

Divide-and-Conquer Algorithms
Part Two

Recap from Last Time

Divide-and-Conquer Algorithms

● A divide-and-conquer algorithm is one
that works as follows:
● (Divide) Split the input apart into multiple

smaller pieces, then recursively invoke the
algorithm on those pieces.

● (Conquer) Combine those solutions back
together to form the overall answer.

● Can be analyzed using recurrence
relations.

Two Important Recurrences

T(0) = Θ(1)
T(1) = Θ(1)
T(n) = T(⌈n / 2⌉) + T(⌊n / 2⌋) + Θ(n)

T(0) = Θ(1)
T(1) = Θ(1)
T(n) = T(⌈n / 2⌉) + T(⌊n / 2⌋) + Θ(n)

T(0) = Θ(1)
T(1) = Θ(1)
T(n) ≤ T(⌊n / 2⌋) + Θ(1)

T(0) = Θ(1)
T(1) = Θ(1)
T(n) ≤ T(⌊n / 2⌋) + Θ(1)

Solves to O(n log n)

Solves to O(log n)

Outline for Today

● More Recurrences
● Other divide-and-conquer relations.

● Algorithmic Lower Bounds
● Showing that certain problems cannot be

solved within certain limits.

● Binary Heaps
● A fast data structure for retrieving elements

in sorted order.

Another Algorithm:
Maximizing Unimodal Arrays

Unimodality

1 3 4 5 7 8 10 12 10 9 6 213 14

An array is called unimodal
iff it can be split into an

increasing sequence followed
by a decreasing sequence.

An array is called unimodal
iff it can be split into an

increasing sequence followed
by a decreasing sequence.

procedure unimodalMax(list A, int low, int high):
 if low = high - 1:
 return A[low]

 let mid = (high + low) / 2⌊ ⌋
 if A[mid] < A[mid + 1]
 return unimodalMax(A, mid + 1, high)
 else:
 return unimodalMax(A, low, mid + 1)

procedure unimodalMax(list A, int low, int high):
 if low = high - 1:
 return A[low]

 let mid = (high + low) / 2⌊ ⌋
 if A[mid] < A[mid + 1]
 return unimodalMax(A, mid + 1, high)
 else:
 return unimodalMax(A, low, mid + 1)

T(1) = Θ(1)
T(n) ≤ T(⌈n / 2⌉) + Θ(1)

T(1) = Θ(1)
T(n) ≤ T(⌈n / 2⌉) + Θ(1)

O(log n)

Unimodality II

1 3 4 5 7 8 10 10 10 9 6 213 14

A weakly unimodal array is
one that can be split into a
nondecreasing sequence

followed by a nonincreasing
sequence.

A weakly unimodal array is
one that can be split into a
nondecreasing sequence

followed by a nonincreasing
sequence.

T(1) = Θ(1)
T(n) ≤ T(⌈n / 2⌉) + T(⌊n / 2⌋) + Θ(1)

T(1) = Θ(1)
T(n) ≤ T(⌈n / 2⌉) + T(⌊n / 2⌋) + Θ(1)

procedure weakUnimodalMax(list A, int low, int high):
 if low = high - 1:
 return A[low]

 let mid = (high + low) / 2⌊ ⌋
 if A[mid] < A[mid + 1]
 return weakUnimodalMax(A, mid + 1, high)
 else if A[mid] > A[mid + 1]
 return weakUnimodalMax(A, low, mid + 1)
 else
 return max(weakUnimodalMax(A, low, mid + 1)
 weakUnimodalMax(A, mid + 1, high))

procedure weakUnimodalMax(list A, int low, int high):
 if low = high - 1:
 return A[low]

 let mid = (high + low) / 2⌊ ⌋
 if A[mid] < A[mid + 1]
 return weakUnimodalMax(A, mid + 1, high)
 else if A[mid] > A[mid + 1]
 return weakUnimodalMax(A, low, mid + 1)
 else
 return max(weakUnimodalMax(A, low, mid + 1)
 weakUnimodalMax(A, mid + 1, high))

T(1) ≤ c
T(n) ≤ 2T(n / 2) + c

T(1) ≤ c
T(n) ≤ 2T(n / 2) + c

procedure weakUnimodalMax(list A, int low, int high):
 if low = high - 1:
 return A[low]

 let mid = (high + low) / 2⌊ ⌋
 if A[mid] < A[mid + 1]
 return weakUnimodalMax(A, mid + 1, high)
 else if A[mid] > A[mid + 1]
 return weakUnimodalMax(A, low, mid + 1)
 else
 return max(weakUnimodalMax(A, low, mid + 1)
 weakUnimodalMax(A, mid + 1, high))

procedure weakUnimodalMax(list A, int low, int high):
 if low = high - 1:
 return A[low]

 let mid = (high + low) / 2⌊ ⌋
 if A[mid] < A[mid + 1]
 return weakUnimodalMax(A, mid + 1, high)
 else if A[mid] > A[mid + 1]
 return weakUnimodalMax(A, low, mid + 1)
 else
 return max(weakUnimodalMax(A, low, mid + 1)
 weakUnimodalMax(A, mid + 1, high))

T (n) ≤ 2T (n2)+c
≤ 2(2T (n4)+c)+c
≤ 4 T(n4)+2 c+c

= 4 T(n4)+3c

≤ 4(2T(n8)+c)+3c

= 8 T (n8)+4 c+3c

= 8 T (n8)+7c

...

≤ 2kT (n2k)+(2k−1)c

T(1) ≤ c
T(n) ≤ 2T(n / 2) + c

T(1) ≤ c
T(n) ≤ 2T(n / 2) + c

T (n) ≤ 2k T(n2k)+(2k−1)c

≤ 2
log2 nT (1)+(2

log2 n−1)c
= nT (1)+c (n−1)

≤ c n+c (n−1)

= 2c n−c
= O (n)

T(1) ≤ c
T(n) ≤ 2T(n / 2) + c

T(1) ≤ c
T(n) ≤ 2T(n / 2) + c

T(1) ≤ c
T(n) ≤ 2T(n / 2) + c

T(1) ≤ c
T(n) ≤ 2T(n / 2) + c

c

c c

c c c c

c c c c c c

…

…

c

2c

4c

cn

2cn – c

Another Recurrence Relation

● The recurrence relation

solves to T(n) = O(n)
● Intuitively, the recursion tree is

“bottomheavy:” the bottom of the tree
accounts for almost all of the work.

T(1) = Θ(1)
T(n) ≤ T(⌈n / 2⌉) + T(⌊n / 2⌋) + Θ(1)

T(1) = Θ(1)
T(n) ≤ T(⌈n / 2⌉) + T(⌊n / 2⌋) + Θ(1)

Unimodal Arrays

● Our recurrence shows that the work
done is O(n), but this might not be a tight
bound.

● Does our algorithm ever do Ω(n) work?
● Yes: What happens if all array values are

equal to one another?
● Can we do better?

A Lower Bound

● Claim: Every correct algorithm for
finding the maximum value in a unimodal
array must do Ω(n) work in the
worst-case.

● Note that this claim is over all possible
algorithms, so the argument had better
be watertight!

A Lower Bound

● We will prove that any algorithm for
finding the maximum value of a unimodal
array must, on at least one input, inspect
all n locations.

● Proof idea: Suppose that the algorithm
didn't do this.

0 0 0 0 0 0 ? 0 0 0 0 00 0

A Lower Bound

● We will prove that any algorithm for
finding the maximum value of a unimodal
array must, on at least one input, inspect
all n locations.

● Proof idea: Suppose that the algorithm
didn't do this.

0 0 0 0 0 0 10 0 0 0 0 00 0

A Lower Bound

● We will prove that any algorithm for
finding the maximum value of a unimodal
array must, on at least one input, inspect
all n locations.

● Proof idea: Suppose that the algorithm
didn't do this.

0 0 0 0 0 0 0 0 0 0 0 00 0

Algorithmic Lower Bounds

● The argument we just saw is called an
adversarial argument and is often used
to establish algorithmic lower bounds.

● Idea: Show that if an algorithm doesn't
do enough work, then it cannot
distinguish two different inputs that
require different outputs.

● Therefore, the algorithm cannot always
be correct.

o Notation

● Let f, g : ℕ → ℕ.

● We say that f(n) = o(g(n)) (f is little-o of g) iff

● In other words, f grows strictly slower than g.

● Often used to describe impossibility results.
● For example: There is no o(n)-time algorithm

for finding the maximum element of a weakly
unimodal array.

lim
n→∞

f (n)

g(n)
=0

What Does This Mean?

● In the worst-case, our algorithm must do
Ω(n) work.

● That's the same as a linear scan over the
input array!

● Is our algorithm even worth it?
● Yes: In most cases, the runtime is

Θ(log n) or close to it.

Binary Heaps

Data Structures Matter

● We have seen two instances where a better
choice of data structure improved the runtime
of an algorithm:
● Using adjacency lists instead of adjacency matrices

in graph algorithms.
● Using a double-ended queue in 0/1 Dijkstra's

algorithm.

● Today, we'll explore a data structure that is
useful for improving algorithmic efficiency.

● We'll come back to this structure in a few weeks
when talking about Prim's algorithm and
Kruskal's algorithm.

Priority Queues

● A priority queue is a data structure for storing
elements associated with priorities (often called keys).

● Optimized to find the element that currently has the
smallest key.

● Supports the following operations:

● enqueue(k, v) which adds element v to the queue with
key k.

● is-empty, which returns whether the queue is empty.

● dequeue-min, which removes the element with the least
priority from the queue.

● Many implementations are possible with varying
tradeoffs.

A Naive Implementation

● One simple way to implement a priority queue is with
an unsorted array key/value pairs.

● To enqueue v with key k, append (k, v) to the array in
time O(1).

● To check whether the priority queue is empty, check
whether the underlying array is empty in time O(1).

● To dequeue-min, scan across the array to find an
element with minimum key, then remove it in time
O(n).

● Doing n enqueues and n dequeues takes time O(n2).

A Better Implementation

1

3 8

4 5 9 This tree obeys the
heap property: each

node's key is less
than or equal to all its

descendants' keys.

This tree obeys the
heap property: each

node's key is less
than or equal to all its

descendants' keys.

A Better Implementation

1

3 8

4 5 9 This is a complete
binary tree: every
level except the last

one is filled in
completely.

This is a complete
binary tree: every
level except the last

one is filled in
completely.

A Better Implementation

1

3 2

4 5 9 8

A Better Implementation

0

1 2

3 5 9 8

4

A Better Implementation

0

1 2

2 5 9 8

4 3

A Better Implementation

1 2

2 5 9 8

4 3

A Better Implementation

1 2

2 5 9 8

4

3

A Better Implementation

2 2

3 5 9 8

4

1

Binary Heap Efficiency

● The enqueue and dequeue operations on a
binary heap all run O(h), where h is the height
of the tree.

● In a perfect binary tree of height h, there are
1 + 2 + 4 + 8 + … + 2h = 2h+1 – 1 nodes.

● If there are n nodes, the maximum height
would be found by setting n = 2h+1 – 1.

● Solving, we get that h = log₂ (n + 1) – 1

● Thus h = Θ(log n), so enqueue and dequeue
take time O(log n).

Implementing Binary Heaps

● It is extremely rare to actually implement a binary
heap as a tree structure.

● Can encode the heap as an array:

1

3 8

4 5 9

1 3 8 4 5 9

Assuming one-indexing:

Node n has children at
positions 2n and 2n + 1.

Node n has its parent at
position ⌊n / 2⌋

Assuming one-indexing:

Node n has children at
positions 2n and 2n + 1.

Node n has its parent at
position ⌊n / 2⌋

Application: Heapsort

Heapsort

● The heapsort algorithm is as follows:
● Build a max-heap from the array elements,

using the array itself to represent the heap.
● Repeatedly dequeue from the heap until all

elements are placed in sorted order.

● This algorithm runs in time O(n log n),
since it does n enqueues and n dequeues.

● Only requires O(1) auxiliary storage
space, compared with O(n) space required
in mergesort.

An Optimization: Heapify

Making a Binary Heap

● Suppose that you have n elements and
want to build a binary heap from them.

● One way to do this is to enqueue all of
them, one after another, into the binary
heap.

● We can upper-bound the runtime as n
calls to an O(log n) operation, giving a
total runtime of O(n log n).

● Is that a tight bound?

Making a Binary Heap

 log₂ (n/2 + 1)

Total Runtime: Θ(n log n)

Quickly Making a Binary Heap

● Here is a slightly different algorithm for
building a binary heap out of a set of
data:
● Put the nodes, in any order, into a complete

binary tree of the right size. (Shape
property holds, but heap property might
not.)

● For each node, starting at the bottom layer
and going upward, run a bubble-down step
on that node.

Analyzing the Runtime

● At most half of the elements start one layer above
that and can move down at most once.

● At most a quarter of the elements start one layer
above that and can move down at most twice.

● At most an eighth of the elements start two layers
above that and can move down at most thrice.

● More generally: At most n / 2k of the elements can
move down k steps.

● Can upper-bound the runtime with the sum

T (n) ≤ ∑
i=0

⌈ log2n⌉
ni

2i
=n ∑

i=0

⌈ log2n⌉
i

2i

Simplifying the Summation

● We want to simplify the sum

● Let's introduce a new variable x, then evaluate the
sum when x = ½:

● If x < 1, each term is less than the previous, so

∑
i=0

⌈ log2n⌉
i

2i

∑
i=0

⌈ log2n⌉

i xi

∑
i=0

⌈ log2n⌉

i xi<∑
i=0

∞

i xi

Solving the Summation
∑
i=0

∞

i xi = x∑
i=0

∞

i xi−1

= x∑
i=0

∞ d
dx

xi

= x
d
dx (∑i=0

∞

xi)
= x

d
dx (1

1−x)
= x

1

(1−x)2

=
x

(1−x)2

The Finishing Touches

● We know know that

● Evaluating at x = ½, we get

● So at most 2n swaps are performed!
● We visit each node once and do at most

O(n) swaps, so the runtime is Θ(n).

T (n) ≤ n ∑
i=0

⌈ log2n ⌉

i xi < n∑
i=0

∞

i xi =
nx

(1−x)2

T (n)≤
n(1 /2)

(1−(1/2))2
=

n(1 /2)

(1 /2)2
=2n

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47

