
  

Global Optimization
Part II



  

Announcements

● Programming Project 4 due Saturday, 
August 18 at 11:30AM.
● OH today and tomorrow.
● Ask questions via email!
● Ask questions via Piazzza!
● No late submissions.



  

Four Square!
5:30PM Thursday, Outside Gates 



  

Where We Are

Lexical Analysis

Semantic Analysis

Syntax Analysis

IR Optimization

IR Generation

Code Generation

Optimization

Source
Code

Machine
Code



  

Review: Why Global Analysis is Hard

● Need to be able to handle multiple 
predecessors/successors for a basic block.

● Need to be able to handle multiple paths 
through the control-flow graph, and may 
need to iterate multiple times to compute 
the final value (but the analysis still needs 
to terminate!)

● Need to be able to assign each basic block 
a reasonable default value for before 
we've analyzed it.



  

Review: Meet Semilattices

● A meet semilattice is a ordering defined on a 
set of elements.

● Any two elements have some meet that is the 
largest element smaller than both elements.

● There is a unique top element, which is at least 
as large as any other element.

● Intuitively:
● The meet of two elements represents combining 

information from two elements.
● The top element element represents “no information 

yet.”



  

Meet Semilattices for Liveness
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{ a, b } { a, c } { b, c }

{ a, b, c }
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Review: Meet Semilattices

● A meet semilattice is a pair (D, ∧), where
● D is a domain of elements.
● ∧ is a meet operator that is

– idempotent: x ∧ x = x
– commutative: x ∧ y = y ∧ x
– associative: (x ∧ y) ∧ z = x ∧ (y ∧ z)

● If x ∧ y = z, we say that z is the meet or 
(greatest lower bound) of x and y.

● Every meet semilattice has a top element 
denoted ⊤ such that ⊤∧ x = x for all x.



  

Meet Semilattices and Orderings

{ }

{ a } { b } { c }

{ a, b } { a, c } { b, c }

{ a, b, c }

Larger

Smaller



  

Meet Semilattices and Orderings
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{ a } { b } { c }

{ a, b } { a, c } { b, c }

{ a, b, c }

Most Precise

Least Precise



  

Meet Semilattices and Orderings

● Every meet semilattice (D, ∧) induces an 
ordering relationship ≤ over its 
elements.

● Define x ≤ y   iff   x ∧ y = x
● Need to prove

● Reflexivity: x ≤ x
● Antisymmetry: If x ≤ y and y ≤ x, then x = y.
● Transitivity: If x ≤ y and y ≤ z, then x ≤ z.



  

An Example Semilattice

● The set of natural numbers and the max function.
● Idempotent

● max{a, a} = a

● Commutative
● max{a, b} = max{b, a}

● Associative
● max{a, max{b, c}} = max{max{a, b}, c}

● Top element is 0:
● max{0, a} = a

● What is the ordering over these elements?



  

A Semilattice for Liveness

● Sets of live variables and the set union operation.
● Idempotent:

● x ∪ x = x

● Commutative:
● x ∪ y = y ∪ x

● Associative:
● (x ∪ y) ∪ z = x ∪ (y ∪ z)

● Top element:
● The empty set: Ø ∪ x = x

● What is the ordering over these elements?



  

Proving Termination

● Our algorithm for running these analyses 
continuously loops until no changes are 
detected.

● Given this, how do we know the analyses 
will eventually terminate?

● In general, we don't.



  

A Nonterminating Analysis

● The following analysis will loop infinitely 
on any CFG containing a loop:

● Direction: Forward
● Domain: ℕ
● Meet operator: max
● Transfer function: f(n) = n + 1
● Initial value: 0



  

A Nonterminating Analysis
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end
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Why Doesn't This Terminate?

● Values can decrease without bound.
● Note that “decrease” refers to the lattice 

ordering, not the ordering on the natural 
numbers.

● The height of a semilattice is the length of 
the longest decreasing sequence in that 
semilattice.

● The dataflow framework is not guaranteed to 
terminate for semilattices of infinite height.

● Note that a semilattice can be infinitely large 
but have finite height (e.g. constant 
propagation).
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Another Nonterminating Analysis

● This analysis works on a finite-height 
semilattice, but will not terminate on 
certain CFGs:

● Direction: Forward
● Domain: Boolean values true and false

● Meet operator: Logical AND
● Transfer function: Logical NOT
● Initial value: true
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What Went Wrong (This Time)?

● Values can loop indefinitely.
● Intuitively, the meet operator keeps 

pulling values down.
● If the transfer function can keep pushing 

values back up again, then the values 
might cycle forever.

● How can we fix this?
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Monotone Transfer Functions

● A transfer function is monotone iff

if x ≤ y, then f(x) ≤ f(y)
● Intuitively, if you know less information 

about a program point, you can't “gain 
back” more information about that program 
point.

● Many transfer functions are monotone, 
including those for liveness and constant 
propagation.

● Note: Monotonicity does not mean that 
f(x) ≤ x; we'll see an example. 



  

Liveness and Monotonicity

● A transfer function is monotone iff

if x ≤ y, then f(x) ≤ f(y)
● Recall our transfer function for a = b + c 

is
● fa = b + c (V) = (V – a) ∪ {b, c}

● Recall that our meet semilattice has set 
union as a transfer function and induces an 
ordering relationship X ≤ Y iff X ⊇ Y. 

● Is this monotone?



  

Constant Propagation is Monotone

● A transfer function is monotone iff

if x ≤ y, then f(x) ≤ f(y)
● Recall our transfer functions are

● fx = k (V) = k

● fx = a + b (V) = Not a Constant

● fy = a + b (V) = V

● Is this monotonic?



  

The Grand Result

● Theorem: A dataflow analysis with a finite-
height semilattice and family of monotone 
transfer functions always terminates.

● Proof sketch:
● Run the data-flow iteration once to get some initial 

values.
● From this point forward:

– The meet operator can only bring values down.
– The transfer function can never raise values back up 

above where they were in the past (monotonicity)
– Values cannot decrease indefinitely (finite height)



  

Partial-Redundancy 
Elimination



  

Code Size is Not Execution Time

● All of the analyses we've seen so far have 
worked by simplifying or eliminating IR 
code.

● However, much of optimization results 
from moving code from one basic block 
to another.



  

Code Size is Not Execution Time

● All of the analyses we've seen so far have 
worked by simplifying or eliminating IR 
code.

● However, much of optimization results 
from moving code from one basic block 
to another.

a = b + c



  

Code Size is Not Execution Time

● All of the analyses we've seen so far have 
worked by simplifying or eliminating IR 
code.

● However, much of optimization results 
from moving code from one basic block 
to another. a = b + c



  

Code Size is Not Execution Time

● In some cases, it is possible to decrease 
execution time by inserting new code 
into the program.

● One possible example:



  

Code Size is Not Execution Time

● In some cases, it is possible to decrease 
execution time by inserting new code 
into the program.

● One possible example:

d = b + c

a = b + c

e = b + c



  

Code Size is Not Execution Time

● In some cases, it is possible to decrease 
execution time by inserting new code 
into the program.

● One possible example:
t
0
 = b + c

d = b + c

a = b + c

e = b + c



  

Code Size is Not Execution Time

● In some cases, it is possible to decrease 
execution time by inserting new code 
into the program.

● One possible example:
t
0
 = b + c

d = t
0

a = t
0

e = t
0



  

Eliminating Redundancy

● A computation in a program is said to be 
redundant if it computes a value that is 
already known.

● Common subexpressions are one 
example of redundancy.

● Loop-invariant code is another example.
● Virtually all optimizing compilers have 

some logic to try to eliminate 
redundancy.



  

Partial Redundancy

● One of the trickiest cases of redundancy 
to eliminate is partial redundancy.

● A computation is partially redundant if 
its value is known on only some of the 
paths that reach it.
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Eliminating Partial Redundancy

● Goal: Eliminate partial redundancy 
without making any execution of the 
program do more work than before.

● Optimized code should always be at least 
as good as the original.



  

The Key Observation
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An expression is called anticipated at a 
program point if the expression is 

guaranteed to be used after that point.



  

Although not all paths through the program 
might directly need an expression, they 

may anticipate the expression.
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Partial-Redundancy Elimination

● Idea: Make the expression available 
everywhere that it's anticipated.

● Run an analysis to locate where the 
expression is anticipated.

● Run a second analysis to locate where 
the expression is available.

● Place the expression at the earliest 
locations where the expression is 
anticipated but not available.



  

Eliminating Redundancy
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Eliminating Redundancy II
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Eliminating Redundancy III
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Partial Redundancy Elimination

● Powerful optimization; handles a huge 
number of disparate cases.

● Subsumes common subexpression 
elimination, loop invariant code motion, 
full redundancy elimination, and copy 
propagation.

● Almost all compilers do this.



  

In Practice

● Partial-redundancy elimination is typically 
implemented using four dataflow analyses.
● Pass one: Determine where anticipated.
● Pass two: Determine where available.
● Pass three: Find best placement.
● Pass four: Cleanup unnecessary temporaries.

● A bit more complex than what we covered:
● Have to add basic blocks at some points.
● For very complex CFGs, might miss some 

redundancy.

● See Dragon Book, Ch. 9.5 for more details.



  

Summary

● The dataflow framework gives a unified framework for 
defining global analyses.

● All of the following analyses can be formulated in the 
dataflow framework:
● Global dead code elimination.
● Global constant propagation.
● Partial redundancy elimination.

● Meet semilattices give a way of describing how to 
initialize the analysis and combine intermediate results.

● Monotone transfer functions, combined with finite-
height lattices, are necessary to guarantee termination.



  

Next Time

● Register Allocation
● The memory hierarchy.
● Naive register allocation.
● Linear scan allocation.
● Graph-coloring allocation.
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