Type-Checking
Announcements

• Written Assignment 2 due today at 5:00PM.

• Programming Project 2 due Friday at 11:59PM.

• Please contact us with questions!
 • Stop by office hours!
 • Email the staff list!
 • Ask on Piazza!
BRACE YOURSELF

MIDTERM IS COMING
Announcements

- Midterm exam one week from today, July 25th from 11:00AM – 1:00PM here in Thornton 102.
- Covers material up to and including Earley parsing.
- Review session in class next Monday.
- Practice exam released; solutions will be distributed on Monday.
- SCPD Students: Exam will be emailed out on July 25th at 11:00AM. You can start the exam any time between 11:00AM on July 25th and 11:00AM on July 26th.
Where We Are

Source Code

Lexical Analysis
Syntax Analysis
Semantic Analysis
IR Generation
IR Optimization
Code Generation
Optimization

Machine Code
class MyClass implements MyInterface {
 string myInteger;

 void doSomething() {
 int[] x;
 x = new string;

 x[5] = myInteger * y;
 }

 void doSomething() {
 }

 int fibonacci(int n) {
 return doSomething() + fibonacci(n - 1);
 }
}
Review from Last Time

class MyClass implements MyInterface {
 string myInteger;

 void doSomething() {
 int[] x;
 x = new string;
 x[5] = myInteger * y;
 }

 void doSomething() {} // Can't redefine functions
}

int fibonacci(int n) {
 return doSomething() + fibonacci(n - 1); // Can't add void
}

} // No main function

Interface not declared
Wrong type
Variable not declared
Can't multiply strings
Can't redefine functions
Can't add void
class MyClass implements MyInterface {
 string myInteger;

 void doSomething() {
 int[] x;
 x = new string;
 x[5] = myInteger * y;
 }

 void doSomething() {
 }

 int fibonacci(int n) {
 return doSomething() + fibonacci(n - 1);
 }

 }

Wrong type
Can't multiply strings
Variable not declared
Can't redefine functions
Can't add void
No main function
Review from Last Time

class MyClass implements MyInterface {
 string myInteger;

 void doSomething() {
 int[] x;
 x = new string;
 x[5] = myInteger * y;
 }

 void doSomething() {
 }

 int fibonacci(int n) {
 return doSomething() + fibonacci(n - 1);
 }
}

Wrong type
Variable not declared
Can't multiply strings
Can't add void
No main function
class MyClass implements MyInterface {
 string myInteger;

 void doSomething() {
 int[] x;
 x = new string;
 x[5] = myInteger * y;
 }

 void doSomething() {
 }

 int fibonacci(int n) {
 return doSomething() + fibonacci(n - 1);
 }

}
class MyClass implements MyInterface {
 string myInteger;

 void doSomething() {
 int[] x;
 x = new string;
 x[5] = myInteger * y;
 }

 void doSomething() {
 }
}

int fibonacci(int n) {
 return doSomething() + fibonacci(n - 1);
}

Can't multiply strings
Wrong type
Can't add void
What Remains to Check?

- **Type errors.**
- Today:
 - What are types?
 - What is type-checking?
 - A type system for Decaf.
What is a Type?

• This is the subject of some debate.

• To quote Alex Aiken:
 • “The notion varies from language to language.”
 • The consensus:
 - A set of values.
 - A set of operations on those values”

• **Type errors** arise when operations are performed on values that do not support that operation.
Types of Type-Checking

- **Static type checking.**
 - Analyze the program during compile-time to prove the absence of type errors.
 - Never let bad things happen at runtime.

- **Dynamic type checking.**
 - Check operations at runtime before performing them.
 - More precise than static type checking, but usually less efficient.
 - (Why?)

- **No type checking.**
 - Throw caution to the wind!
Type Systems

- The rules governing permissible operations on types forms a **type system**.
- **Strong type systems** are systems that never allow for a type error.
 - Java, Python, JavaScript, LISP, Haskell, etc.
- **Weak type systems** can allow type errors at runtime.
 - C, C++
Type Wars

- *Endless* debate about what the “right” system is.

- Dynamic type systems make it easier to prototype; static type systems have fewer bugs.

- Strongly-typed languages are more robust, weakly-typed systems are often faster.
Type Wars

- *Endless* debate about what the “right” system is.
- Dynamic type systems make it easier to prototype; static type systems have fewer bugs.
- Strongly-typed languages are more robust, weakly-typed systems are often faster.
- *I'm staying out of this!*
Our Focus

- Decaf is typed **statically** and **weakly**:
 - Type-checking occurs at compile-time.
 - Runtime errors like dereferencing **null** or an invalid object are allowed.

- Decaf uses **class-based inheritance**.

- Decaf distinguishes primitive types and classes.
Typing in Decaf
Static Typing in Decaf

- Static type checking in Decaf consists of two separate processes:
 - Inferring the type of each expression from the types of its components.
 - Confirming that the types of expressions in certain contexts matches what is expected.
- Logically two steps, but you will probably combine into one pass.
An Example

while (numBitsSet(x + 5) <= 10) {
 if (1.0 + 4.0) {
 /* ... */
 }

 while (5 == null) {
 /* ... */
 }
}

}
An Example

while (numBitsSet(x + 5) <= 10) {

 if (1.0 + 4.0) {
 /* ... */
 }

 while (5 == null) {
 /* ... */
 }

}
An Example

while (numBitsSet(x + 5) <= 10) {
 if (1.0 + 4.0) {
 /* ... */
 }
 while (5 == null) {
 /* ... */
 }
}
An Example

while (numBitsSet(x + 5) <= 10) {
 if (1.0 + 4.0) {
 /* … */
 }
 while (5 == null) {
 /* … */
 }
}

Well-typed expression with wrong type.
An Example

```java
while (numBitsSet(x + 5) <= 10) {
    if (1.0 + 4.0) {
        /* ... */
    }

    while (5 == null) {
        /* ... */
    }
}
```
An Example

while (numBitsSet(x + 5) <= 10) {

 if (1.0 + 4.0) {
 /* ... */
 }

 while (5 == null) {
 /* ... */
 }

}
Inferring Expression Types

- How do we determine the type of an expression?
- Think of process as *logical inference*.
Inferring Expression Types

- How do we determine the type of an expression?
- Think of process as **logical inference**.

![Diagram](attachment:diagram.png)
Inferring Expression Types

- How do we determine the type of an expression?
- Think of process as **logical inference**.

![Expression Diagram]

```
int
  +
  
IntConstant
  137

IntConstant
  42
```
Inferring Expression Types

- How do we determine the type of an expression?
- Think of process as **logical inference**.
Inferring Expression Types

- How do we determine the type of an expression?
- Think of process as **logical inference**.

![Diagram of an expression tree with nodes labeled as IntConstant and numbers 137 and 42 connected by a plus operator.]
Inferring Expression Types

- How do we determine the type of an expression?
- Think of process as *logical inference*.
Inferring Expression Types

- How do we determine the type of an expression?
- Think of process as **logical inference**.
Inferring Expression Types

• How do we determine the type of an expression?
• Think of process as **logical inference**.
Inferring Expression Types

• How do we determine the type of an expression?
• Think of process as **logical inference**.
Type Checking as Proofs

- We can think of syntax analysis as proving claims about the types of expressions.
- We begin with a set of **axioms**, then apply our **inference rules** to determine the types of expressions.
- Many type systems can be thought of as proof systems.
Sample Inference Rules

• “If x is an identifier that refers to an object of type t, the expression x has type t.”
• “If e is an integer constant, e has type int.”
• “If the operands e_1 and e_2 of $e_1 + e_2$ are known to have types int and int, then $e_1 + e_2$ has type int.”
Formalizing our Notation

• We will encode our axioms and inference rules using this syntax:

\[
\begin{array}{c}
\text{Preconditions} \\
\hline \\
\text{Postconditions}
\end{array}
\]

• This is read “if \textit{preconditions} are true, we can infer \textit{postconditions}.”
Examples of Formal Notation

\(A \rightarrow \mathbf{t} \omega \) is a production. \(\mathbf{t} \in \text{FIRST}(A) \)

\(A \rightarrow \epsilon \) is a production. \(\epsilon \in \text{FIRST}(A) \)

\(A \rightarrow \omega \) is a production. \(\mathbf{t} \in \text{FIRST}^*(\omega) \)

\(A \rightarrow \omega \) is a production. \(\epsilon \in \text{FIRST}^*(\omega) \)
Formal Notation for Type Systems

• We write

\[\vdash e : T \]

if the expression \(e \) has type \(T \).

• The symbol \(\vdash \) means “we can infer...”
Our Starting Axioms
Our Starting Axioms

⊢ true : bool

⊢ false : bool
Some Simple Inference Rules
Some Simple Inference Rules

\[i \text{ is an integer constant} \]
\[\vdash i : \text{int} \]

\[s \text{ is a string constant} \]
\[\vdash s : \text{string} \]

\[d \text{ is a double constant} \]
\[\vdash d : \text{double} \]
More Complex Inference Rules
More Complex Inference Rules

\[\vdash e_1 : \text{int} \]
\[\vdash e_2 : \text{int} \]
\[\vdash e_1 + e_2 : \text{int} \]

\[\vdash e_1 : \text{double} \]
\[\vdash e_2 : \text{double} \]
\[\vdash e_1 + e_2 : \text{double} \]
More Complex Inference Rules

If we can show that e_1 and e_2 have type int...

<p>| ⊢ $e_1 : \text{int}$ | $\vdash e_1 : \text{double}$ |</p>
<table>
<thead>
<tr>
<th>$\vdash e_2 : \text{int}$</th>
<th>$\vdash e_2 : \text{double}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\vdash e_1 + e_2 : \text{int}$</td>
<td>$\vdash e_1 + e_2 : \text{double}$</td>
</tr>
</tbody>
</table>
More Complex Inference Rules

If we can show that e_1 and e_2 have type int...

\[\vdash e_1 : \text{int} \]
\[\vdash e_2 : \text{int} \]

... then we can show that $e_1 + e_2$ has type int as well

\[\vdash e_1 + e_2 : \text{int} \]
\[\vdash e_1 : \text{double} \]
\[\vdash e_2 : \text{double} \]

\[\vdash e_1 + e_2 : \text{double} \]
Even More Complex Inference Rules
Even More Complex Inference Rules

\[\Gamma \vdash e_1 : T \]
\[\Gamma \vdash e_2 : T \]

\(T \) is a primitive type

\[\Gamma \vdash e_1 == e_2 : \text{bool} \]

\[\Gamma \vdash e_1 : T \]
\[\Gamma \vdash e_2 : T \]

\(T \) is a primitive type

\[\Gamma \vdash e_1 != e_2 : \text{bool} \]
Why Specify Types this Way?

• Gives a **rigorous definition of types** independent of any particular implementation.
 • No need to say “you should have the same type rules as my reference compiler.”

• Gives **maximum flexibility in implementation**.
 • Can implement type-checking however you want, as long as you obey the rules.

• Allows **formal verification of program properties**.
 • Can do inductive proofs on the structure of the program.

• **This is what's used in the literature**.
 • Good practice if you want to study types.
A Problem
A Problem

\[\vdash x : \text{??} \]

\(x \) is an identifier.
A Problem

\[\vdash x : \text{??} \]

How do we know the type of \(x \) if we don’t know what it refers to?
An Incorrect Solution
An Incorrect Solution

- x is an identifier.
- x is in scope with type T.

$\vdash x : T$
An Incorrect Solution

\[
\begin{align*}
\text{x is an identifier.} \\
\text{x is in scope with type T.} \\
\hline
\vdash x : T \\
\end{align*}
\]

```c
int MyFunction(int x) {
    double x;
    if (x == 1.5) {
        /* ... */
    }
}
```
An Incorrect Solution

\[x \text{ is an identifier.} \]
\[x \text{ is in scope with type } T. \]
\[\vdash x : T \]

```c
int MyFunction(int x) {
{
    double x;

    if (x == 1.5) {
        /* ... */
    }
}
```

Facts

- \[x \text{ is an identifier.} \]
- \[x \text{ is in scope with type } T. \]

\[\vdash x : T \]
An Incorrect Solution

\[x \text{ is an identifier.} \]
\[x \text{ is in scope with type } T. \]
\[\vdash x : T \]

\begin{verbatim}
int MyFunction(int x) {
 {
 double x;
 }
 if (x == 1.5) {
 /* ... */
 }
}
\end{verbatim}
An Incorrect Solution

x is an identifier.
x is in scope with type T.

⊢ x : T

int MyFunction(int x) {
 {
 double x;
 }
 if (x == 1.5) {
 /* ... */
 }
}
An Incorrect Solution

\[\text{x is an identifier.} \]
\[\text{x is in scope with type T.} \]
\[\vdash x : T \]

```c
int MyFunction(int x) {
{
    double x;
}

if (x == 1.5) {
    /* ... */
}
}
```
An Incorrect Solution

\[x \text{ is an identifier.} \]
\[x \text{ is in scope with type } T. \]
\[\vdash x : T \]

```c
int MyFunction(int x) {
    {
        double x;
    }
    if (x == 1.5) {
        /* ... */
    }
}
```

Facts

| ⊢ x : double |
| ⊢ x : int |

\[x \text{ is an identifier.} \]
\[x \text{ is in scope with type } T. \]
An Incorrect Solution

x is an identifier.
x is in scope with type T.

\[\vdash x : T \]

```c
int MyFunction(int x) {
{
    double x;
}

if (x == 1.5) {
    /* ... */
}
}
```

Facts

| \[\vdash x : \text{double} \] |
| \[\vdash x : \text{int} \] |
An Incorrect Solution

\[\begin{align*}
\vdash x : T \\
\vdash d : \text{double}
\end{align*} \]

\[
\text{int MyFunction(int x) } \{ \\
\{ \\
\quad \text{double } x; \\
\} \\
\quad \text{if (x == 1.5) } \{ \\
\quad \quad \text{/* ... */} \\
\quad \} \\
\}
\]
An Incorrect Solution

\[\begin{align*}
&x \text{ is an identifier.} \\
&x \text{ is in scope with type T.} \\
\hline
\vdash x : T
\end{align*} \]

\[
\text{int MyFunction(int x) }
\begin{cases}
\{
\text{double x;}
\}
\hline
\text{if (x == 1.5) }
\begin{cases}
\text{ /* ... */ }
\end{cases}
\end{cases}
\]
An Incorrect Solution

\[\vdash x : T \]

\[
\begin{align*}
\text{x is an identifier.} \\
\text{x is in scope with type T.}
\end{align*}
\]

\[
\begin{align*}
\text{int MyFunction(int x) { } } \\
\text{ } \\
\text{ } \\
\text{ } \\
\text{ } \\
\text{if (x == 1.5) { } } \\
\text{ } \\
\text{ } \\
\text{ } \\
\text{}}
\]

Facts

\[
\begin{align*}
\vdash x : \text{double} \\
\vdash x : \text{int} \\
\vdash 1.5 : \text{double}
\end{align*}
\]
An Incorrect Solution

\[x \text{ is an identifier.} \]
\[x \text{ is in scope with type } T. \]
\[\vdash x : T \]

```c
int MyFunction(int x) {
    {
        double x;
    }
    if (x == 1.5) {
        /* ... */
    }
}
```

<table>
<thead>
<tr>
<th>Facts</th>
</tr>
</thead>
<tbody>
<tr>
<td>[\vdash x : \text{double}]</td>
</tr>
<tr>
<td>[\vdash x : \text{int}]</td>
</tr>
<tr>
<td>[\vdash 1.5 : \text{double}]</td>
</tr>
</tbody>
</table>
An Incorrect Solution

\[
\begin{align*}
x \text{ is an identifier.} \\
x \text{ is in scope with type } T.
\end{align*}
\]

\[\vdash x : T\]

```c
int MyFunction(int x) {
    {
        double x;
    }
    if (x == 1.5) {
        /* ... */
    }
}
```

\[\vdash e_1 : T\]
\[\vdash e_2 : T\]

\[
T \text{ is a primitive type}
\]

\[\vdash e_1 == e_2 : \text{bool}\]

Facts

<table>
<thead>
<tr>
<th>Facts</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\vdash x : \text{double})</td>
</tr>
<tr>
<td>(\vdash x : \text{int})</td>
</tr>
<tr>
<td>(\vdash 1.5 : \text{double})</td>
</tr>
</tbody>
</table>
An Incorrect Solution

```
int MyFunction(int x) {
    double x;
    if (x == 1.5) {
        /* ... */
    }
}
```

- \(x \) is an identifier.
- \(x \) is in scope with type \(T \).

\[\vdash x : T \]

- \(T \) is a primitive type

\[\vdash e_1 == e_2 : \text{bool} \]

Facts

| \(\vdash x : \text{double} \) |
| \(\vdash x : \text{int} \) |
| \(\vdash 1.5 : \text{double} \) |
| \(\vdash x == 1.5 : \text{bool} \) |
An Incorrect Solution

\[
\begin{align*}
\text{x is an identifier.} \\
\text{x is in scope with type T.} \\
\hline
\Gamma \vdash x : T \\
\end{align*}
\]

```c
int MyFunction(int x) {
    
    double x;

    if (x == 1.5) {
        /* ... */
    }
}
```

\[
\begin{align*}
\Gamma \vdash e_1 : T \\
\Gamma \vdash e_2 : T \\
T \text{ is a primitive type} \\
\hline
\Gamma \vdash e_1 == e_2 : bool \\
\end{align*}
\]

<table>
<thead>
<tr>
<th>Facts</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Gamma \vdash x : \text{double})</td>
</tr>
<tr>
<td>(\Gamma \vdash x : \text{int})</td>
</tr>
<tr>
<td>(\Gamma \vdash 1.5 : \text{double})</td>
</tr>
<tr>
<td>(\Gamma \vdash x == 1.5 : \text{bool})</td>
</tr>
</tbody>
</table>
Strengthening our Inference Rules

- The facts we're proving have no context.
- We need to strengthen our inference rules to remember under what circumstances the results are valid.
Adding Scope

- We write $S \vdash e : T$ if, in scope S, expression e has type T.
- Types are now proven relative to the scope they are in.
Old Rules Revisited

\[S \vdash \text{true} : \text{bool} \]

\(i \) is an integer constant

\[S \vdash i : \text{int} \]

\[S \vdash \text{false} : \text{bool} \]

\(s \) is a string constant

\[S \vdash s : \text{string} \]

\(d \) is a double constant

\[S \vdash d : \text{double} \]

\[S \vdash e_1 : \text{double} \]
\[S \vdash e_2 : \text{double} \]

\[S \vdash e_1 + e_2 : \text{double} \]

\[S \vdash e_1 : \text{int} \]
\[S \vdash e_2 : \text{int} \]

\[S \vdash e_1 + e_2 : \text{int} \]
A Correct Rule

\[S \vdash x : T \]

- \(x\) is an identifier.
- \(x\) is a variable in scope \(S\) with type \(T\).
A Correct Rule

\[S \vdash x : T \]

\(x \) is an identifier.

\(x \) is a variable in scope \(S \) with type \(T \).
Rules for Functions

\[
S \vdash f(e_1, \ldots, e_n) : ??
\]
Rules for Functions

\[S \vdash f(e_1, \ldots, e_n) : ?? \]

\(f \) is an identifier.
Rules for Functions

\[S \vdash f(e_1, \ldots, e_n) : ?? \]

- \(f \) is an identifier.
- \(f \) is a non-member function in scope \(S \).
Rules for Functions

\[S \vdash f(e_1, \ldots, e_n) : ?? \]

\(f \) is an identifier.
\(f \) is a non-member function in scope \(S \).
\(f \) has type \((T_1, \ldots, T_n) \rightarrow U \)
Rules for Functions

\[f \text{ is an identifier.} \]
\[f \text{ is a non-member function in scope } S. \]
\[f \text{ has type } (T_1, \ldots, T_n) \rightarrow U \]
\[S \vdash e_i : T_i \text{ for } 1 \leq i \leq n \]
\[S \vdash f(e_1, \ldots, e_n) : ?? \]
Rules for Functions

\(f \) is an identifier.
\(f \) is a non-member function in scope \(S \).
\(f \) has type \((T_1, \ldots, T_n) \rightarrow U\)
\(S \vdash e_i : T_i \) for \(1 \leq i \leq n \)

\(S \vdash f(e_1, \ldots, e_n) : U \)
Rules for Functions

- f is an identifier.
- f is a non-member function in scope S.
- f has type $(T_1, \ldots, T_n) \rightarrow U$
- $S \vdash e_i : T_i$ for $1 \leq i \leq n$

$S \vdash f(e_1, \ldots, e_n) : U$
Rules for Arrays

\[
\begin{align*}
S &\vdash e_1 : T[] \\
S &\vdash e_2 : \text{int} \\
\hline
S &\vdash e_1[e_2] : T
\end{align*}
\]
Rule for Assignment

\[
S \vdash e_1 : T \\
S \vdash e_2 : T \\
\hline
S \vdash e_1 = e_2 : T
\]
Rule for Assignment

\[
\begin{align*}
S & \leftarrow e_1 : T \\
S & \leftarrow e_2 : T \\
\hline
S & \leftarrow e_1 = e_2 : T
\end{align*}
\]

Why isn't this rule a problem for this statement?

\[
5 \; = \; x;
\]
Rule for Assignment

\[S \vdash e_1 : T \]
\[S \vdash e_2 : T \]
\[\text{---} \]
\[S \vdash e_1 = e_2 : T \]

If **Derived** extends **Base**, will this rule work for this code?

```c
Base    myBase;
Derived myDerived;

myBase = = myDerived;
```
Typing with Classes

• How do we factor inheritance into our inference rules?
• We need to consider the shape of class hierarchies.
Single Inheritance

Instructor

Professor
- AlexAiken

Lecturer
- Keith

TA
- Jinchao

Animal

Man

Bear

Pig
Multiple Inheritance

Instructor
- Professor
 - AlexAiken
- Lecturer
 - Keith
- TA
 - Jinchao

Animal
- Man
- Bear
- Pig
 - ManBearPig
Properties of Inheritance Structures

- Any type is convertible to itself. (reflexivity)
- If A is convertible to B and B is convertible to C, then A is convertible to C. (transitivity)
- If A is convertible to B and B is convertible to A, then A and B are the same type. (antisymmetry)
- This defines a partial order over types.
Types and Partial Orders

- We say that \(A \leq B \) if \(A \) is convertible to \(B \).
- We have that
 - \(A \leq A \)
 - \(A \leq B \) and \(B \leq C \) implies \(A \leq C \)
 - \(A \leq B \) and \(B \leq A \) implies \(A = B \)
Updated Rule for Assignment

\[S \vdash e_1 = e_2 : ?? \]
Updated Rule for Assignment

\[S \leftarrow e_1 : T_1 \]
\[S \leftarrow e_2 : T_2 \]

\[S \leftarrow e_1 = e_2 : ?? \]
Updated Rule for Assignment

\[
\begin{align*}
S &\leftarrow e_1 : T_1 \\
S &\leftarrow e_2 : T_2 \\
t_2 &\leq t_1 \\
\hline
S &\leftarrow e_1 = e_2 : ??
\end{align*}
\]
Updated Rule for Assignment

\[\begin{align*}
S &\leftarrow e_1 : T_1 \\
S &\leftarrow e_2 : T_2 \\
T_2 &\leq T_1 \\
\hline
S &\leftarrow e_1 = e_2 : T_1
\end{align*} \]
Updated Rule for Assignment

\[S \vdash e_1 : T_1 \]
\[S \vdash e_2 : T_2 \]
\[T_2 \leq T_1 \]

\[S \vdash e_1 = e_2 : T_1 \]

Can we do better than this?
Updated Rule for Assignment

\[S \leftarrow e_1 : T_1 \]
\[S \leftarrow e_2 : T_2 \]
\[T_2 \leq T_1 \]

\[S \leftarrow e_1 = e_2 : T_2 \]
Updated Rule for Assignment

\[
\begin{align*}
S \leftarrow e_1 &: T_1 \\
S \leftarrow e_2 &: T_2 \\
T_2 &\leq T_1 \\
\hline
S \leftarrow e_1 = e_2 &: T_2
\end{align*}
\]

Not required in your semantic analyzer, but easy extra credit!
Updated Rule for Comparisons
Updated Rule for Comparisons

\[
\begin{align*}
S &\vdash e_1 : T \\
S &\vdash e_2 : T \\
T &\text{is a primitive type} \\
\hline
S &\vdash e_1 == e_2 : \text{bool}
\end{align*}
\]
Updated Rule for Comparisons

\[
\begin{align*}
S \vdash e_1 : T \\
S \vdash e_2 : T \\
T \text{ is a primitive type}
\end{align*}
\]

\[
S \vdash e_1 == e_2 : \text{bool}
\]

\[
\begin{align*}
S \vdash e_1 : T_1 \\
S \vdash e_2 : T_2 \\
T_1 \text{ and } T_2 \text{ are of class type.} \\
T_1 \leq T_2 \text{ or } T_2 \leq T_1
\end{align*}
\]

\[
S \vdash e_1 == e_2 : \text{bool}
\]
Updated Rule for Comparisons

Can we unify these rules?

\[S \vdash e_1 : T \]
\[S \vdash e_2 : T \]
T is a primitive type

\[S \vdash e_1 == e_2 : \text{bool} \]

S \vdash e_1 : T_1

S \vdash e_2 : T_2

T_1 and T_2 are of class type.

T_1 \leq T_2 or T_2 \leq T_1

\[S \vdash e_1 == e_2 : \text{bool} \]
The Shape of Types

- Engine
 - DieselEngine
 - CarEngine
 - DieselCarEngine
The Shape of Types

- Engine
 - CarEngine
 - DieselEngine
 - DieselCarEngine
 - bool
 - string
 - int
 - double
The Shape of Types

- Engine
 - CarEngine
 - DieselEngine
 - DieselCarEngine

- bool
- string
- int
- double

Array Types
Extending Convertibility

- If A is a primitive or array type, A is only convertible to itself.
- More formally, if A and B are types and A is a primitive or array type:
 - $A \leq B$ implies $A = B$
 - $B \leq A$ implies $A = B$
Updated Rule for Comparisons

\[
\begin{align*}
S \vdash e_1 &: T \\
S \vdash e_2 &: T \\
T \text{ is a primitive type}
\end{align*}
\]

\[
S \vdash e_1 == e_2 : bool
\]

\[
\begin{align*}
S \vdash e_1 &: T_1 \\
S \vdash e_2 &: T_2
\end{align*}
\]

\[
T_1 \text{ and } T_2 \text{ are of class type.}
\]

\[
T_1 \leq T_2 \text{ or } T_2 \leq T_1
\]

\[
S \vdash e_1 == e_2 : bool
\]
Updated Rule for Comparisons

\[S \vdash e_1 : T \]
\[S \vdash e_2 : T \]
\[T \text{ is a primitive type} \]
\[S \vdash e_1 = e_2 : \text{bool} \]

\[S \vdash e_1 : T_1 \]
\[S \vdash e_2 : T_2 \]
\[T_1 \text{ and } T_2 \text{ are of class type.} \]
\[T_1 \leq T_2 \text{ or } T_2 \leq T_1 \]
\[S \vdash e_1 = e_2 : \text{bool} \]
Updated Rule for Comparisons

\[
\begin{align*}
S \vdash e_1 : T \\
S \vdash e_2 : T \\
\text{T is a primitive type} \\
\hline
S \vdash e_1 == e_2 : \text{bool}
\end{align*}
\]

\[
\begin{align*}
S \vdash e_1 : T_1 \\
S \vdash e_2 : T_2 \\
\text{T}_1 \text{ and T}_2 \text{ are of class type.} \\
\hline
T_1 \leq T_2 \text{ or } T_2 \leq T_1
\end{align*}
\]

\[
\begin{align*}
S \vdash e_1 == e_2 : \text{bool}
\end{align*}
\]
Updated Rule for Function Calls

\[f \text{ is an identifier.} \]
\[f \text{ is a non-member function in scope } S. \]
\[f \text{ has type } (T_1, \ldots, T_n) \rightarrow U \]
\[S \vdash e_i : R_i \text{ for } 1 \leq i \leq n \]
\[R_i \leq T_i \text{ for } 1 \leq i \leq n \]

\[S \vdash f(e_1, \ldots, e_n) : U \]
A Tricky Case

S ⊢ null : ??
Back to the Drawing Board

Engine

CarEngine DieselEngine bool string int double

DieselCarEngine

Array Types
Back to the Drawing Board

- Engine
 - CarEngine
 - DieselEngine
 - DieselCarEngine

- bool
- string
- int
- double

Array Types

null Type
Handling `null`

- Define a new type corresponding to the type of the literal `null`; call it “null type.”
- Define `null` type $\leq A$ for any class type A.
- The `null` type is (typically) not accessible to programmers; it's only used internally.
- Many programming languages have types like these.
A Tricky Case

S ⊢ null : ??
A Tricky Case

S ⊢ null : null type
A Tricky Case

\[S \vdash \text{null} : \text{null type} \]
Object-Oriented Considerations

\[S \vdash \text{new } T : T \]

\[S \vdash \text{new } T : T \]

\[S \vdash \text{newArray(} e, T \text{) : } T[\text{]} \]

\[S \vdash e : \text{int} \]

T is a class type.

S is in scope of class T.
Object-Oriented Considerations

S is in scope of class T.

\[S \vdash \text{this} : T \]

T is a class type.

\[S \vdash \text{new} \ T : T \]

\[S \vdash \text{e} : \text{int} \]

\[S \vdash \text{NewArray(e, T)} : T[\text{]} \]

Why don't we need to check if T is \text{void}?
What's Left?

- We're missing a few language constructs:
 - Member functions.
 - Field accesses.
 - Miscellaneous operators.
- Good practice to fill these in on your own.
Typing is Nuanced

- The **ternary conditional operator** `? :` evaluates an expression, then produces one of two values.
- Works for primitive types:
 - `int x = random()? 137 : 42;`
- Works with inheritance:
 - `Base b = isB? new Base : new Derived;`
- What might the typing rules look like?
A Proposed Rule

\[S \vdash \text{cond } ? \ e_1 : e_2 : ?? \]
A Proposed Rule

\[
S \vdash \text{cond} : \text{bool}
\]

\[
S \vdash \text{cond} \ ? \ e_1 : e_2 : \text{??}
\]
A Proposed Rule

\[S \vdash \text{cond} : \text{bool} \]
\[S \vdash e_1 : T_1 \]
\[S \vdash e_2 : T_2 \]

\[S \vdash \text{cond} \, ? \, e_1 : e_2 : ?? \]
A Proposed Rule

\[
\begin{align*}
S &\vdash \text{\textit{cond}} : \text{bool} \\
S &\vdash e_1 : T_1 \\
S &\vdash e_2 : T_2 \\
T_1 &\leq T_2 \text{ or } T_2 &\leq T_1 \\
\hline \\
S &\vdash \text{\textit{cond}} \ ? \ e_1 : e_2 : ??
\end{align*}
\]
A Proposed Rule

\[S \vdash \text{cond} : \text{bool} \]
\[S \vdash e_1 : T_1 \]
\[S \vdash e_2 : T_2 \]
\[T_1 \leq T_2 \text{ or } T_2 \leq T_1 \]

\[S \vdash \text{cond} \ ? e_1 : e_2 : \text{max}(T_1, T_2) \]
A Proposed Rule

\[
\begin{align*}
S \vdash \text{cond} : \text{bool} \\
S \vdash e_1 : T_1 \\
S \vdash e_2 : T_2 \\
T_1 \leq T_2 \text{ or } T_2 \leq T_1
\end{align*}
\]

\[
S \vdash \text{cond} \ ? \ e_1 : e_2 : \text{max}(T_1, T_2)
\]
A Proposed Rule

\[
\begin{align*}
S \vdash \text{cond} : \text{bool} \\
S \vdash e_1 : T_1 \\
S \vdash e_2 : T_2 \\
T_1 \leq T_2 \text{ or } T_2 \leq T_1 \\
\hline
S \vdash \text{cond} \ ? e_1 : e_2 : \max(T_1, T_2)
\end{align*}
\]
A Proposed Rule

\[
S \vdash \text{cond} : \text{bool} \\
S \vdash e_1 : T_1 \\
S \vdash e_2 : T_2 \\
T_1 \leq T_2 \text{ or } T_2 \leq T_1
\]

\[
S \vdash \text{cond} ? e_1 : e_2 : \max(T_1, T_2)
\]

Is this really what we want?
A Small Problem

\[
S \vdash \text{cond} : \text{bool} \\
S \vdash e_1 : T_1 \\
S \vdash e_2 : T_2 \\
T_1 \leq T_2 \text{ or } T_2 \leq T_1
\]

\[
S \vdash \text{cond} ? e_1 : e_2 : \text{max}(T_1, T_2)
\]
A Small Problem

\(S \vdash \text{cond} : \text{bool} \)

\[
S \vdash e_1 : T_1 \\
S \vdash e_2 : T_2 \\
T_1 \leq T_2 \text{ or } T_2 \leq T_1
\]

\[
S \vdash \text{cond} \ ? \ e_1 : e_2 : \text{max}(T_1, T_2)
\]

Base = random()?
new Derived1 : new Derived2;

Super

Base

Derived1

Derived2
A Small Problem

\[
S \vdash \text{cond} : \text{bool}
\]
\[
S \vdash e_1 : T_1
\]
\[
S \vdash e_2 : T_2
\]
\[
T_1 \leq T_2 \text{ or } T_2 \leq T_1
\]
\[
S \vdash \text{cond} \ ? e_1 : e_2 : \text{max}(T_1, T_2)
\]

Base = random()?
 new Derived1 : new Derived2;
Least Upper Bounds

- An upper bound of two types A and B is a type C such that $A \leq C$ and $B \leq C$.
- The least upper bound of two types A and B is a type C such that:
 - C is an upper bound of A and B.
 - If C' is an upper bound of A and B, then $C \leq C'$.
- When the least upper bound of A and B exists, we denote it $A \lor B$.
 - (When might it not exist?)
A Better Rule

\[S \vdash \text{cond} : \text{bool} \]
\[S \vdash e_1 : T_1 \]
\[S \vdash e_2 : T_2 \]
\[T = T_1 \lor T_2 \]
\[S \vdash \text{cond} \ ? e_1 : e_2 : T \]

Base = random()?
new Derived1 : new Derived2;
... that still has problems

Base = random()?
new Derived1 : new Derived2;

\[S \vdash \text{cond} : \text{bool} \]
\[S \vdash e_1 : T_1 \]
\[S \vdash e_2 : T_2 \]
\[T = T_1 \lor T_2 \]
\[S \vdash \text{cond} ? e_1 : e_2 : T \]
... that still has problems

\[S \vdash \text{cond} : \text{bool} \]
\[S \vdash e_1 : T_1 \]
\[S \vdash e_2 : T_2 \]
\[T = T_1 \lor T_2 \]

\[S \vdash \text{cond} \ ? \ e_1 : e_2 : T \]

Base = random()?
new Derived1 : new Derived2;
Multiple Inheritance is Messy

- Type hierarchy is no longer a tree.
- Two classes might not have a least upper bound.
- Occurs C++ because of multiple inheritance and in Java due to interfaces.
- Not a problem in Decaf; there is no ternary conditional operator.
- How to fix?
Minimal Upper Bounds

• An upper bound of two types A and B is a type C such that $A \leq C$ and $B \leq C$.

• A minimal upper bound of two types A and B is a type C such that:
 • C is an upper bound of A and B.
 • If C' is an upper bound of C, then it is not true that $C' < C$.

• Minimal upper bounds are not necessarily unique.

• A least upper bound must be a minimal upper bound, but not the other way around.
A Correct Rule

\[S \vdash \text{cond : bool} \]
\[S \vdash e_1 : T_1 \]
\[S \vdash e_2 : T_2 \]

T is a minimal upper bound of \(T_1 \) and \(T_2 \)

\[S \vdash \text{cond} \, ? \, e_1 : e_2 : T \]

Base1 = random()?
new Derived1 : new Derived2;
A Correct Rule

\[S \vdash \text{cond : bool} \]
\[S \vdash e_1 : T_1 \]
\[S \vdash e_2 : T_2 \]

T is a minimal upper bound of \(T_1 \) and \(T_2 \),

\[S \vdash \text{cond ? } e_1 : e_2 : T \]

Can prove both that expression has type \(\text{Base1} \) and that expression has type \(\text{Base2} \).

\[\text{Base1} = \text{random()}? \]
\[\text{new Derived1 : new Derived2}; \]
So What?

- **Type-checking can be tricky.**
- Strongly influenced by the choice of operators in the language.
- Strongly influenced by the legal type conversions in a language.
- In C++, the previous example doesn't compile.
- In Java, the previous example does compile, but the language spec is *enormously* complicated.
 - See §15.12.2.7 of the Java Language Specification.
Next Time

• Checking Statement Validity
 • When are statements legal?
 • When are they illegal?

• Practical Concerns
 • How does function overloading work?
 • How do functions interact with inheritance?