

Runtime Environments
Part II

Announcements

● Programming Project 3 Checkpoint due
tonight at 11:59PM.
● No late submissions accepted.
● Ask questions on Piazza!
● Stop by office hours!
● Email the staff list!

● Midterm graded; will be returned at end
of class.
● Available outside Gates 178 afterwards.

Where We Are

Lexical Analysis

Semantic Analysis

Syntax Analysis

IR Generation

IR Optimization

Code Generation

Optimization

Source
Code

Machine
Code

Implementing Objects

Objects are Hard

● It is difficult to build an expressive and
efficient object-oriented language.

● Certain concepts are difficult to implement
efficiently:
● Dynamic dispatch (virtual functions)
● Interfaces
● Multiple Inheritance
● Dynamic type checking (i.e. instanceof)

● Interfaces are so tricky to get right we won't
ask you to implement them in PP4.

Encoding C-Style structs

● A struct is a type containing a collection
of named values.

● Most common approach: lay each field
out in the order it's declared.

Encoding C-Style structs

● A struct is a type containing a collection
of named values.

● Most common approach: lay each field
out in the order it's declared.

struct MyStruct {
 int myInt;
 char myChar;
 double myDouble;
};

Encoding C-Style structs

● A struct is a type containing a collection
of named values.

● Most common approach: lay each field
out in the order it's declared.

struct MyStruct {
 int myInt;
 char myChar;
 double myDouble;
};

4 Bytes 1 8 Bytes

Encoding C-Style structs

● A struct is a type containing a collection
of named values.

● Most common approach: lay each field
out in the order it's declared.

struct MyStruct {
 int myInt;
 char myChar;
 double myDouble;
};

4 Bytes 1 8 Bytes3 Bytes

Accessing Fields

● Once an object is laid out in memory, it's just
a series of bytes.

● How do we know where to look to find a
particular field?

● Idea: Keep an internal table inside the

compiler containing the offsets of each field.
● To look up a field, start at the base address of

the object and advance forward by the
appropriate offset.

4 Bytes 1 8 Bytes3 Bytes

Accessing Fields

● Once an object is laid out in memory, it's just
a series of bytes.

● How do we know where to look to find a
particular field?

● Idea: Keep an internal table inside the

compiler containing the offsets of each field.
● To look up a field, start at the base address of

the object and advance forward by the
appropriate offset.

4 Bytes 1 8 Bytes3 Bytes

Field Lookup
struct MyStruct {
 int x;
 char y;
 double z;
};

4 Bytes 1 8 Bytes3 Bytes

Field Lookup
struct MyStruct {
 int x;
 char y;
 double z;
};

4 Bytes 1 8 Bytes3 Bytes

MyStruct* ms = new MyStruct;
ms->x = 137;
ms->y = 'A';
ms->z = 2.71

Field Lookup
struct MyStruct {
 int x;
 char y;
 double z;
};

4 Bytes 1 8 Bytes3 Bytes

MyStruct* ms = new MyStruct;
ms->x = 137;
ms->y = 'A';
ms->z = 2.71

store 137 0 bytes after ms
store 'A' 4 bytes after ms
store 2.71 8 bytes after ms

OOP without Methods

● Consider the following Decaf code:
class Base {

 int x;

 int y;

}

class Derived extends Base {

 int z;

}

● What will Derived look like in memory?

Memory Layouts with Inheritance

Memory Layouts with Inheritance

class Base {
 int x;
 int y;
};

Memory Layouts with Inheritance

class Base {
 int x;
 int y;
};

4 Bytes 4 Bytes

Memory Layouts with Inheritance

class Base {
 int x;
 int y;
};

4 Bytes 4 Bytes

Memory Layouts with Inheritance

class Base {
 int x;
 int y;
};

4 Bytes 4 Bytes

class Derived extends Base {
 int z;
};

Memory Layouts with Inheritance

class Base {
 int x;
 int y;
};

4 Bytes 4 Bytes

class Derived extends Base {
 int z;
};

4 Bytes 4 Bytes 4 Bytes

Memory Layouts with Inheritance

class Base {
 int x;
 int y;
};

4 Bytes 4 Bytes

class Derived extends Base {
 int z;
};

4 Bytes 4 Bytes 4 Bytes

Field Lookup With Inheritance

Field Lookup With Inheritance
class Base {
 int x;
 int y;
};

4 Bytes 4 Bytes
class Derived extends Base {
 int z;
};

4 Bytes 4 Bytes 4 Bytes

Field Lookup With Inheritance

Base ms = new Base;
ms.x = 137;
ms.y = 42;

class Base {
 int x;
 int y;
};

4 Bytes 4 Bytes
class Derived extends Base {
 int z;
};

4 Bytes 4 Bytes 4 Bytes

Field Lookup With Inheritance

Base ms = new Base;
ms.x = 137;
ms.y = 42;

class Base {
 int x;
 int y;
};

4 Bytes 4 Bytes
class Derived extends Base {
 int z;
};

4 Bytes 4 Bytes 4 Bytes

store 137 0 bytes after ms
store 42 4 bytes after ms

Field Lookup With Inheritance

Base ms = new Derived;
ms.x = 137;
ms.y = 42;

class Base {
 int x;
 int y;
};

4 Bytes 4 Bytes
class Derived extends Base {
 int z;
};

4 Bytes 4 Bytes 4 Bytes

Field Lookup With Inheritance

Base ms = new Derived;
ms.x = 137;
ms.y = 42;

class Base {
 int x;
 int y;
};

4 Bytes 4 Bytes
class Derived extends Base {
 int z;
};

4 Bytes 4 Bytes 4 Bytes

Field Lookup With Inheritance

Base ms = new Derived;
ms.x = 137;
ms.y = 42;

class Base {
 int x;
 int y;
};

4 Bytes 4 Bytes
class Derived extends Base {
 int z;
};

4 Bytes 4 Bytes 4 Bytes

store 137 0 bytes after ms
store 42 4 bytes after ms

Field Lookup With Inheritance

Base ms = new Derived;
ms.x = 137;
ms.y = 42;

class Base {
 int x;
 int y;
};

4 Bytes 4 Bytes
class Derived extends Base {
 int z;
};

4 Bytes 4 Bytes 4 Bytes

store 137 0 bytes after ms
store 42 4 bytes after ms

Base ms = new Base;
ms.x = 137;
ms.y = 42;

store 137 0 bytes after ms
store 42 4 bytes after ms

Single Inheritance in Decaf

● The memory layout for a class D that extends
B is given by the memory layout for B
followed by the memory layout for the
members of D.
● Actually a bit more complex; we'll see why later.

● Rationale: A pointer of type B pointing at a D
object still sees the B object at the beginning.

● Operations done on a D object through the B
reference guaranteed to be safe; no need to
check what B points at dynamically.

What About Member Functions?

● Member functions are mostly like regular
functions, but with two complications:
● How do we know what receiver object to

use?
● How do we know which function to call at

runtime (dynamic dispatch)?

this is Tricky

● Inside a member function, the name this
refers to the current receiver object.

● This information (pun intended) needs to be
communicated into the function.

● Idea: Treat this as an implicit first
parameter.

● Every n-argument member function is really
an (n+1)-argument member function whose
first parameter is the this pointer.

this is Clever

class MyClass {
 int x;
 void myFunction(int arg) {
 this.x = arg;
 }
}

MyClass m = new MyClass;
m.myFunction(137);

this is Clever

class MyClass {
 int x;
 void myFunction(int arg) {
 this.x = arg;
 }
}

MyClass m = new MyClass;
m.myFunction(137);

this is Clever

class MyClass {
 int x;
}
void MyClass_myFunction(MyClass this, int arg){
 this.x = arg;
}

MyClass m = new MyClass;
m.myFunction(137);

this is Clever

class MyClass {
 int x;
}
void MyClass_myFunction(MyClass this, int arg){
 this.x = arg;
}

MyClass m = new MyClass;
m.myFunction(137);

this is Clever

class MyClass {
 int x;
}
void MyClass_myFunction(MyClass this, int arg){
 this.x = arg;
}

MyClass m = new MyClass;
MyClass_myFunction(m, 137);

this Rules

● When generating code to call a member
function, remember to pass some object as the
this parameter representing the receiver
object.

● Inside of a member function, treat this as just
another parameter to the member function.

● When implicitly referring to a field of this, use
this extra parameter as the object in which the
field should be looked up.

Implementing Dynamic Dispatch

● Dynamic dispatch means calling a
function at runtime based on the
dynamic type of an object, rather than its
static type.

● How do we set up our runtime
environment so that we can efficiently
support this?

An Initial Idea

● At compile-time, get a list of every defined class.
● To compile a dynamic dispatch, emit IR code for

the following logic:

s
if (the object has type A)

 call A's version of the function

else if (the object has type B)

 call B's version of the function

…

else if (the object has type N)

 call N's version of the function.

Analyzing our Approach

● This previous idea has several serious
problems.

● What are they?
● It's slow.

● Number of checks is O(C), where C is the number
of classes the dispatch might refer to.

● Gets slower the more classes there are.

● It's infeasible in most languages.
● What if we link across multiple source files?
● What if we support dynamic class loading?

An Observation

● When laying out fields in an object, we gave
every field an offset.

● Derived classes have the base class fields in
the same order at the beginning.

● Can we do something similar with functions?

Base.x

Derived.z

Base.y

Base.x Base.y

Layout of Base

Layout of Derived

Virtual Function Tables
 class Base { class Derived extends Base {
 int x; int y;
 void sayHi() { void sayHi() {
 Print("Base"); Print("Derived");
 } }
 } }

Virtual Function Tables
 class Base { class Derived extends Base {
 int x; int y;
 void sayHi() { void sayHi() {
 Print("Base"); Print("Derived");
 } }
 } }

Code for
Base.sayHi

Code for
Derived.sayHi

Virtual Function Tables
 class Base { class Derived extends Base {
 int x; int y;
 void sayHi() { void sayHi() {
 Print("Base"); Print("Derived");
 } }
 } }

Code for
Base.sayHi

Code for
Derived.sayHi

Base.x

Virtual Function Tables
 class Base { class Derived extends Base {
 int x; int y;
 void sayHi() { void sayHi() {
 Print("Base"); Print("Derived");
 } }
 } }

Code for
Base.sayHi

Code for
Derived.sayHi

Base.x

Base.x Derived.y

Virtual Function Tables
 class Base { class Derived extends Base {
 int x; int y;
 void sayHi() { void sayHi() {
 Print("Base"); Print("Derived");
 } }
 } }

Code for
Base.sayHi

Code for
Derived.sayHi

Base.x

Base.x Derived.y

sayHi

sayHi

Virtual Function Tables
 class Base { class Derived extends Base {
 int x; int y;
 void sayHi() { void sayHi() {
 Print("Base"); Print("Derived");
 } }
 } }

Code for
Base.sayHi

Code for
Derived.sayHi

Base.x

Base.x Derived.y

sayHi

sayHi

Virtual Function Tables
 class Base { class Derived extends Base {
 int x; int y;
 void sayHi() { void sayHi() {
 Print("Base"); Print("Derived");
 } }
 } }

Code for
Base.sayHi

Code for
Derived.sayHi

Base.x

Base.x Derived.y

sayHi

sayHi

Base b = new Base;
b.sayHi();

Virtual Function Tables
 class Base { class Derived extends Base {
 int x; int y;
 void sayHi() { void sayHi() {
 Print("Base"); Print("Derived");
 } }
 } }

Code for
Base.sayHi

Code for
Derived.sayHi

Base.x

Base.x Derived.y

sayHi

sayHi

Base b = new Base;
b.sayHi();

Let fn = the pointer 0 bytes after b
Call fn(b)

Virtual Function Tables
 class Base { class Derived extends Base {
 int x; int y;
 void sayHi() { void sayHi() {
 Print("Base"); Print("Derived");
 } }
 } }

Code for
Base.sayHi

Code for
Derived.sayHi

Base.x

Base.x Derived.y

sayHi

sayHi

Base b = new Derived;
b.sayHi();

Virtual Function Tables
 class Base { class Derived extends Base {
 int x; int y;
 void sayHi() { void sayHi() {
 Print("Base"); Print("Derived");
 } }
 } }

Code for
Base.sayHi

Code for
Derived.sayHi

Base.x

Base.x Derived.y

sayHi

sayHi

Base b = new Derived;
b.sayHi();

Virtual Function Tables
 class Base { class Derived extends Base {
 int x; int y;
 void sayHi() { void sayHi() {
 Print("Base"); Print("Derived");
 } }
 } }

Code for
Base.sayHi

Code for
Derived.sayHi

Base.x

Base.x Derived.y

sayHi

sayHi

Base b = new Derived;
b.sayHi();

Let fn = the pointer 0 bytes after b
Call fn(b)

More Virtual Function Tables
 class Base { class Derived extends Base {
 int x; int y;
 void sayHi() {
 Print("Hi Mom!");
 }
 Base clone() { Derived clone() {
 return new Base; return new Derived;
 } }
 } }

More Virtual Function Tables
 class Base { class Derived extends Base {
 int x; int y;
 void sayHi() {
 Print("Hi Mom!");
 }
 Base clone() { Derived clone() {
 return new Base; return new Derived;
 } }
 } }

Code for
Base.sayHi

Code for
Base.clone

Code for
Derived.clone

More Virtual Function Tables
 class Base { class Derived extends Base {
 int x; int y;
 void sayHi() {
 Print("Hi Mom!");
 }
 Base clone() { Derived clone() {
 return new Base; return new Derived;
 } }
 } }

Code for
Base.sayHi

Code for
Base.clone

Code for
Derived.clone

Base.x

sayHi

clone

More Virtual Function Tables
 class Base { class Derived extends Base {
 int x; int y;
 void sayHi() {
 Print("Hi Mom!");
 }
 Base clone() { Derived clone() {
 return new Base; return new Derived;
 } }
 } }

Code for
Base.sayHi

Code for
Base.clone

Code for
Derived.clone

Base.x

sayHi

clone

More Virtual Function Tables
 class Base { class Derived extends Base {
 int x; int y;
 void sayHi() {
 Print("Hi Mom!");
 }
 Base clone() { Derived clone() {
 return new Base; return new Derived;
 } }
 } }

Code for
Base.sayHi

Code for
Base.clone

Code for
Derived.clone

Base.x

Base.x

Derived.y

sayHi

sayHi

clone

clone

More Virtual Function Tables
 class Base { class Derived extends Base {
 int x; int y;
 void sayHi() {
 Print("Hi Mom!");
 }
 Base clone() { Derived clone() {
 return new Base; return new Derived;
 } }
 } }

Code for
Base.sayHi

Code for
Base.clone

Code for
Derived.clone

Base.x

Base.x

Derived.y

sayHi

sayHi

clone

clone

Virtual Function Tables

● A virtual function table (or vtable) is
an array of pointers to the member
function implementations for a particular
class.

● To invoke a member function:
● Determine (statically) its index in the vtable.
● Follow the pointer at that index in the

object's vtable to the code for the function.
● Invoke that function.

Analyzing our Approach

● Advantages:
● Time to determine function to call is O(1).
● (and a good O(1) too!)

● What are the disadvantages?
● Object sizes are larger.

● Each object needs to have space for O(M) pointers.

● Object creation is slower.
● Each new object needs to have O(M) pointers set,

where M is the number of member functions.

Analyzing our Approach

● Advantages:
● Time to determine function to call is O(1).
● (and a good O(1) too!)

● What are the disadvantages?
● Object sizes are larger.

● Each object needs to have space for O(M) pointers.

● Object creation is slower.
● Each new object needs to have O(M) pointers set,

where M is the number of member functions.

A Common Optimization
 class Base { class Derived extends Base {
 int x; int y;
 void sayHi() {
 Print("Base");
 }
 Base clone() { Derived clone() {
 return new Base; return new Derived;
 } }
 } }

Code for
Base.sayHi

Code for
Base.clone

Code for
Derived.clone

Base.x

Base.x

Derived.y

sayHi

sayHi

clone

clone

A Common Optimization
 class Base { class Derived extends Base {
 int x; int y;
 void sayHi() {
 Print("Base");
 }
 Base clone() { Derived clone() {
 return new Base; return new Derived;
 } }
 } }

Code for
Base.sayHi

Code for
Base.clone

Code for
Derived.clone

Base.x

Derived.y

sayHi

sayHi

clone

clone

Base.x

Vtable*

Vtable*

Objects in Memory

Code for
Base.sayHi

Code for
Base.clone

Code for
Derived.clone

Base.x

Derived.y

sayHi

sayHi

clone

clone

Base.x

Vtable*

Vtable*

Base.x

Vtable*

Base.x

Derived.y

Vtable*

Dynamic Dispatch in O(1)

● Create a single instance of the vtable for each
class.

● Have each object store a pointer to the vtable.
● Can follow the pointer to the table in O(1).
● Can index into the table in O(1).
● Can set the vtable pointer of a new object in

O(1).
● Increases the size of each object by O(1).
● This is the solution used in most C++ and

Java implementations.

Vtable Requirements
● We've made implicit assumptions about our

language that allow vtables to work correctly.
● What are they?
● Method calls known statically.

● We can determine at compile-time which methods
are intended at each call (even if we're not sure
which method is ultimately invoked).

● Single inheritance.
● Don't need to worry about building a single vtable

for multiple different classes.

Inheritance in PHP
class Base {
 public function sayHello() {
 echo "Hi! I'm Base.";
 }
}

class Derived extends Base {
 public function sayHello() {
 echo "Hi! I'm Derived.";
 }
}

Inheritance in PHP
class Base {
 public function sayHello() {
 echo "Hi! I'm Base.";
 }
}

class Derived extends Base {
 public function sayHello() {
 echo "Hi! I'm Derived.";
 }
}

>

Inheritance in PHP
class Base {
 public function sayHello() {
 echo "Hi! I'm Base.";
 }
}

class Derived extends Base {
 public function sayHello() {
 echo "Hi! I'm Derived.";
 }
}

$b = new Base();
$b->sayHello();

>

Inheritance in PHP
class Base {
 public function sayHello() {
 echo "Hi! I'm Base.";
 }
}

class Derived extends Base {
 public function sayHello() {
 echo "Hi! I'm Derived.";
 }
}

$b = new Base();
$b->sayHello();

>

Inheritance in PHP
class Base {
 public function sayHello() {
 echo "Hi! I'm Base.";
 }
}

class Derived extends Base {
 public function sayHello() {
 echo "Hi! I'm Derived.";
 }
}

$b = new Base();
$b->sayHello();

> Hi! I'm Base.

Inheritance in PHP
class Base {
 public function sayHello() {
 echo "Hi! I'm Base.";
 }
}

class Derived extends Base {
 public function sayHello() {
 echo "Hi! I'm Derived.";
 }
}

$b = new Base();
$b->sayHello();

> Hi! I'm Base.

Inheritance in PHP
class Base {
 public function sayHello() {
 echo "Hi! I'm Base.";
 }
}

class Derived extends Base {
 public function sayHello() {
 echo "Hi! I'm Derived.";
 }
}

$b = new Base();
$b->sayHello();

$d = new Derived();
$d->sayHello(); > Hi! I'm Base.

Inheritance in PHP
class Base {
 public function sayHello() {
 echo "Hi! I'm Base.";
 }
}

class Derived extends Base {
 public function sayHello() {
 echo "Hi! I'm Derived.";
 }
}

$b = new Base();
$b->sayHello();

$d = new Derived();
$d->sayHello(); > Hi! I'm Base.

Inheritance in PHP
class Base {
 public function sayHello() {
 echo "Hi! I'm Base.";
 }
}

class Derived extends Base {
 public function sayHello() {
 echo "Hi! I'm Derived.";
 }
}

$b = new Base();
$b->sayHello();

$d = new Derived();
$d->sayHello(); > Hi! I'm Base.

 Hi! I'm Derived.

Inheritance in PHP
class Base {
 public function sayHello() {
 echo "Hi! I'm Base.";
 }
}

class Derived extends Base {
 public function sayHello() {
 echo "Hi! I'm Derived.";
 }
}

$b = new Base();
$b->sayHello();

$d = new Derived();
$d->sayHello(); > Hi! I'm Base.

 Hi! I'm Derived.

Inheritance in PHP
class Base {
 public function sayHello() {
 echo "Hi! I'm Base.";
 }
}

class Derived extends Base {
 public function sayHello() {
 echo "Hi! I'm Derived.";
 }
}

$b = new Base();
$b->sayHello();

$d = new Derived();
$d->sayHello();

$b->missingFunction();

> Hi! I'm Base.
 Hi! I'm Derived.

Inheritance in PHP
class Base {
 public function sayHello() {
 echo "Hi! I'm Base.";
 }
}

class Derived extends Base {
 public function sayHello() {
 echo "Hi! I'm Derived.";
 }
}

$b = new Base();
$b->sayHello();

$d = new Derived();
$d->sayHello();

$b->missingFunction();

> Hi! I'm Base.
 Hi! I'm Derived.

Inheritance in PHP
class Base {
 public function sayHello() {
 echo "Hi! I'm Base.";
 }
}

class Derived extends Base {
 public function sayHello() {
 echo "Hi! I'm Derived.";
 }
}

$b = new Base();
$b->sayHello();

$d = new Derived();
$d->sayHello();

$b->missingFunction();

> Hi! I'm Base.
 Hi! I'm Derived.
 ERROR: Base::missingFunction

 is not defined

Inheritance in PHP
class Base {
 public function sayHello() {
 echo "Hi! I'm Base.";
 }
}

class Derived extends Base {
 public function sayHello() {
 echo "Hi! I'm Derived.";
 }
}

$b = new Base();
$b->sayHello();

$d = new Derived();
$d->sayHello();

$b->missingFunction();

> Hi! I'm Base.
 Hi! I'm Derived.
 ERROR: Base::missingFunction

 is not defined

Inheritance in PHP
class Base {
 public function sayHello() {
 echo "Hi! I'm Base.";
 }
}

class Derived extends Base {
 public function sayHello() {
 echo "Hi! I'm Derived.";
 }
}

$b = new Base();
$b->sayHello();

$d = new Derived();
$d->sayHello();

$b->missingFunction();

$fnName = "sayHello";
$b->$fnName();

> Hi! I'm Base.
 Hi! I'm Derived.
 ERROR: Base::missingFunction

 is not defined

Inheritance in PHP
class Base {
 public function sayHello() {
 echo "Hi! I'm Base.";
 }
}

class Derived extends Base {
 public function sayHello() {
 echo "Hi! I'm Derived.";
 }
}

$b = new Base();
$b->sayHello();

$d = new Derived();
$d->sayHello();

$b->missingFunction();

$fnName = "sayHello";
$b->$fnName();

> Hi! I'm Base.
 Hi! I'm Derived.
 ERROR: Base::missingFunction

 is not defined

Inheritance in PHP
class Base {
 public function sayHello() {
 echo "Hi! I'm Base.";
 }
}

class Derived extends Base {
 public function sayHello() {
 echo "Hi! I'm Derived.";
 }
}

$b = new Base();
$b->sayHello();

$d = new Derived();
$d->sayHello();

$b->missingFunction();

$fnName = "sayHello";
$b->$fnName();

> Hi! I'm Base.
 Hi! I'm Derived.
 ERROR: Base::missingFunction

 is not defined
 Hi! I'm Base.

Inheritance in PHP
class Base {
 public function sayHello() {
 echo "Hi! I'm Base.";
 }
}

class Derived extends Base {
 public function sayHello() {
 echo "Hi! I'm Derived.";
 }
}

$b = new Base();
$b->sayHello();

$d = new Derived();
$d->sayHello();

$b->missingFunction();

$fnName = "sayHello";
$b->$fnName();

> Hi! I'm Base.
 Hi! I'm Derived.
 ERROR: Base::missingFunction

 is not defined
 Hi! I'm Base.

PHP Inhibits Vtables

● Call-by-string bypasses the vtable
optimization.
● Impossible to statically determine contents of any

string.
● Would have to determine index into vtable at runtime.

● No static type information on objects.
● Impossible to statically determine whether a given

method exists at all.

● Plus a few others:
● eval keyword executes arbitrary PHP code; could

introduce new classes or methods.

Inheritance without Vtables
 class Base { class Derived extends Base {
 int x; int y;
 void sayHi() { Derived clone() {
 Print("Hi!"); return new Derived;
 } }
 Base clone() { }
 return new Base;
 }
 }

Inheritance without Vtables

Code for
Base.sayHi

Code for
Base.clone

Code for
Derived.clone

 class Base { class Derived extends Base {
 int x; int y;
 void sayHi() { Derived clone() {
 Print("Hi!"); return new Derived;
 } }
 Base clone() { }
 return new Base;
 }
 }

Inheritance without Vtables

Code for
Base.sayHi

Code for
Base.clone

Code for
Derived.clone

Base.x

Vtable*

 class Base { class Derived extends Base {
 int x; int y;
 void sayHi() { Derived clone() {
 Print("Hi!"); return new Derived;
 } }
 Base clone() { }
 return new Base;
 }
 }

Inheritance without Vtables

Code for
Base.sayHi

Code for
Base.clone

Code for
Derived.clone

sayHi

clone
Base.x

Vtable*

 class Base { class Derived extends Base {
 int x; int y;
 void sayHi() { Derived clone() {
 Print("Hi!"); return new Derived;
 } }
 Base clone() { }
 return new Base;
 }
 }

Inheritance without Vtables

Code for
Base.sayHi

Code for
Base.clone

Code for
Derived.clone

sayHi

clone
Base.x

Vtable*

 class Base { class Derived extends Base {
 int x; int y;
 void sayHi() { Derived clone() {
 Print("Hi!"); return new Derived;
 } }
 Base clone() { }
 return new Base;
 }
 }

Inheritance without Vtables

Code for
Base.sayHi

Code for
Base.clone

Code for
Derived.clone Base.x

Derived.y

sayHi

clone
Base.x

Vtable*

Vtable*

 class Base { class Derived extends Base {
 int x; int y;
 void sayHi() { Derived clone() {
 Print("Hi!"); return new Derived;
 } }
 Base clone() { }
 return new Base;
 }
 }

Inheritance without Vtables

Code for
Base.sayHi

Code for
Base.clone

Code for
Derived.clone Base.x

Derived.y

sayHi

sayHi

clone

clone

Base.x

Vtable*

Vtable*

 class Base { class Derived extends Base {
 int x; int y;
 void sayHi() { Derived clone() {
 Print("Hi!"); return new Derived;
 } }
 Base clone() { }
 return new Base;
 }
 }

Inheritance without Vtables

Code for
Base.sayHi

Code for
Base.clone

Code for
Derived.clone Base.x

Derived.y

sayHi

sayHi

clone

clone

Base.x

Vtable*

Vtable*

 class Base { class Derived extends Base {
 int x; int y;
 void sayHi() { Derived clone() {
 Print("Hi!"); return new Derived;
 } }
 Base clone() { }
 return new Base;
 }
 }

Code for
Base.sayHi

Code for
Base.clone

Code for
Derived.clone Base.x

Derived.y

"sayHi"

"sayHi"

"clone"

"clone"

Base.x

Info*

Info*

Method Table

Class Info

Class Info

Method Table

Inheritance without Vtables
 class Base { class Derived extends Base {
 int x; int y;
 void sayHi() { Derived clone() {
 Print("Hi!"); return new Derived;
 } }
 Base clone() { }
 return new Base;
 }
 }

Code for
Base.sayHi

Code for
Base.clone

Code for
Derived.clone Base.x

Derived.y

"sayHi"

"clone"

"clone"

Base.x

Info*

Info*

Method Table

Class Info

Class Info

Method Table

Inheritance without Vtables
 class Base { class Derived extends Base {
 int x; int y;
 void sayHi() { Derived clone() {
 Print("Hi!"); return new Derived;
 } }
 Base clone() { }
 return new Base;
 }
 }

Code for
Base.sayHi

Code for
Base.clone

Code for
Derived.clone Base.x

Derived.y

"sayHi"

"clone"

"clone"

Base.x

Info*

Info*

Method Table

Class Info

Class Info

Method Table

Parent Class

Inheritance without Vtables
 class Base { class Derived extends Base {
 int x; int y;
 void sayHi() { Derived clone() {
 Print("Hi!"); return new Derived;
 } }
 Base clone() { }
 return new Base;
 }
 }

A General Inheritance Framework

● Each object stores a pointer to a descriptor for its
class.

● Each class descriptor stores
● A pointer to the base class descriptor(s).
● A pointer to a method lookup table.

● To invoke a method:
● Follow the pointer to the method table.
● If the method exists, call it.
● Otherwise, navigate to the base class and repeat.

● This is slow but can be optimized in many cases;
we'll see this later.

Vtables and Interfaces
interface Engine {
 void vroom();
}
interface Visible {
 void draw();
}
class PaintedEngine implements Engine, Visible {
 void vroom() { /* … */ }
 void draw() { /* … */ }
}
class JetEngine implements Engine {
 void vroom() { /* … */ }
}
class Paint implements Visible {
 void draw() { /* … */ }
}

Engine e1 = new PaintedEngine;
Engine e2 = new JetEngine;
e1.vroom();
e2.vroom();
Visible v1 = new PaintedEngine;
Visibie v2 = new Paint;
v1.draw();
v2.draw();

Vtables and Interfaces
interface Engine {
 void vroom();
}
interface Visible {
 void draw();
}
class PaintedEngine implements Engine, Visible {
 void vroom() { /* … */ }
 void draw() { /* … */ }
}
class JetEngine implements Engine {
 void vroom() { /* … */ }
}
class Paint implements Visible {
 void draw() { /* … */ }
}

Engine e1 = new PaintedEngine;
Engine e2 = new JetEngine;
e1.vroom();
e2.vroom();
Visible v1 = new PaintedEngine;
Visibie v2 = new Paint;
v1.draw();
v2.draw();

vroom draw
PaintedEngine vtable

Vtables and Interfaces
interface Engine {
 void vroom();
}
interface Visible {
 void draw();
}
class PaintedEngine implements Engine, Visible {
 void vroom() { /* … */ }
 void draw() { /* … */ }
}
class JetEngine implements Engine {
 void vroom() { /* … */ }
}
class Paint implements Visible {
 void draw() { /* … */ }
}

Engine e1 = new PaintedEngine;
Engine e2 = new JetEngine;
e1.vroom();
e2.vroom();
Visible v1 = new PaintedEngine;
Visibie v2 = new Paint;
v1.draw();
v2.draw();

vroom draw
PaintedEngine vtable

vroom
JetEngine vtable

Vtables and Interfaces
interface Engine {
 void vroom();
}
interface Visible {
 void draw();
}
class PaintedEngine implements Engine, Visible {
 void vroom() { /* … */ }
 void draw() { /* … */ }
}
class JetEngine implements Engine {
 void vroom() { /* … */ }
}
class Paint implements Visible {
 void draw() { /* … */ }
}

Engine e1 = new PaintedEngine;
Engine e2 = new JetEngine;
e1.vroom();
e2.vroom();
Visible v1 = new PaintedEngine;
Visibie v2 = new Paint;
v1.draw();
v2.draw();

vroom draw
PaintedEngine vtable

vroom
JetEngine vtable

(empty) draw
Paint vtable

Interfaces with Vtables

● Interfaces complicate vtable layouts
because they require interface methods
to have consistent positions across all
vtables.

● This can fill vtables with useless entries.
● For this reason, interfaces are typically

not implemented using pure vtables.
● We'll see two approaches for

implementing interfaces efficiently.

Interfaces via String Lookup

● Idea: A hybrid approach.
● Use vtables for standard (non-interface)

dispatch.
● Use the more general, string-based

lookup for interfaces.

Object Layout with Interfaces
 class Kitty implements Adorable { interface Adorable {
 int cuteness; void awww();
 void awww() { }
 Print("Meow");
 }
 void purr() {
 Print("Purr");
 }
 }

Code for
Kitty.awww

Code for
Kitty.purr

awww

purr cuteness

Vtable*

Object Layout with Interfaces
 class Kitty implements Adorable { interface Adorable {
 int cuteness; void awww();
 void awww() { }
 Print("Meow");
 }
 void purr() {
 Print("Purr");
 }
 }

Object Layout with Interfaces
 class Kitty implements Adorable { interface Adorable {
 int cuteness; void awww();
 void awww() { }
 Print("Meow");
 }
 void purr() {
 Print("Purr");
 }
 }

NameTable
Code for

Kitty.awww

Code for
Kitty.purr

awww

purr cuteness

Vtable*

Object Layout with Interfaces
 class Kitty implements Adorable { interface Adorable {
 int cuteness; void awww();
 void awww() { }
 Print("Meow");
 }
 void purr() {
 Print("Purr");
 }
 }

NameTable

"awww"

Code for
Kitty.awww

Code for
Kitty.purr

awww

purr cuteness

Vtable*

Object Layout with Interfaces
 class Kitty implements Adorable { interface Adorable {
 int cuteness; void awww();
 void awww() { }
 Print("Meow");
 }
 void purr() {
 Print("Purr");
 }
 }

NameTable

"awww"

Code for
Kitty.awww

Code for
Kitty.purr

awww

purr cuteness

Vtable*

Analysis of the Approach

● Dynamic dispatch through object types
still O(1).

● Interface dispatches take O(Mn), where
M is the number of methods and n is the
length of the method name.

● Can easily speed up to O(n) expected by
replacing a list of strings with a hash
table.

Optimizing Interface Dispatch

● Assign a unique number to each interface method.
● Replace hash table of strings with hash table of

integers.
● Vtable effectively now a hash table instead of an array.

● Cost to do an interface dispatch now O(1).
● (But still more expensive than a standard dynamic

dispatch.)

● Would this work in PHP?
● No; can still do string-based lookups directly.

Optimizing Interface Dispatch

● Assign a unique number to each interface method.
● Replace hash table of strings with hash table of

integers.
● Vtable effectively now a hash table instead of an array.

● Cost to do an interface dispatch now O(1).
● (But still more expensive than a standard dynamic

dispatch.)

● Would this work in PHP?
● No; can still do string-based lookups directly.

Optimizing Even Further

● Vtable lookups are (comparatively) fast
compared to hash table lookups.
● Can often do vtable lookup in two

instructions!

● Hashing strings is (comparatively) very
slow; hashing integers is (comparatively)
slow.

● Can we eliminate the hash lookups in
some cases?

An Observation
interface Kitty {

 void meow();
}

class NyanCat implements Kitty { class Garfield implements Kitty {
 void meow() { void meow() {
 Print("Nyan!"); Print("I hate Mondays");
 } }
} }

Kitty n = new NyanCat;
for (i = 0; i < 100; ++i)
 n.meow();

Kitty g = new Garfield;
for (i = 0; i < 100; ++i)
 g.meow();

An Observation

Kitty n = new NyanCat;
for (i = 0; i < 100; ++i)
 n.meow();

Kitty g = new Garfield;
for (i = 0; i < 100; ++i)
 g.meow();

interface Kitty {
 void meow();

}

class NyanCat implements Kitty { class Garfield implements Kitty {
 void meow() { void meow() {
 Print("Nyan!"); Print("I hate Mondays");
 } }
} }

Code for
NyanCat.meow

Code for
Garfield.meow

An Observation

Kitty n = new NyanCat;
for (i = 0; i < 100; ++i)
 n.meow();

Kitty g = new Garfield;
for (i = 0; i < 100; ++i)
 g.meow();

Code for
NyanCat.meow

Code for
Garfield.meow

interface Kitty {
 void meow();

}

class NyanCat implements Kitty { class Garfield implements Kitty {
 void meow() { void meow() {
 Print("Nyan!"); Print("I hate Mondays");
 } }
} }

Remembering Dispatches

● A particular interface dispatch site often refers to
the same method on the majority of its calls.

● Idea: Have a global variable for each call site that
stores
● The type of the last object used there, and
● What method the call resolved to.

● When doing an interface dispatch, check whether
the type of the receiver matches the cached type.
● If so, just use the known method.
● If not, fall back to the standard string-based dispatch.

● This is called inline caching.

Tradeoffs in Inline Caching

● For monomorphic call sites (only one object type
actually getting used), inline caching can be a
huge performance win.

● For polymorphic call sites (multiple object types
getting used), inline caching can slow down the
program.
● (Why?)

● A more advanced technique called polymorphic
inline caching tries to balance the two by
maintaining a small collection of known types.
● This optimization is used by many JITs for object-

oriented languages, including Java.

Summary of String-Based Lookup

● Preserves the runtime speed of dispatch
through objects.

● Allows flexible dispatch through
interfaces.

● Can be optimized if method calls can be
resolved statically.

● Can be optimized further using variants
of inline caching.

Vtables Revisited

● Recall: Why do interfaces complicate vtable
layouts?

● Answer: Interface methods must have a
consistent position in all vtables.

● Idea: What if we have multiple vtables per object,
one for each interface?
● Allows interface methods to be positioned

independently of one another.
● Allows for fast vtable lookups relative to string-based

approach.

● This is tricky but effective; most C++
implementations use this approach.

Interfaces and Vtables
interface Meme {

void run();
}
interface Cat {
 void meow();
}

class Nyan implements Meme, Cat {
 void run() {
 Print("Nyan!");
 }
 void meow() {
 Print("Nyan");
 }
 void eat() {
 Print("Yummy Pop Tart!");
 }
}

Interfaces and Vtables
interface Meme {

void run();
}
interface Cat {
 void meow();
}

class Nyan implements Meme, Cat {
 void run() {
 Print("Nyan!");
 }
 void meow() {
 Print("Nyan");
 }
 void eat() {
 Print("Yummy Pop Tart!");
 }
}

eat

run

Code for
Nyan.run

Code for
Nyan.meow

Code for
Nyan.eat

Vtable*

meow

Interfaces and Vtables
interface Meme {

void run();
}
interface Cat {
 void meow();
}

class Nyan implements Meme, Cat {
 void run() {
 Print("Nyan!");
 }
 void meow() {
 Print("Nyan");
 }
 void eat() {
 Print("Yummy Pop Tart!");
 }
}

eat

run

Code for
Nyan.run

Code for
Nyan.meow

Code for
Nyan.eat

Vtable*

meow

run

Interfaces and Vtables
interface Meme {

void run();
}
interface Cat {
 void meow();
}

class Nyan implements Meme, Cat {
 void run() {
 Print("Nyan!");
 }
 void meow() {
 Print("Nyan");
 }
 void eat() {
 Print("Yummy Pop Tart!");
 }
}

eat

run

Code for
Nyan.run

Code for
Nyan.meow

Code for
Nyan.eat

Vtable*

meow

run

meow

Interfaces and Vtables
interface Meme {

void run();
}
interface Cat {
 void meow();
}

class Nyan implements Meme, Cat {
 void run() {
 Print("Nyan!");
 }
 void meow() {
 Print("Nyan");
 }
 void eat() {
 Print("Yummy Pop Tart!");
 }
}

eat

run

Code for
Nyan.run

Code for
Nyan.meow

Code for
Nyan.eat

Nyan Vtable

meow

run

meow

Meme Vtable

Cat Vtable

Interfaces and Vtables
interface Meme {

void run();
}
interface Cat {
 void meow();
}

class Nyan implements Meme, Cat {
 void run() {
 Print("Nyan!");
 }
 void meow() {
 Print("Nyan");
 }
 void eat() {
 Print("Yummy Pop Tart!");
 }
}

eat

run

Code for
Nyan.run

Code for
Nyan.meow

Code for
Nyan.eat

Nyan Vtable

meow

run

meow

Meme Vtable

Cat Vtable

The Problem
class Nyan implements Meme, Cat {
 /* … */
}

class Garfield implements Cat {
 /* … */
}

Cat c1 = new Nyan;
Cat c2 = new Garfield;

c1.meow();
c2.meow();

The Problem
class Nyan implements Meme, Cat {
 /* … */
}

class Garfield implements Cat {
 /* … */
}

Cat c1 = new Nyan;
Cat c2 = new Garfield;

c1.meow();
c2.meow();

The Problem
class Nyan implements Meme, Cat {
 /* … */
}

class Garfield implements Cat {
 /* … */
}

Cat c1 = new Nyan;
Cat c2 = new Garfield;

c1.meow();
c2.meow();

Nyan Vtable

Meme Vtable

Cat Vtable

The Problem
class Nyan implements Meme, Cat {
 /* … */
}

class Garfield implements Cat {
 /* … */
}

Cat c1 = new Nyan;
Cat c2 = new Garfield;

c1.meow();
c2.meow();

Nyan Vtable

Meme Vtable

Cat Vtable

The Problem
class Nyan implements Meme, Cat {
 /* … */
}

class Garfield implements Cat {
 /* … */
}

Cat c1 = new Nyan;
Cat c2 = new Garfield;

c1.meow();
c2.meow();

Nyan Vtable

Meme Vtable

Cat Vtable

Garfield Vtable

Cat Vtable

The Problem
class Nyan implements Meme, Cat {
 /* … */
}

class Garfield implements Cat {
 /* … */
}

Cat c1 = new Nyan;
Cat c2 = new Garfield;

c1.meow();
c2.meow();

Nyan Vtable

Meme Vtable

Cat Vtable

Garfield Vtable

Cat Vtable

The Problem
class Nyan implements Meme, Cat {
 /* … */
}

class Garfield implements Cat {
 /* … */
}

Cat c1 = new Nyan;
Cat c2 = new Garfield;

c1.meow();
c2.meow();

Nyan Vtable

Meme Vtable

Cat Vtable

Garfield Vtable

Cat Vtable

The Problem

● The offset from the base of the object to
a particular interface vtable depends on
the dynamic type of the object.

● We cannot generate IR code to do an
interface dispatch without knowing
where the vtable is.

● We don't seem to have gotten
anywhere...

A Partial Solution
class Nyan implements Meme, Cat {
 /* … */
}

class Garfield implements Cat {
 /* … */
}

Cat c1 = new Nyan;
Cat c2 = new Garfield;

c1.meow();
c2.meow();

A Partial Solution
class Nyan implements Meme, Cat {
 /* … */
}

class Garfield implements Cat {
 /* … */
}

Cat c1 = new Nyan;
Cat c2 = new Garfield;

c1.meow();
c2.meow();

A Partial Solution
class Nyan implements Meme, Cat {
 /* … */
}

class Garfield implements Cat {
 /* … */
}

Cat c1 = new Nyan;
Cat c2 = new Garfield;

c1.meow();
c2.meow();

Nyan Vtable

Meme Vtable

Cat Vtable

A Partial Solution
class Nyan implements Meme, Cat {
 /* … */
}

class Garfield implements Cat {
 /* … */
}

Cat c1 = new Nyan;
Cat c2 = new Garfield;

c1.meow();
c2.meow();

Nyan Vtable

Meme Vtable

Cat Vtable

A Partial Solution
class Nyan implements Meme, Cat {
 /* … */
}

class Garfield implements Cat {
 /* … */
}

Cat c1 = new Nyan;
Cat c2 = new Garfield;

c1.meow();
c2.meow();

Nyan Vtable

Meme Vtable

Cat Vtable

A Partial Solution
class Nyan implements Meme, Cat {
 /* … */
}

class Garfield implements Cat {
 /* … */
}

Cat c1 = new Nyan;
Cat c2 = new Garfield;

c1.meow();
c2.meow();

Nyan Vtable

Meme Vtable

Cat Vtable

Garfield Vtable

Cat Vtable

A Partial Solution
class Nyan implements Meme, Cat {
 /* … */
}

class Garfield implements Cat {
 /* … */
}

Cat c1 = new Nyan;
Cat c2 = new Garfield;

c1.meow();
c2.meow();

Nyan Vtable

Meme Vtable

Cat Vtable

Garfield Vtable

Cat Vtable

A Partial Solution

● When upcasting an object to an interface
type, change where the pointer points so
that it sees the vtable pointer for that
interface.

● We can now assume an interface
reference refers directly to the vtable.

● But there's a serious problem with this
implementation...

Looking in the Wrong Place
interface Cat {
 void meow();
}
class Garfield implements Cat {
 int totalSleep;
 void meow() {
 totalSleep --;
 Print("I'm tired.");
 }
}

Cat g = new Garfield;
g.meow();

Looking in the Wrong Place
interface Cat {
 void meow();
}
class Garfield implements Cat {
 int totalSleep;
 void meow() {
 totalSleep --;
 Print("I'm tired.");
 }
}

Cat g = new Garfield;
g.meow();

Looking in the Wrong Place
interface Cat {
 void meow();
}
class Garfield implements Cat {
 int totalSleep;
 void meow() {
 totalSleep --;
 Print("I'm tired.");
 }
}

Cat g = new Garfield;
g.meow();

Garfield Vtable

Cat Vtable

totalSleep

Looking in the Wrong Place
interface Cat {
 void meow();
}
class Garfield implements Cat {
 int totalSleep;
 void meow() {
 totalSleep --;
 Print("I'm tired.");
 }
}

Cat g = new Garfield;
g.meow();

Garfield Vtable

Cat Vtable

totalSleep

Looking in the Wrong Place
interface Cat {
 void meow();
}
class Garfield implements Cat {
 int totalSleep;
 void meow() {
 totalSleep --;
 Print("I'm tired.");
 }
}

Cat g = new Garfield;
g.meow();

Garfield Vtable

Cat Vtable

totalSleep

Looking in the Wrong Place
interface Cat {
 void meow();
}
class Garfield implements Cat {
 int totalSleep;
 void meow() {
 totalSleep --;
 Print("I'm tired.");
 }
}

Cat g = new Garfield;
g.meow();

Code for Garfield::meow(Garfield* this)
 Look up the integer 8 bytes past 'this'
 Read its value into memory
 Subtract one from the value
 Store the value back into memory

Garfield Vtable

Cat Vtable

totalSleep

Looking in the Wrong Place
interface Cat {
 void meow();
}
class Garfield implements Cat {
 int totalSleep;
 void meow() {
 totalSleep --;
 Print("I'm tired.");
 }
}

Cat g = new Garfield;
g.meow();

Code for Garfield::meow(Garfield* this)
 Look up the integer 8 bytes past 'this'
 Read its value into memory
 Subtract one from the value
 Store the value back into memory

Garfield Vtable

Cat Vtable

totalSleep

Looking in the Wrong Place
interface Cat {
 void meow();
}
class Garfield implements Cat {
 int totalSleep;
 void meow() {
 totalSleep --;
 Print("I'm tired.");
 }
}

Cat g = new Garfield;
g.meow();

Code for Garfield::meow(Garfield* this)
 Look up the integer 8 bytes past 'this'
 Read its value into memory
 Subtract one from the value
 Store the value back into memory

Garfield Vtable

Cat Vtable

totalSleep

>:-(

Looking in the Wrong Place

● Interface pointers cannot be used
directly as the this pointer in methods
calls.
● Pointing into the middle of an object, not

the base of the object.
● All field offsets will refer to the wrong parts

of memory.

● How can we correct this?

Adding in Deltas

Cat g = new Garfield;
g.meow();

Code for Garfield::meow(Garfield* this)
 Look up the integer 8 bytes past 'this'
 Read its value into memory
 Subtract one from the value
 Store the value back into memory

Garfield Vtable

Cat Vtable

totalSleep

meow

Code for
Garfield.meow

Adding in Deltas

Cat g = new Garfield;
g.meow();

Code for Garfield::meow(Garfield* this)
 Look up the integer 8 bytes past 'this'
 Read its value into memory
 Subtract one from the value
 Store the value back into memory

Garfield Vtable

Cat Vtable

totalSleep

meow

Delta: -4 Code for
Garfield.meow

Vtable Deltas

● Augment each interface vtable with the offset in
bytes the pointer must be corrected to get back to
the base of the object.

● A dynamic dispatch then looks like this:
● Look up the address of the function to call by following

the vtable pointer and looking at the recovered address.
● Look up the amount to adjust the object pointer in the

vtable.
● Update the object pointer by adding in the given delta.
● Call the function indicated in the vtable.

Analysis of Vtable Deltas

● Cost to invoke a method is O(1)
regardless of the number of interfaces.

● Also a fast O(1); typically much better
than a hash table lookup.

● Size of an object increases by O(I), where
I is the number of interfaces.

● Cost to create an object is O(I), where I
is the number of interfaces.
● (Why?)

Comparison of Approaches

● String-based lookups have small objects and fast
object creation but slow dispatch times.
● Only need to set one vtable pointer in the generated

object.
● Dispatches require some type of string comparisons.

● Vtable-based lookups have larger objects and
slower object creation but faster dispatch times.
● Need to set multiple vtable pointers in the generated

object.
● Dispatches can be done using simple arithmetic.

Implementing Dynamic Type Checks

Dynamic Type Checks

● Many languages require some sort of
dynamic type checking.
● Java's instanceof, C++'s dynamic_cast, any

dynamically-typed language.

● May want to determine whether the
dynamic type is convertible to some
other type, not whether the type is equal.

● How can we implement this?

A Pretty Good Approach
class A {
 void f() {}
}

class B extends A {
 void f() {}
}

class C extends A {
 void f() {}
}

class D extends B {
 void f() {}
}

class E extends C {
 void f() {}
}

A Pretty Good Approach
class A {
 void f() {}
}

class B extends A {
 void f() {}
}

class C extends A {
 void f() {}
}

class D extends B {
 void f() {}
}

class E extends C {
 void f() {}
}

A.f

B.f

C.f

D.f

E.f

A Pretty Good Approach
class A {
 void f() {}
}

class B extends A {
 void f() {}
}

class C extends A {
 void f() {}
}

class D extends B {
 void f() {}
}

class E extends C {
 void f() {}
}

A.f

B.f

C.f

D.f

E.f

Parent

Parent

Parent

Parent

Parent

A Pretty Good Approach
class A {
 void f() {}
}

class B extends A {
 void f() {}
}

class C extends A {
 void f() {}
}

class D extends B {
 void f() {}
}

class E extends C {
 void f() {}
}

A.f

B.f

C.f

D.f

E.f

Parent

Parent

Parent

Parent

Parent

Simple Dynamic Type Checking

● Have each object's vtable store a pointer to
its base class.

● To check if an object is convertible to type S
at runtime, follow the pointers embedded in
the object's vtable upward until we find S or
reach a type with no parent.

● Runtime is O(d), where d is the depth of the
class in the hierarchy.

● Can we make this faster?

A Marvelous Idea

● There is a fantastically clever way of checking
convertibility at runtime in O(1), assuming
there are O(1) classes in a hierarchy.

● Assume:
● There aren't “too many” classes derived from any

one class (say, 10).
● A runtime check of whether an object that is

statically of type A is dynamically of type B is only
possible if A ≤ B.

● All types are known statically.

A Marvelous Idea

A.f

B.f C.f

D.f F.f

Parent

Parent Parent

Parent Parent

E.f

Parent

G.f

Parent

A Marvelous Idea

A.f

B.f C.f

D.f F.f

Parent

Parent Parent

Parent Parent

E.f

Parent

G.f

Parent

A Marvelous Idea

A.f

B.f C.f

D.f F.f

1

2 3

2 * 5 3 * 11

E.f

2 * 7

G.f

3 * 13

A Marvelous Idea

A.f

B.f C.f

D.f F.f

1

2 3

10 33

E.f

14

G.f

39

A Marvelous Idea

A.f

B.f C.f

D.f F.f

1

2 3

10 33

E.f

14

G.f

39

A myObject = /* … */
if (myObject instanceof C) {
 /* … */
}

A Marvelous Idea

A.f

B.f C.f

D.f F.f

1

2 3

10 33

E.f

14

G.f

39

A myObject = /* … */
if (myObject instanceof C) {
 /* … */
}

A Marvelous Idea

A.f

B.f C.f

D.f F.f

1

2 3

10 33

E.f

14

G.f

39

A myObject = /* … */
if (myObject->vtable.key % 3 == 0) {
 /* … */
}

Dynamic Typing through Primes

● Assign each class a unique prime number.
● (Can reuse primes across unrelated type hierarchies.)

● Set the key of that class to be the product of its prime and
all the primes of its superclasses.

● To check at runtime if an object is convertible to type T:
● Look up the object's key.
● If T's key divides the object's key, the object is convertible to T.
● Otherwise, it is not.

● Assuming product of primes fits into an integer, can do
this check in O(1).

● Also works with multiple inheritance; prototype C++
implementations using this techinique exist.

Next Time

● Three-Address Code IR.
● IR Generation.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174

