Fundamental Graph Algorithms
Part Four
Announcements

• Problem Set One due right now.
 • Due Friday at 2:15PM using one late period.
• Problem Set Two out, due next Friday, July 12 at 2:15PM.
 • Play around with graphs and graph algorithms!
Outline for Today

- **Kosaraju's Algorithm, Part II**
 - Completing our algorithm for finding SCCs.
- **Applying Graph Algorithms**
 - How to put these algorithms into practice.
Recap from Last Time
Strongly Connected Components

• Let $G = (V, E)$ be a directed graph.
• Two nodes $u, v \in V$ are called strongly connected iff v is reachable from u and u is reachable from v.
• A strongly connected component (or SCC) of G is a set $C \subseteq V$ such that
 • C is not empty.
 • For any $u, v \in C$: u and v are strongly connected.
 • For any $u \in C$ and $v \in V - C$: u and v are not strongly connected.
Condensation Graphs

- The **condensation** of a directed graph G is the directed graph G^{SCC} whose nodes are the SCCs of G and whose edges are defined as follows:

 $$(C_1, C_2) \text{ is an edge in } G^{SCC} \text{ iff } \exists u \in C_1, v \in C_2. (u, v) \text{ is an edge in } G.$$

- In other words, if there is an edge in G from *any* node in C_1 to *any* node in C_2, there is an edge in G^{SCC} from C_1 to C_2.

- **Theorem:** G^{SCC} is a DAG for any graph G.
How do we find all the SCCs of a graph?
Topological Sort(ish)

- If we look purely at the *last* node from each SCC to turn green, we get a topological sort of G^{SCC} in reverse.
 - Here, each SCC is represented by a single node.
 - We proved this result last time.
- There's still a problem – we still don't have a way of identifying the last node of each SCC!
- We do have one foothold, though...
- **Onward to new content!**
Making Progress!

• The last node colored green by DFS must be the last node colored green in some SCC.

• This gives a rough idea for an algorithm:
 • Take the last node in the ordering that hasn't already been put into an SCC.
 • Find all nodes in the same SCC as that node.
 • Repeat.
Claim 1: This node must belong to a source SCC.
Claim 2: The SCCs of this reversed graph are the same as the SCCs of the original graph.
Claim 3: Since E is in a source SCC in the original graph, E is in a sink SCC in this graph.
Claim 4: The only nodes reachable from E are the nodes in the same SCC as E.
Claim 5: The only unvisited nodes reachable from \(H \) are the nodes in the same SCC as \(H \).
procedure kosarajuSCC(graph G):
 for each node v in G:
 color v gray.

 let L be an empty list.
 for each node v in G:
 if v is gray:
 run DFS starting at v, appending each
 node to list L when it is colored green.

 construct G^R from G.
 for each node v in G^R:
 color v gray.

 let scc be a new array of length n
 let index = 0
 for each node v in L, in reverse order:
 if v is gray:
 run DFS on v in G^R, setting scc[u] = index
 for each node u colored green this way.
 index = index + 1
 return scc
Proving Correctness

- Here's a quick sketch of the correctness proof of Kosaraju's algorithm:
 - As proven earlier, the last nodes in each SCC will be returned in reverse topological order.
 - Each time we do a DFS in the reverse graph starting from some node, we only reach nodes in the same SCC or in ancestor SCCs.
 - Since we process the SCCs in topological order, at each point the only unvisited nodes reachable are nodes in the same SCC.
Kosaraju's Algorithm Runtime

- What is the runtime of the Kosaraju's algorithm?
 - Runtime for running DFS starting from each node in the graph: $\Theta(m + n)$.
 - Runtime for reversing the graph and coloring all nodes gray: $\Theta(m + n)$.
 - Runtime for running DFS in the reversed graph: $\Theta(m + n)$.
 - Total runtime: $\Theta(m + n)$.
- This is a **linear-time algorithm**!
Why All This Matters

- Depth-first search is an important building block for many other algorithms, including topological sorting, finding connected components, and Kosaraju's algorithm.

- We can find CCs and SCCs in (asymptotically) the same amount of time.

- Further reading: look up Tarjan's SCC algorithm for a way to find SCCs with a single DFS!
Applied Graph Algorithms
The Story So Far

- We have now seen many algorithms that operate on graphs:
 - BFS
 - DFS
 - Dijkstra's algorithm
 - Topological sort (x2)
 - Finding CCs
 - Kosaraju's algorithm

- How do we apply these in practice?
Reusing Algorithms

- Developing new graph algorithms is **hard!**
- Often, it is easier to solve a problem on graphs by reusing existing graph algorithms.

Key idea: Use an existing graph algorithm as a “black box” with known properties and a known runtime.

- Makes algorithm easier to write: can just use an off-the-shelf implementation.
- Makes correctness proof easier: can “piggyback” on top of the existing correctness proof.
- Makes algorithm easier to analyze: runtime of key subroutine is known.
Sample Problem: **Minimizing Turns**
Minimizing Turns

- You are given a (possibly directed) graph $G = (V, E)$ where each edge goes either north, south, east, or west.
- You begin driving in some direction d.
- **Goal**: Find the path from $s \in V$ to $t \in V$ that minimizes the total number of turns made.
What This Looks Like

- This problem doesn't exactly match any of the algorithms we've seen so far.
- Similar to a shortest path problem, but we're charged whenever we make a turn, rather than whenever we follow an edge.
- Could we relate this back to BFS or Dijkstra's algorithm?
Shortest Paths as a Black Box

• Here's what we have now:

• Here are two options for solving our problem:
 • Open up the black box and try to change how it finds shortest paths. (Harder)
 • Change which input we put into the black box to trick it into solving our problem. (Easier)
Reductions

- Goal: Take our given graph \(G = (V, E) \), starting node \(s \), and starting direction \(d \), then build a new graph \(G' = (V', E') \) such that the following holds:

 \(\textbf{Shortest paths in } G' \textbf{ correspond to minimum-turn paths in } G. \)

- If we can build this graph \(G' \), our algorithm will be the following:
 - Build the graph \(G' \) out of \(G \), \(s \), and \(d \).
 - Use an existing algorithm for finding shortest paths to find shortest paths in \(G' \).
 - Using the shortest paths found in \(G' \), determine the minimum-turn path from \(s \) to \(t \).
A Major Observation

- When computing shortest paths in a graph, each node represents a possible “position” we can be in.

- In our problem, though, “position” also includes the direction you are currently facing.

- **Useful technique:** What if we create one node in the graph for each combination of a position in the original graph and a current direction?
The Construction

- For each $v \in V$, construct four nodes: v_N, v_S, v_E, v_W
- For each edge $(u, v) \in E$ that goes in direction d, construct four edges: (u_N, v_d), (u_S, v_d), (u_E, v_d), (u_W, v_d)
- Assign costs as follows:
 - $l(u_{d_1}, v_{d_2}) = 0$ if $d_1 = d_2$
 - $l(u_{d_1}, v_{d_2}) = 1$ if $d_1 \neq d_2$
- New graph has $4n$ nodes and $4m$ edges.
procedure minTurnPath(graph G, node s, node t, direction d):
 construct G' from G as described earlier.
 run Dijkstra's algorithm to find shortest paths from \(s_d \) to each other node in G'.
 return the shortest of the following paths:
 the shortest path from \(s_d \) to \(t_N \)
 the shortest path from \(s_d \) to \(t_S \)
 the shortest path from \(s_d \) to \(t_E \)
 the shortest path from \(s_d \) to \(t_W \)
Correctness Proof Sketch

- Suppose we start at node s facing direction d. Our goal is to get to node t minimizing turns.
- Consider the length, in the new graph, of the shortest path P from s_d to t_x for any direction x.
- $l(P)$ is the sum of all the edge costs in path P. Edges that continue in the same direction cost 0 and edges that change direction cost 1, so $l(P)$ is the number of turns in P.
- Since P is chosen to minimize $l(P)$, P has the fewest number of turns of any path from s_d to t_x.
- The minimum-turn path from s to t is then the cheapest of the paths from s_d to t_N, t_S, t_E, t_W.
Formalizing the Proof

• To be more formal, we should prove the following results:

 • **Lemma 1:** There is a path in G' from s_{d_1} to t_{d_2} iff there is a path in G from s to t that starts in direction d_1 and ends in direction d_2.

 • **Lemma 2:** There is a path in G' from s_{d_1} to t_{d_2} of cost k iff there is a path in G from s to t that starts in direction d_1, ends in direction d_2, and makes k turns.

• **We will expect this level of detail in the problem sets.**
Analyzing the Runtime

- Time required to construct the new graph: $\Theta(n + m)$, since there are $4n$ nodes and $4m$ edges and each can be built in $\Theta(1)$ time.
- Time required to find the shortest paths in this graph: $O(n^2)$, or better if we use a faster Dijkstra's implementation.
- Overall runtime: $O(n^2)$.
Speeding Things Up

• The algorithm we've described is correct, but it can be made more efficient.
• Observation: Every edge in the graph has cost 0 or 1.
• Our algorithm uses Dijkstra's algorithm in this graph.
• Can we speed up Dijkstra's algorithm if all edges cost 0 or 1?
Some Observations

• Dijkstra's algorithm works by
 • Choosing the lowest-cost node in the fringe.
 • Updating costs to all adjacent nodes.

• **Fact 1:** Once Dijkstra's algorithm dequeues a node at distance \(d \), all further nodes dequeued will be at distance \(\geq d \).

• Can prove this inductively: Initial distance is 0, and all other distances are formed by adding edge costs (which are nonnegative) to the distance of the most recently-dequeued node.
Some Observations

- **Fact 2:** If all edge costs are 0 or 1, every node in the queue will either be at distance d or distance $d + 1$ for some d.

- Can prove this by induction:
 - Initially, all nodes in the queue are at distance 0.
 - If all nodes are at distance d or $d + 1$, we dequeue a node at distance d. All nodes connected to it will then be reinserted at distance either d or $d + 1$.
A Better Queue Structure

• Store the queue as a doubly-linked list. Elements at the front are at distance d and elements at the back are at distance $d + 1$.

 • Enqueue: Compare distance to distance at front. If equal, put at front. If greater, put at back.

 • Dequeue: Remove first element.

 • If a distance decreases from $d + 1$ to d, move that element to the front.

• All operations can be done in O(1) time.
Theorem: In a graph where all edge costs are 0 or 1, Dijkstra's algorithm runs in time $O(m + n)$.

Proof Sketch: Use this new queue structure to store the nodes. Dijkstra's algorithm takes time $O(m + n)$ plus the time required for $O(m + n)$ queue operations, which with the new structure run in time $O(1)$ each. Thus the runtime is $O(m + n)$.

Corollary: The minimum-turns path problem can be solved in linear time.
Why All This Matters

- Look at the structure of our solution:
 - Show how to solve the new problem (minimizing turns) using a solver for an existing algorithm.
 - Argue correctness using the fact that the existing algorithm is correct.
 - Argue runtime using the runtime of the existing algorithm.
 - *(Optional)* Speed up the algorithm by showing how to faithfully simulate the original algorithm in less time.

- Many problems can be solved this way.
Next Time

- Divide-and-Conquer Algorithms
- Mergesort
- Solving Recurrences