T_1
```

 $S \vdash cond ? e_1 : e_2 : max(T_1, T_2)$

A Small Problem


```
S \vdash cond : bool
S \vdash e_1 : T_1
S \vdash e_2 : T_2
T_1 \leq T_2 \text{ or } T_2 \leq T_1
S \vdash cond ? e_1 : e_2 : max(T_1, T_2)
```

A Small Problem


```
S \vdash cond : bool
S \vdash e_1 : T_1
S \vdash e_2 : T_2
T_1 \leq T_2 \text{ or } T_2 \leq T_1
S \vdash cond ? e_1 : e_2 : max(T_1, T_2)
```

```
Base = random()?
     new Derived1 : new Derived2;
```

A Small Problem


```
S \vdash cond : bool
S \vdash e_1 : T_1
S \vdash e_2 : T_2
T_1 \leq T_2 \text{ or } T_2 \leq T_1
S \vdash cond ? e_1 : e_2 : max(T_1, T_2)
```

```
Base = random()?
    new Derived1 : new Derived2;
```

Least Upper Bounds

- An **upper bound** of two types A and B is a type C such that $A \le C$ and $B \le C$.
- The **least upper bound** of two types A and B is a type C such that:
 - C is an upper bound of A and B.
 - If C' is an upper bound of A and B, then $C \le C'$.
- When the least upper bound of A and B exists, we denote it A v B.
 - (When might it not exist?)

A Better Rule

$$S \vdash cond : bool$$
 $S \vdash e_1 : T_1$
 $S \vdash e_2 : T_2$
 $T = T_1 \lor T_2$

$$S \vdash cond ? e_1 : e_2 : T$$

```
Base = random()?
    new Derived1 : new Derived2;
```

... that still has problems

$$S \vdash cond : bool$$
 $S \vdash e_1 : T_1$
 $S \vdash e_2 : T_2$
 $T = T_1 \lor T_2$

$$S \vdash cond ? e_1 : e_2 : T$$

... that still has problems

$$S \vdash cond : bool$$
 $S \vdash e_1 : T_1$
 $S \vdash e_2 : T_2$
 $T = T_1 \lor T_2$

$$S \vdash cond ? e_1 : e_2 : T$$

Multiple Inheritance is Messy

- Type hierarchy is no longer a tree.
- Two classes might not have a least upper bound.
- Occurs C++ because of multiple inheritance and in Java due to interfaces.
- Not a problem in Decaf; there is no ternary conditional operator.
- How to fix?

Minimal Upper Bounds

- An **upper bound** of two types A and B is a type C such that $A \le C$ and $B \le C$.
- A minimal upper bound of two types A and B is a type C such that:
 - C is an upper bound of A and B.
 - If C' is an upper bound of C, then it is not true that C' < C.
- Minimal upper bounds are not necessarily unique.
- A least upper bound must be a minimal upper bound, but not the other way around.

A Correct Rule

 $S \vdash cond : bool$

 $S \vdash e_1 : T_1$

 $S \vdash e_2 : T_2$

T is a minimal upper bound of T₁ and T₂

```
Base1 = random()?
    new Derived1 : new Derived2;
```

A Correct Rule

 $S \vdash cond : bool$

 $S \vdash e_1 : T_1$

 $S \vdash e_2 : T_2$

T is a minimal upper bound of T₁ and T₂

 $S \vdash cond ? e_1 : e_2 : T$

Can prove both that expression has type Base1 and that expression has type Base2.

Basel = random()?

new Derived1 : new Derived2;

So What?

- Type-checking can be tricky.
- Strongly influenced by the choice of operators in the language.
- Strongly influenced by the legal type conversions in a language.
- In C++, the previous example doesn't compile.
- In Java, the previous example does compile, but the language spec is *enormously* complicated.
 - See §15.12.2.7 of the Java Language Specification.

Next Time

Checking Statement Validity

- When are statements legal?
- When are they illegal?

Practical Concerns

- How does function overloading work?
- How do functions interact with inheritance?