
  

Fundamental Graph Algorithms
Part II



  

Outline for Today

● Dijkstra's Algorithm
● An algorithm for finding shortest paths in more 

realistic settings

● Depth-First Search
● A different graph search algorithm.

● Directed Acyclic Graphs
● Graphs for representing prerequisites.

● (ITA) Topological Sorting
● Algorithms for ordering dependencies.



  

Recap from Last Time



  

Breadth-First Search

● Given an arbitrary graph G = (V, E) and a 
starting node s ∈ V, breadth-first search finds 
shortest paths from s to each reachable node v.

● When implemented using an adjacency list, runs 
in O(m + n) time, which we defined to be linear 
time on a graph.

● One correctness proof worked in terms of 
“layers:” the algorithm finds all nodes at 
distance 0, 1, 2, … in order.



  

A Second Intuition for BFS
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A Second Intuition

● At each point in the execution of BFS, a node v is either

● green, and we have the shortest path to v;

● yellow, and it is connected to some green node; or

● gray, and v is undiscovered.

● Each iteration, we pick a yellow node with minimal distance 
from the start node and color it green.  So what is the cost 
of the lowest-cost yellow node?

● If v is yellow, it is connected to a green node u by an edge.

● The cost of getting from s to v is then d(s, u) + 1.

● BFS works by picking the yellow node v minimizing

d(s, u) + 1

where (u, v) is an edge and u is green.
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Lemma: Suppose we have shortest paths computed for nodes S ⊆ V,
where s ∈ S.  Consider a node v where (u, v) ∈ E, u ∈ S, and the
quantity d(s, u) + 1 is minimized.  Then d(s, v) = d(s, u) + 1.

Proof: There is a path to v of cost d(s, u) + 1: follow the shortest
path to u (which has cost d(s, u)), then follow one more edge to
v for total cost d(s, u) + 1.

Now suppose for the sake of contradiction that there is a shorter 
path P to v.  This path must start in S (since s ∈ S) and leave S 
(since v ∉ S).  So consider when P leaves S.  When this happens, 
P must go from s to some node x ∈ S, cross an edge (x, y) to 
some node y, then continue from y to v.  This means that |P| is at 
least d(s, x) + 1, since the path goes from s to x and then follows 
at least one more edge.

Since v was picked to minimize d(s, u) + 1 for any choice of
u ∈ S adjacent to an edge (u, v), we know

d(s, u) + 1 ≤ d(s, x) + 1 ≤ |P|

contradicting the fact that |P| < d(s, u) + 1.  We have reached a 
contradiction, so our assumption was wrong and no shorter path 
exists.

Since there is a path of length d(s, u) + 1 from s to v and no 
shorter path, this means that d(s, v) = d(s, u) + 1. ■



  

Why These Two Proofs Matter

● The first proof of correctness (based on layers) 
is based on our first observation: the nodes 
visited in BFS radiate outward from the start 
node in ascending order of distance.

● The second proof of correctness (based on 
picking the lowest yellow node) is based on our 
second observation: picking the lowest-cost 
yellow node correctly computes a shortest 
path.

● Interestingly, this second correctness proof can 
be generalized to a larger setting...



  



  

Edges with Costs

● In many applications, edges have an associated 
length (or cost, weight, etc.), denoted l(u, v).

● Assumption: Lengths are nonnegative.  (We'll 
revisit this later in the quarter.)

● Let's say that the length of a path P (denoted 
l(P)) is the sum of all the edge lengths in the 
path P.

● Goal: find the shortest path from s to every 
node in V, taking costs into account.
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The black edges form a 
shortest-path tree, 

which traces the shortest 
paths from each node to 

the source node.

The black edges form a 
shortest-path tree, 

which traces the shortest 
paths from each node to 

the source node.



  

 procedure dijkstrasAlgorithm(s, G):
  let q be a new queue
  for each v in V:
     dist[v] = ∞

  dist[s] = 0
  enqueue(s, q)

  while q is not empty:
     let v be a node in q minimizing dist[v]
     remove(v, q)

     for each node u connected to v:
        if dist[u] > dist[v] + l(u, v):
           dist[u] = dist[v] + l(u, v)
           if u is not enqueued into q:
              enqueue(u, q)    

 procedure dijkstrasAlgorithm(s, G):
  let q be a new queue
  for each v in V:
     dist[v] = ∞

  dist[s] = 0
  enqueue(s, q)

  while q is not empty:
     let v be a node in q minimizing dist[v]
     remove(v, q)
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Dijkstra's Algorithm

● Assuming nonnegative edge lengths, finds the 
shortest path from s to each node in G.

● Correctness proof sketch is based on the second 
argument for breadth-first search:

● Always picks the node v minimizing d(s, u) + l(u, v) 
for yellow v and green u.

● If a shorter path P exists to v, it must leave the set 
of green nodes through some edge (x, y).

● But then l(P) is at least d(s, x) + l(x, y), which is at 
least d(s, u) + l(u, v).

● So the “shorter” path costs at least as much as the 
path we found.
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Dijkstra Runtime

● Using a standard implementation of a queue, Dijkstra's 
algorithm runs in time O(n2).

● O(n + m) time processing nodes and edges, plus 
O(n2) time finding the lowest-cost node.

● Since m = O(n2), O(n + m + n2) = O(n2).
● Using a slightly fancier data structure (a binary heap), 

can be made to run in time O(m log n).

● Is this necessarily more efficient?

● More on how to do this later this quarter.

● Using a much fancier data structure (the Fibonacci 
heap), can be made to run in time
O(m + n log n).

● Take CS166 for details!



  

Shortest Path Algorithms

● If all edges have the same weight, can use 
breadth-first search to find shortest paths.
● Takes time O(m + n).

● If edges have nonnegative weight, can use 
Dijkstra's algorithm.
● Takes time O(n2), or less using more complex 

data structures.

● What about the case where edges can have 
negative weight?
● More on that later in the quarter...



  

Depth-First Search



  

BFS and DFS

● Last time, we saw the breadth-first search 
(BFS) algorithm, which explored a graph 
and found shortest paths.

● The algorithm explored outward in all 
directions uniformly.

● We will now see depth-first search (DFS), 
an algorithm that explores out in one 
direction, backing up when necessary.
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Depth-First Search

These black edges for a 
depth-first search 

tree, which traces paths 
from the root to each 

node in the graph.

These black edges for a 
depth-first search 

tree, which traces paths 
from the root to each 

node in the graph.



  

Depth-First Search, Again



  

Depth-First Search, Again



  

Depth-First Search, Again



  

Depth-First Search, Again



  

Depth-First Search, Again



  

Depth-First Search, Again



  

Depth-First Search, Again



  

Depth-First Search, Again



  

Depth-First Search, Again



  

Depth-First Search, Again



  

Depth-First Search, Again



  

Depth-First Search, Again



  

Depth-First Search, Again



  

Depth-First Search, Again



  

Depth-First Search, Again



  

Depth-First Search, Again



  

Depth-First Search, Again



  

Depth-First Search, Again



  

Depth-First Search, Again



  

Depth-First Search, Again



  

Depth-First Search, Again



  

Depth-First Search, Again



  

Depth-First Search, Again



  

Depth-First Search, Again



  

Depth-First Search, Again



  

Depth-First Search, Again



  

Depth-First Search, Again



  

Depth-First Search, Again



  

Depth-First Search, Again



  

Depth-First Search, Again



  

Depth-First Search, Again



  

procedure DFS(node v):
    color v yellow.

    for each neighbor u of v:
       if u is gray:
          DFS(u)

    color v green

procedure doDFS(graph G, node s):
   for each node v in G:
       color v gray
   DFS(s)

procedure DFS(node v):
    color v yellow.

    for each neighbor u of v:
       if u is gray:
          DFS(u)

    color v green

procedure doDFS(graph G, node s):
   for each node v in G:
       color v gray
   DFS(s)



  

  Question 1: What nodes will DFS reach?

  Question 2: How efficiently will DFS reach
those nodes?
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Theorem: When DFS(s) is called on node s, no nodes
reachable from s will be gray when DFS(s) and all
ancestor calls return.

Proof: By induction on the distance of nodes from s.  As a
base case, consider all nodes at distance 0 from s.  This
is just s itself.  When DFS(s) is called, DFS(s) will color s
yellow, then green.

Suppose the claim holds for all nodes at distance n from s; we'll 
prove it holds for all nodes at distance n + 1 from s.  Take any 
node v at distance n + 1 from s; v is adjacent to some node u at 
distance n from s.  By our IH, u will not be gray when DFS(s) 
and its ancestor calls return, so DFS(u) must have been called at 
some point. This call must have called DFS on each of u's gray 
neighbors.  If v was gray at this time, DFS(v) must have been 
called on v, coloring v yellow and then green.  Otherwise, v was 
already not colored gray.

Since our choice of v was arbitrary, no nodes at distance n + 1 
will be gray when DFS(s) and its ancestor calls return, 
completing the induction. ■
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Theorem: When DFS(s) is called on a node s, no recursive
calls will be made on nodes not reachable from s.

Proof: By contradiction; assume a recursive call is made
on at least one node not reachable from s.  There must
be a first node visited this way; call it v.  v can't be s,
since s is trivially reachable from itself.  Thus DFS(v)
must have been recursively invoked by DFS(u) for some
node u ≠ v, which in turn called DFS(v).  This means
edge (u, v) must exist.  Now, we consider two cases:

Case 1: u is reachable from s.  But then v is 
reachable from s, because we can take the path from 
s to u and follow edge (u, v).

Case 2: u is not reachable from s.  But then v was not 
the first node not reachable from s to have DFS 
called on it.

In either case, we reach a contradiction, so our 
assumption was wrong.  Thus DFS(s) never makes 
recursive calls on nodes not reachable from s. ■
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What DFS Visits

● Taken together, the two theorems we have 
proven show the following:
● When DFS(s) terminates, every node reachable from 

s will have had DFS called on it, though the call to 
DFS(s) might not have initiated those other calls.

● When DFS(s) terminates, it will never have called 
DFS on a node not reachable from s.

● Thus when DFS(s) terminates, the only nodes 
DFS will have been called on are nodes on 
which DFS had already been called, plus the 
nodes reachable from s.



  

  Question 1: What nodes will DFS reach?

  Question 2: How efficiently will DFS reach
those nodes?



  

  Question 1: What nodes will DFS reach?

  Question 2: How efficiently will DFS reach
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procedure DFS(node v):
    color v yellow.

    for each neighbor u of v:
       if u is gray:
          DFS(u)

    color v green

procedure doDFS(graph G, node s):
   for each node v in G:
       color v gray
   DFS(s)

procedure DFS(node v):
    color v yellow.

    for each neighbor u of v:
       if u is gray:
          DFS(u)

    color v green

procedure doDFS(graph G, node s):
   for each node v in G:
       color v gray
   DFS(s)



  

Analyzing Recursive Functions

● In general, it can be very difficult to 
analyze the runtime of a recursive 
function.
● We'll see some techniques for special cases 

later in the quarter.

● One general technique is to look at the 
total number of calls made and the work 
done at each call.



  

Analyzing DFS

● The maximum number of function calls made is 
O(n), since we can't call DFS on a node twice.

● Each call to DFS on node v does Θ(deg+(v)) work, 
since it visits each outgoing edge from v exactly 
once.

● Summing across all recursive calls:

● O(n) work done initially coloring nodes.
● O(n) work done coloring nodes yellow / green.
● O(m) work visiting edges.
● Total work done: O(m + n).

● When might this not do Θ(m + n) work?



  

BFS and DFS

● BFS and DFS always visit the same set of 
nodes.

● However, BFS always finds the shortest 
path from the source node to each other 
node in the graph, while DFS might not.

● That said: the order in which DFS visits 
nodes is pretty important and has lots of 
applications.  We'll see some of them soon... 



  

Ordering Prerequisites
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Modeling Prerequisites

● We can model prerequisites as a graph 
with the following properties:
● The graph has to be directed, since we have 

to be able to distinguish “A depends on B” 
from “B depends on A.”

● The graph has to be acyclic (containing no 
cycles), since otherwise there is no way to 
accomplish all the tasks.

● A graph with this property is called a 
directed acyclic graph, or DAG.



  

Some DAG Terminology

● A source node in a 
DAG is a node with 
no incoming edges.

● A sink node in a 
DAG is a node with 
no outgoing edges.

● DAGs can have 
many sources and 
sinks.



  

Theorem: Every nonempty DAG has at least one source
node.

Proof: Suppose for the sake of contradiction that there
is a nonempty DAG G where each node has at least
one incoming edge.  Start at any node v1 ∈ G and
repeatedly follow an edge entering v1 in reverse. 
This gives a sequence of nodes v1, v2, v3, …

Since there are only finitely many nodes in the DAG, 
this process eventually must revisit a node vi.  But 
then we have that vi, vi+1, vi+2, …, vi is a cycle in G 
traced in reverse order, contradicting the fact that G 
is a DAG.  We have reached a contradiction, so our 
assumption was wrong and every DAG must contain 
at least one node with no incoming edges. ■
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Ordering Prerequisites

● When ordering prerequisites, we want to 
order the tasks such that no task is 
placed before tasks it depends on.

● In graph-theoretic terms: given a DAG 
G = (V, E), we want to order the nodes so 
that if (u, v) ∈ E, then v appears after u.

● Such an ordering is called a topological 
ordering.  An algorithm for finding a 
topological ordering is called a 
topological sort.
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procedure topologicalSort(DAG G):
    let result be an empty list.
    while G is not empty:
        let v be a node in G with indegree 0
        add v to result
        remove v from G
    return result
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Correctness Proof Sketch

● Whenever a node v is added to the result, it 
has no incoming edges.

● Therefore, either
● v never had any incoming edges, in which case 

adding v to result cannot place v out of order, or
● All of v's predecessors have already been placed 

into result, and v comes after all of them.

● Can't get stuck, since every nonempty DAG 
has at least one source.



  

Next Time

● Topological Sorting, Part II
● Connected Components
● Strongly-Connected Components
● Kosaraju's Algorithm I
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