Divide-and-Conquer Algorithms
Part Two
Recap from Last Time
Divide-and-Conquer Algorithms

- A **divide-and-conquer** algorithm is one that works as follows:
 - **(Divide)** Split the input apart into multiple smaller pieces, then recursively invoke the algorithm on those pieces.
 - **(Conquer)** Combine those solutions back together to form the overall answer.
- Can be analyzed using **recurrence relations**.
Two Important Recurrences

\[
\begin{align*}
T(0) &= \Theta(1) \\
T(1) &= \Theta(1) \\
T(n) &= T(\lfloor n / 2 \rfloor) + T(\lceil n / 2 \rceil) + \Theta(n)
\end{align*}
\]

Solves to \(O(n \log n)\)

\[
\begin{align*}
T(0) &= \Theta(1) \\
T(1) &= \Theta(1) \\
T(n) &\leq T(\lfloor n / 2 \rfloor) + \Theta(1)
\end{align*}
\]

Solves to \(O(\log n)\)
Outline for Today

- **More Recurrences**
 - Other divide-and-conquer relations.
- **Algorithmic Lower Bounds**
 - Showing that certain problems cannot be solved within certain limits.
- **Binary Heaps**
 - A fast data structure for retrieving elements in sorted order.
Another Algorithm: \textit{Maximizing Unimodal Arrays}
Unimodality

| 1 | 3 | 4 | 5 | 7 | 8 | 10 | 12 | 13 | 14 | 10 | 9 | 6 | 2 |
Unimodality
An array is called **unimodal** iff it can be split into an increasing sequence followed by a decreasing sequence.
An array is called **unimodal** iff it can be split into an increasing sequence followed by a decreasing sequence.
Unimodality
Unimodality
Unimodality
Unimodality

| 1 | 3 | 4 | 5 | 7 | 8 | 10 | 12 | 13 | 14 | 10 | 9 | 6 | 2 |
|---|---|---|---|---|---|----|----|----|----|----|---|---|---|---|
Unimodality
Unimodality

1 3 4 5 7 8 10 12 13 14 10 9 6 2
Unimodality
Unimodality
Unimodality
procedure unimodalMax(list A, int low, int high):
 if low = high - 1:
 return A[low]

 let mid = ⌊(high + low) / 2⌋
 return unimodalMax(A, mid + 1, high)
 else:
 return unimodalMax(A, low, mid + 1)
procedure unimodalMax(list A, int low, int high):
 if low = high - 1:
 return A[low]

 let mid = ⌊(high + low) / 2⌋
 return unimodalMax(A, mid + 1, high)
 else:
 return unimodalMax(A, low, mid + 1)

T(1) = Θ(1)
procedure unimodalMax(list A, int low, int high):
 if low = high - 1:
 return A[low]
 let mid = ⌊(high + low) / 2⌋
 return unimodalMax(A, mid + 1, high)
 else:
 return unimodalMax(A, low, mid + 1)

T(1) = Θ(1)
T(n) ≤ T(⌈n / 2⌉) + Θ(1)
procedure unimodalMax(list A, int low, int high):
 if low = high - 1:
 return A[low]

 let mid = ⌊(high + low) / 2⌋
 return unimodalMax(A, mid + 1, high)
 else:
 return unimodalMax(A, low, mid + 1)

T(1) = Θ(1)
T(n) ≤ T(⌈n / 2⌉) + Θ(1)

O(log n)
Unimodality II

1 3 4 5 7 8 10 10 13 14 10 9 6 2
Unimodality II
A weakly unimodal array is one that can be split into a nondecreasing sequence followed by a nonincreasing sequence.
A weakly unimodal array is one that can be split into a nondecreasing sequence followed by a nonincreasing sequence.
Unimodality II
Unimodality II
Unimodality II
Unimodality II
Unimodality II
Unimodality II
procedure weakUnimodalMax(list A, int low, int high):
 if low = high - 1:
 return A[low]

 let mid = ⌊(high + low) / 2⌋
 return weakUnimodalMax(A, mid + 1, high)
 return weakUnimodalMax(A, low, mid + 1)
 else
 return max(weakUnimodalMax(A, low, mid + 1), weakUnimodalMax(A, mid + 1, high))
procedure weakUnimodalMax(list A, int low, int high):
 if low = high - 1:
 return A[low]

 let mid = ⌊(high + low) / 2⌋
 return weakUnimodalMax(A, mid + 1, high)
 return weakUnimodalMax(A, low, mid + 1)
 else
 return max(weakUnimodalMax(A, low, mid + 1), weakUnimodalMax(A, mid + 1, high))

T(1) = Θ(1)
procedure weakUnimodalMax(list A, int low, int high):
 if low = high - 1:
 return A[low]

 let mid = ⌊(high + low) / 2⌋
 return weakUnimodalMax(A, mid + 1, high)
 return weakUnimodalMax(A, low, mid + 1)
 else
 return max(weakUnimodalMax(A, low, mid + 1)
 weakUnimodalMax(A, mid + 1, high))

T(1) = Θ(1)
T(n) ≤ T(⌈n / 2⌉) + T(⌊n / 2⌋) + Θ(1)
\[
T(1) \leq c \\
T(n) \leq T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + c
\]
\begin{align*}
T(1) & \leq c \\
T(n) & \leq T(n / 2) + T(n / 2) + c
\end{align*}

procedure weakUnimodalMax(list A, int low, int high):
 if low = high - 1:
 return A[low]
 let mid = \lfloor (high + low) / 2 \rfloor
 return weakUnimodalMax(A, mid + 1, high)
 return weakUnimodalMax(A, low, mid + 1)
 else
 return max(weakUnimodalMax(A, low, mid + 1), weakUnimodalMax(A, mid + 1, high))
procedure weakUnimodalMax(list A, int low, int high):
 if low = high - 1:
 return A[low]

 let mid = ⌊(high + low) / 2⌋
 return weakUnimodalMax(A, mid + 1, high)
 return weakUnimodalMax(A, low, mid + 1)
 else
 return max(weakUnimodalMax(A, low, mid + 1),
 weakUnimodalMax(A, mid + 1, high))

T(1) ≤ c
T(n) ≤ 2T(n / 2) + c
$T(1) \leq c$

$T(n) \leq 2T(n / 2) + c$
\[T(1) \leq c \]
\[T(n) \leq 2T(n/2) + c \]

\[T(n) \leq 2T\left(\frac{n}{2}\right) + c \]
\[T(1) \leq c \]

\[T(n) \leq 2T(n/2) + c \]

\[T(n) \leq 2T\left(\frac{n}{2}\right) + c \]

\[\leq 2 \left(2T\left(\frac{n}{4}\right) + c \right) + c \]
\[
T(1) \leq c \\
T(n) \leq 2T(n/2) + c
\]

\[
T(n) \leq 2T\left(\frac{n}{2}\right) + c \\
\leq 2\left(2T\left(\frac{n}{4}\right) + c\right) + c \\
\leq 4T\left(\frac{n}{4}\right) + 2c + c
\]
\begin{align*}
T(1) & \leq c \\
T(n) & \leq 2T(n/2) + c
\end{align*}

\begin{align*}
T(n) & \leq 2T\left(\frac{n}{2}\right) + c \\
& \leq 2 \left(2T\left(\frac{n}{4}\right) + c \right) + c \\
& \leq 4T\left(\frac{n}{4}\right) + 2c + c \\
& = 4T\left(\frac{n}{4}\right) + 3c
\end{align*}
\begin{align*}
T(1) & \leq c \\
T(n) & \leq 2T(n/2) + c
\end{align*}

\begin{align*}
T(n) & \leq 2T\left(\frac{n}{2}\right) + c \\
& \leq 2 \left(2T\left(\frac{n}{4}\right) + c\right) + c \\
& \leq 4T\left(\frac{n}{4}\right) + 2c + c \\
& = 4T\left(\frac{n}{4}\right) + 3c \\
& \leq 4 \left(2T\left(\frac{n}{8}\right) + c\right) + 3c
\end{align*}
\[
T(n) \leq 2T\left(\frac{n}{2}\right) + c
\]

\[
\leq 2 \left(2T\left(\frac{n}{4}\right) + c \right) + c
\]

\[
\leq 4 T\left(\frac{n}{4}\right) + 2c + c
\]

\[
= 4 T\left(\frac{n}{4}\right) + 3c
\]

\[
\leq 4 \left(2T\left(\frac{n}{8}\right) + c \right) + 3c
\]

\[
= 8 T\left(\frac{n}{8}\right) + 4c + 3c.
\]
\[T(1) \leq c \]
\[T(n) \leq 2T(n/2) + c \]

\[
T(n) \leq 2T\left(\frac{n}{2}\right) + c \\
\leq 2 \left(2T\left(\frac{n}{4}\right) + c \right) + c \\
\leq 4T\left(\frac{n}{4}\right) + 2c + c \\
= 4T\left(\frac{n}{4}\right) + 3c \\
\leq 4 \left(2T\left(\frac{n}{8}\right) + c \right) + 3c \\
= 8T\left(\frac{n}{8}\right) + 4c + 3c \\
= 8T\left(\frac{n}{8}\right) + 7c \]
\[T(1) \leq c \]
\[T(n) \leq 2T(n/2) + c \]

\[
T(n) \leq 2T\left(\frac{n}{2}\right) + c \\
\leq 2 \left(2T\left(\frac{n}{4}\right) + c\right) + c \\
\leq 4T\left(\frac{n}{4}\right) + 2c + c \\
= 4T\left(\frac{n}{4}\right) + 3c \\
\leq 4 \left(2T\left(\frac{n}{8}\right) + c\right) + 3c \\
= 8T\left(\frac{n}{8}\right) + 4c + 3c \\
= 8T\left(\frac{n}{8}\right) + 7c \\
\ldots \\
\leq 2^k T\left(\frac{n}{2^k}\right) + (2^k - 1)c \]
\[T(1) \leq c \]
\[T(n) \leq 2T(n/2) + c \]

\[T(n) \leq 2^k T\left(\frac{n}{2^k}\right) + (2^k - 1)c \]
\[T(1) \leq c \]
\[T(n) \leq 2T(n/2) + c \]

\[T(n) \leq 2^k T\left(\frac{n}{2^k}\right) + (2^k - 1)c \]

\[\leq 2^{\log_2 n} T(1) + (2^{\log_2 n} - 1)c \]
\[T(1) \leq c \]
\[T(n) \leq 2T(n/2) + c \]

\[
T(n) \leq 2^k T\left(\frac{n}{2^k}\right) + (2^k - 1)c \\
\leq 2^{\log_2 n} T(1) + (2^{\log_2 n} - 1)c \\
= n T(1) + c(n - 1)
\]
\[T(1) \leq c \]
\[T(n) \leq 2T(n/2) + c \]

\[
T(n) \leq 2^k T\left(\frac{n}{2^k}\right) + (2^k - 1)c
\]

\[
\leq 2^{\log_2 n} T(1) + (2^{\log_2 n} - 1)c
\]

\[
= n T(1) + c(n-1)
\]

\[
\leq c n + c(n-1)
\]
\[T(1) \leq c \]
\[T(n) \leq 2T(n/2) + c \]

\[
T(n) \leq 2^k T\left(\frac{n}{2^k}\right) + (2^k - 1)c
\]

\[
\leq 2^{\log_2 n} T(1) + (2^{\log_2 n} - 1)c
\]

\[
= nT(1) + c(n-1)
\]

\[
\leq cn + c(n-1)
\]

\[
= 2cn - c
\]
\[T(1) \leq c \]
\[T(n) \leq 2T(n/2) + c \]

\[
T(n) \leq 2^k T\left(\frac{n}{2^k} \right) + (2^k - 1)c
\]

\[
\leq 2^{\log_2 n} T(1) + (2^{\log_2 n} - 1)c
\]

\[
= nT(1) + c(n-1)
\]

\[
\leq cn + c(n-1)
\]

\[
= 2cn - c
\]

\[
= O(n)
\]
\[T(1) \leq c \]
\[T(n) \leq 2T(n/2) + c \]
\[T(1) \leq c \]
\[T(n) \leq 2T(n/2) + c \]
\[T(1) \leq c \]
\[T(n) \leq 2T(n / 2) + c \]
$T(1) \leq c$

$T(n) \leq 2T(n/2) + c$
\[T(1) \leq c \]
\[T(n) \leq 2T(n/2) + c \]
\[T(1) \leq c \]
\[T(n) \leq 2T(n / 2) + c \]
\[T(1) \leq c \]
\[T(n) \leq 2T(n / 2) + c \]
\[T(1) \leq c \]
\[T(n) \leq 2T(n/2) + c \]
\[T(1) \leq c \]
\[T(n) \leq 2T(n/2) + c \]
\[T(1) \leq c \]
\[T(n) \leq 2T(n/2) + c \]
\[
T(1) \leq c \\
T(n) \leq 2T(n/2) + c
\]
\[T(1) \leq c \]
\[T(n) \leq 2T(n/2) + c \]

\[(n - 1)c + cn \]
\[T(1) \leq c \]
\[T(n) \leq 2T(n / 2) + c \]

\[cn - c + cn \]
\[T(1) \leq c \]
\[T(n) \leq 2T(n/2) + c \]

2cn - c
Another Recurrence Relation

• The recurrence relation

\[
\begin{align*}
T(1) &= \Theta(1) \\
T(n) &\leq T(\lceil n / 2 \rceil) + T(\lfloor n / 2 \rfloor) + \Theta(1)
\end{align*}
\]

solves to \(T(n) = O(n) \)

• Intuitively, the recursion tree is “bottomheavy:” the bottom of the tree accounts for almost all of the work.
Unimodal Arrays

- Our recurrence shows that the work done is $O(n)$, but this might not be a tight bound.
- Does our algorithm ever do $\Omega(n)$ work?
- **Yes:** What happens if all array values are equal to one another?
- Can we do better?
A Lower Bound

- **Claim**: Every correct algorithm for finding the maximum value in a unimodal array must do $\Omega(n)$ work in the worst-case.

- Note that this claim is over *all possible algorithms*, so the argument had better be watertight!
A Lower Bound

• We will prove that any algorithm for finding the maximum value of a unimodal array must, on at least one input, inspect all n locations.

• *Proof idea*: Suppose that the algorithm didn't do this.
A Lower Bound

- We will prove that any algorithm for finding the maximum value of a unimodal array must, on at least one input, inspect all n locations.

- **Proof idea**: Suppose that the algorithm didn't do this.
A Lower Bound

• We will prove that any algorithm for finding the maximum value of a unimodal array must, on at least one input, inspect all n locations.

• Proof idea: Suppose that the algorithm didn't do this.
We will prove that any algorithm for finding the maximum value of a unimodal array must, on at least one input, inspect all n locations.

Proof idea: Suppose that the algorithm didn't do this.
A Lower Bound

- We will prove that any algorithm for finding the maximum value of a unimodal array must, on at least one input, inspect all n locations.

- *Proof idea*: Suppose that the algorithm didn't do this.
Algorithmic Lower Bounds

- The argument we just saw is called an adversarial argument and is often used to establish algorithmic lower bounds.

- Idea: Show that if an algorithm doesn't do enough work, then it cannot distinguish two different inputs that require different outputs.

- Therefore, the algorithm cannot always be correct.
o Notation

- Let \(f, g : \mathbb{N} \to \mathbb{N} \).
- We say that \(f(n) = o(g(n)) \) (\(f \) is little-o of \(g \)) iff
 \[
 \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0
 \]
- In other words, \(f \) grows strictly slower than \(g \).
- Often used to describe impossibility results.
- For example: There is no \(o(n) \)-time algorithm for finding the maximum element of a weakly unimodal array.
What Does This Mean?

- In the worst-case, our algorithm must do $\Omega(n)$ work.
- That's the same as a linear scan over the input array!
- Is our algorithm even worth it?
- **Yes**: In most cases, the runtime is $\Theta(\log n)$ or close to it.
Binary Heaps
Data Structures Matter

- We have seen two instances where a better choice of data structure improved the runtime of an algorithm:
 - Using adjacency lists instead of adjacency matrices in graph algorithms.
 - Using a double-ended queue in 0/1 Dijkstra's algorithm.
- Today, we'll explore a data structure that is useful for improving algorithmic efficiency.
- We'll come back to this structure in a few weeks when talking about Prim's algorithm and Kruskal's algorithm.
Priority Queues

- A **priority queue** is a data structure for storing elements associated with *priorities* (often called *keys*).
- Optimized to find the element that currently has the smallest key.
- Supports the following operations:
 - **enqueue**\((k, v)\) which adds element \(v\) to the queue with key \(k\).
 - **is-empty**, which returns whether the queue is empty.
 - **dequeue-min**, which removes the element with the least priority from the queue.
- Many implementations are possible with varying tradeoffs.
A Naive Implementation

- One simple way to implement a priority queue is with an unsorted array key/value pairs.
- To enqueue v with key k, append (k, v) to the array in time O(1).
- To check whether the priority queue is empty, check whether the underlying array is empty in time O(1).
- To dequeue-min, scan across the array to find an element with minimum key, then remove it in time O(n).
- Doing n enqueues and n dequeues takes time O(n^2).
A Better Implementation

```
1
  /\    /
 /   \  /  \
3   8  4  5  9
```
This tree obeys the **heap property**: each node's key is less than or equal to all its descendants' keys.
This tree obeys the **heap property**: each node's key is less than or equal to all its descendants' keys.
A Better Implementation
A Better Implementation

This is a complete binary tree: every level except the last one is filled in completely.
A Better Implementation

```
1
/\  \
3  8
/\  /\  \
4 5 9
```
A Better Implementation

![Diagram of a tree with nodes 0, 1, 2, 3, 4, 5, 9, 8, and 2]
A Better Implementation

```
    1
   / \  /
  3  2
 /   /   /
4  5  9  8
   /    /
  0
```
A Better Implementation
A Better Implementation
A Better Implementation
A Better Implementation

```
0
  1   2
  3   5   9   8
   4
```
A Better Implementation

```
     0
    /|
   / |\n  1  2
 /   |
3     9
|
4
```
A Better Implementation

Yo.

'Sup.
A Better Implementation

```
          1
         / \
        /   \
       /     \
      /       \
     /         \
    /           \
   /             \
  /               \
 /                 \
/                   \
/                     \
/                       \
/                           \
/                               \
/                                   \
/                                       \
/                                           \
/                                               \
/                                               \
/                                                   
```

```plaintext
1
3
   2
   5

2
9

8

4
```
A Better Implementation
A Better Implementation
Binary Heap Efficiency

- The enqueue and dequeue operations on a binary heap all run $O(h)$, where h is the height of the tree.

- In a perfect binary tree of height h, there are $1 + 2 + 4 + 8 + \ldots + 2^h = 2^{h+1} - 1$ nodes.

- If there are n nodes, the maximum height would be found by setting $n = 2^{h+1} - 1$.

- Solving, we get that $h = \log_2 (n + 1) - 1$

- Thus $h = \Theta(\log n)$, so enqueue and dequeue take time $O(\log n)$.
Implementing Binary Heaps

- It is extremely rare to actually implement a binary heap as a tree structure.
- Can encode the heap as an array:
Implementing Binary Heaps

- It is extremely rare to actually implement a binary heap as a tree structure.
- Can encode the heap as an array:
Implementing Binary Heaps

- It is extremely rare to actually implement a binary heap as a tree structure.
- Can encode the heap as an array:
Implementing Binary Heaps

- It is extremely rare to actually implement a binary heap as a tree structure.
- Can encode the heap as an array:

```
  1
 / \
3   8
```

Assuming one-indexing:
- Node n has children at positions $2n$ and $2n + 1$.
- Node n has its parent at position $\lfloor n / 2 \rfloor$.

```
1  3  8  4  5  9
```
Application: Heapsort
Sorting with Binary Heaps

3 1 4 0 5 9 2
Sorting with Binary Heaps

3

3 1 4 0 5 9 2
Sorting with Binary Heaps

3

3

1 4 0 5 9 2
Sorting with Binary Heaps
Sorting with Binary Heaps
Sorting with Binary Heaps

This is a max-heap (where larger values are on top), as opposed to a min-heap (where smaller values are on top). We'll see why in a minute.
Sorting with Binary Heaps

1 3

3 1 4 0 5 9 2
Sorting with Binary Heaps
Sorting with Binary Heaps

3 1 4 0 5 9 2
Sorting with Binary Heaps

![Binary Heap Diagram]

3 1 4 0 5 9 2

3 1 4 0 5 9 2
Sorting with Binary Heaps

![Binary Heap Diagram]

3 1 4 0 5 9 2
Sorting with Binary Heaps
Sorting with Binary Heaps
Sorting with Binary Heaps

3 1 4 0 5 9 2
Sorting with Binary Heaps

```plaintext
| 3 | 1 | 4 | 0 | 5 | 9 | 2 |
```

Binary Heap Diagram:
- Root: 5
- Left child of 5: 4
 - Left child of 4: 0
 - Right child of 4: 1
- Right child of 5: 3

Sorting with Binary Heaps

3 1 4 0 5 9 2
Sorting with Binary Heaps

3 1 4 0 5 9 2
Sorting with Binary Heaps

3 1 4 0 5 9 9
Sorting with Binary Heaps

Oh no!
Sorting with Binary Heaps

3 1 4 0 5 9 9
Sorting with Binary Heaps
Sorting with Binary Heaps
Sorting with Binary Heaps
Sorting with Binary Heaps

3 1 4 0 5 9 9
Sorting with Binary Heaps

3 1 4 0 5 9 9
Sorting with Binary Heaps
Sorting with Binary Heaps

![Binary Heap Diagram]

3 1 4 0 5 5 9
Sorting with Binary Heaps
Sorting with Binary Heaps
Sorting with Binary Heaps

3 1 4 0 5
5 9
Sorting with Binary Heaps
Sorting with Binary Heaps
Sorting with Binary Heaps

3 1 4 0 4 5 9
Sorting with Binary Heaps
Sorting with Binary Heaps

3 1 4 3 4 5 9
Sorting with Binary Heaps
Sorting with Binary Heaps
Sorting with Binary Heaps
Sorting with Binary Heaps

3 1 2 3 4 5 9
Sorting with Binary Heaps

3 1 2 3 4 5 9

0 1
Sorting with Binary Heaps
Sorting with Binary Heaps

3 1 2 3 4 5 9

0
Sorting with Binary Heaps

3 1 2 3 4 5 9
Sorting with Binary Heaps

3 1 2 3 4 5 9
Sorting with Binary Heaps

0 1 2 3 4 5 9
A Better Idea

3 1 4 0 5 9 2
A Better Idea

<table>
<thead>
<tr>
<th></th>
<th>3</th>
<th>1</th>
<th>4</th>
<th>0</th>
<th>5</th>
<th>9</th>
<th>2</th>
</tr>
</thead>
</table>

3 is highlighted in green.
A Better Idea

3

3 1 4 0 5 9 2
A Better Idea
A Better Idea
A Better Idea

```
[3] [1] [4] [0] [5] [9] [2]
```
A Better Idea
A Better Idea

```
  4
 /\  \
1  3
```

```
4 1 3 0 5 9 2
```
A Better Idea
A Better Idea
A Better Idea

```
4 1 3 0 5 9 2
```
A Better Idea

5
4
0
1
3
9

5 4 9 0 1 3 2
A Better Idea

```
9
   / \  \\
  4   5
   \ /  \
   0  1  3
```

```
[9 4 5 0 1 3 2]
```
A Better Idea

```
  9
 / \
4   5
|
0 1 3
```

```
9 4 5 0 1 3 2
```
A Better Idea
A Better Idea

```
  9
 / \  /
4   5
|   /|
0   1 3
|   |
2   1

9  4  5  0  1  3  2
```
A Better Idea

```
A: 4
  B: 0 1
  C: 3 2

9 4 5 0 1 3 2
```
A Better Idea

```
2 4 5 0 1 3 9
```
A Better Idea
A Better Idea
A Better Idea

```
5
/ \
4   3
/ \ / \    
0  1 2  
```

```
5 4 3 0 1 2 9
```
A Better Idea

4
0
1
2

5 4 3 0 1 2 9
A Better Idea

```
1  2  3  0  4  5  9
```

```
0  2  3  1
```

```
```
A Better Idea

```
3 2 1 0 4 5 9
```

Diagram:
```
          3
         /   \
        /     \
       2      1
      /  \    /  \n     0    1  4  5
```

A Better Idea

3 2 1 0 4 5 9
A Better Idea

3 2 1 0 4 5 9
A Better Idea
A Better Idea
A Better Idea

2 0 1 3 4 5 9
A Better Idea

1

0

1

1 0 2 3 4 5 9
A Better Idea

1 0 2 3 4 5 9
A Better Idea
A Better Idea

0

0 1 2 3 4 5 9
A Better Idea

0
A Better Idea

0 1 2 3 4 5 9
Heapsort

• The **heapsort** algorithm is as follows:
 • Build a max-heap from the array elements, using the array itself to represent the heap.
 • Repeatedly dequeue from the heap until all elements are placed in sorted order.
• This algorithm runs in time $O(n \log n)$, since it does n enqueues and n dequeues.
• Only requires $O(1)$ auxiliary storage space, compared with $O(n)$ space required in mergesort.
An Optimization: **Heapify**
Making a Binary Heap

- Suppose that you have \(n \) elements and want to build a binary heap from them.
- One way to do this is to enqueue all of them, one after another, into the binary heap.
- We can upper-bound the runtime as \(n \) calls to an \(O(\log n) \) operation, giving a total runtime of \(O(n \log n) \).
- Is that a tight bound?
Making a Binary Heap
Making a Binary Heap
Making a Binary Heap

\[\log_2 \left(\frac{n}{2} + 1 \right) \]
Making a Binary Heap

Total Runtime: $\Theta(n \log n)$
Quickly Making a Binary Heap

- Here is a slightly different algorithm for building a binary heap out of a set of data:

 - Put the nodes, in any order, into a complete binary tree of the right size. (Shape property holds, but heap property might not.)

 - For each node, starting at the bottom layer and going upward, run a bubble-down step on that node.
Quickly Making a Binary Heap

```
    7
   / \
  10 11
 /    /
1  3   4
|    |   |
9  2  6  8  5
|    |    |
```

Quickly Making a Binary Heap

```
1
/    \
2    3
|    /
9  10
|  /  
6 8
|   /
5
```

The heap is represented as a binary tree with the root at the top and the leaves at the bottom.
Quickly Making a Binary Heap

```
       1
      / \
     2   4
    / \ / \       
   7  3 5 12     9 10 6 8 11
```
Quickly Making a Binary Heap

```
     1
   /   \
  2     4
 /     /  \
7     3     5
 /     /  \
9     6     8
```

11
12
Quickly Making a Binary Heap

```
  1
 /  \
2    4
 /  \
7    3
 /  \
9  10 6
```

The numbers in the heap are: 9, 10, 6, 8, 11, 7, 3, 5, 4, 2, 1.
Analyzing the Runtime

• At most half of the elements start one layer above that and can move down at most once.
• At most a quarter of the elements start one layer above that and can move down at most twice.
• At most an eighth of the elements start two layers above that and can move down at most thrice.
• More generally: At most \(n / 2^k \) of the elements can move down \(k \) steps.
• Can upper-bound the runtime with the sum

\[
T(n) \leq \sum_{i=0}^{\lfloor \log_2 n \rfloor} \frac{n^i}{2^i} = n \sum_{i=0}^{\lfloor \log_2 n \rfloor} \frac{i}{2^i}
\]
Simplifying the Summation

- We want to simplify the sum
 \[\sum_{i=0}^{\lfloor \log_2 n \rfloor} \frac{i}{2^i} \]

- Let's introduce a new variable \(x \), then evaluate the sum when \(x = \frac{1}{2} \):
 \[\sum_{i=0}^{\lfloor \log_2 n \rfloor} i x^i \]

- If \(x < 1 \), each term is less than the previous, so
 \[\sum_{i=0}^{\lfloor \log_2 n \rfloor} i x^i < \sum_{i=0}^{\infty} i x^i \]
Solving the Summation

\[\sum_{i=0}^{\infty} i x^i \]
Solving the Summation

\[
\sum_{i=0}^{\infty} i x^i = x \sum_{i=0}^{\infty} i x^{i-1}
\]
Solving the Summation

\[\sum_{i=0}^{\infty} i x^i = x \sum_{i=0}^{\infty} i x^{i-1} \]

\[= x \sum_{i=0}^{\infty} \frac{d}{dx} x^i \]
Solving the Summation

\[\sum_{i=0}^{\infty} i x^i = x \sum_{i=0}^{\infty} i x^{i-1} \]

\[= x \sum_{i=0}^{\infty} \frac{d}{dx} x^i \]

\[= x \frac{d}{dx} \left(\sum_{i=0}^{\infty} x^i \right) \]
Solving the Summation

\[
\sum_{i=0}^{\infty} i x^i = x \sum_{i=0}^{\infty} i x^{i-1}
\]

\[
= x \sum_{i=0}^{\infty} \frac{d}{dx} x^i
\]

\[
= x \frac{d}{dx} \left(\sum_{i=0}^{\infty} x^i \right)
\]

\[
= x \frac{d}{dx} \left(\frac{1}{1-x} \right)
\]
Solving the Summation

\[\sum_{i=0}^{\infty} ix^i = x \sum_{i=0}^{\infty} ix^{i-1} \]

\[= x \sum_{i=0}^{\infty} \frac{d}{dx} x^i \]

\[= x \frac{d}{dx} \left(\sum_{i=0}^{\infty} x^i \right) \]

\[= x \frac{d}{dx} \left(\frac{1}{1-x} \right) \]

\[= x \frac{1}{(1-x)^2} \]
Solving the Summation

\[\sum_{i=0}^{\infty} i x^i = x \sum_{i=0}^{\infty} i x^{i-1} \]

\[= x \sum_{i=0}^{\infty} \frac{d}{dx} x^i \]

\[= x \frac{d}{dx} \left(\sum_{i=0}^{\infty} x^i \right) \]

\[= x \frac{d}{dx} \left(\frac{1}{1-x} \right) \]

\[= x \frac{1}{(1-x)^2} \]

\[= \frac{x}{(1-x)^2} \]
The Finishing Touches

- We know that
 \[T(n) \leq n \sum_{i=0}^{[\log_2 n]} i x^i < n \sum_{i=0}^{\infty} i x^i = \frac{nx}{(1-x)^2} \]

- Evaluating at \(x = \frac{1}{2} \), we get
 \[T(n) \leq \frac{n(1/2)}{(1-(1/2))^2} = \frac{n(1/2)}{(1/2)^2} = 2n \]

- So at most 2n swaps are performed!

- We visit each node once and do at most \(O(n) \) swaps, so the runtime is \(\Theta(n) \).