Divide-and-Conquer Algorithms Part Two

Recap from Last Time

Divide-and-Conquer Algorithms

- A divide-and-conquer algorithm is one that works as follows:
- (Divide) Split the input apart into multiple smaller pieces, then recursively invoke the algorithm on those pieces.
- (Conquer) Combine those solutions back together to form the overall answer.
- Can be analyzed using recurrence relations.

Two Important Recurrences

$$
\begin{aligned}
& \mathrm{T}(0)=\Theta(1) \\
& \mathrm{T}(1)=\Theta(1) \\
& \mathrm{T}(n)=\mathrm{T}([n / 2\rceil)+\mathrm{T}(\lfloor n / 2\rfloor)+\Theta(n)
\end{aligned}
$$

Solves to $\mathrm{O}(n \log n)$

$$
\begin{aligned}
& \mathrm{T}(0)=\Theta(1) \\
& \mathrm{T}(1)=\Theta(1) \\
& \mathrm{T}(n) \leq \mathrm{T}(\lfloor n / 2\rfloor)+\Theta(1)
\end{aligned}
$$

Solves to O(log n)

Outline for Today

- More Recurrences
- Other divide-and-conquer relations.
- Algorithmic Lower Bounds
- Showing that certain problems cannot be solved within certain limits.
- Binary Heaps
- A fast data structure for retrieving elements in sorted order.

Another Algorithm: Maximizing Unimodal Arrays

Unimodality

An array is called unimodal iff it can be split into an increasing sequence followed by a decreasing sequence.

| 1 | 3 | 4 | 5 | 7 | 8 | 10 | 12 | 13 | 14 | 10 | 9 | 6 | 2 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

procedure unimodalMax(list A, int low, int high):

 if low = high - 1:return A[low]
let mid =
(high + low) / 2】 if A [mid] < $\mathrm{A}[$ mid +1]
return unimodalMax(A, mid + 1, high) else:
return unimodalMax(A, low, mid + 1)

$$
\begin{aligned}
& \mathrm{T}(1)=\Theta(1) \\
& \mathrm{T}(n) \leq \mathrm{T}(\lceil n / 2\rceil)+\Theta(1)
\end{aligned}
$$

$O(\log n)$

Unimodality II

A weakly unimodal array is one that can be split into a nondecreasing sequence followed by a nonincreasing sequence.

| 1 | 3 | 4 | 5 | 7 | 8 | 10 | 10 | 13 | 14 | 10 | 9 | 6 | 2 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

procedure weakUnimodalMax(list A, int low, int high):
if low = high - 1: return $A[$ low]
let mid =
(high + low) / 2」
if A[mid] < A[mid + 1]
return weakUnimodalMax(A, mid + 1, high) else if A[mid] > A[mid + 1]
return weakUnimodalMax(A, low, mid + 1)
else
return max(weakUnimodalMax(A, low, mid + 1) weakUnimodalMax(A, mid + 1, high))
$$
\begin{aligned}
& \mathrm{T}(1)=\Theta(1) \\
& \mathrm{T}(n) \leq \mathrm{T}([n / 2\rceil)+\mathrm{T}(\lfloor n / 2\rfloor)+\Theta(1)
\end{aligned}
$$
procedure weakUnimodalMax(list A, int low, int high):
if low = high - 1: return $A[$ low]
let mid =
(high + low) / 2】
if A [mid] < $\mathrm{A}[$ mid + 1]
return weakUnimodalMax(A, mid + 1, high) else if $A[m i d] ~>~ A[m i d ~+~ 1] ~$
return weakUnimodalMax(A, low, mid + 1)
else
return max(weakUnimodalMax(A, low, mid + 1) weakUnimodalMax(A, mid + 1, high))

$$
\begin{aligned}
& \mathrm{T}(1) \leq c \\
& \mathrm{~T}(n) \leq 2 \mathrm{~T}(n / 2)+c
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{T}(n) & \leq 2 \mathrm{~T}\left(\frac{n}{2}\right)+c \\
& \leq 2\left(2 \mathrm{~T}\left(\frac{n}{4}\right)+c\right)+c \\
& \leq 4 \mathrm{~T}\left(\frac{n}{4}\right)+2 c+c \\
& =4 \mathrm{~T}\left(\frac{n}{4}\right)+3 c \\
& \leq 4\left(2 \mathrm{~T}\left(\frac{n}{8}\right)+c\right)+3 c \\
& =8 \mathrm{~T}\left(\frac{n}{8}\right)+4 c+3 c \\
& =8 \mathrm{~T}\left(\frac{n}{8}\right)+7 c \\
& \cdots \\
& \leq 2^{k} \mathrm{~T}\left(\frac{n}{2^{k}}\right)+\left(2^{k}-1\right) c
\end{aligned}
$$

$\mathrm{T}(1) \leq c$

$\mathrm{T}(n) \leq 2 \mathrm{~T}(n / 2)+c$

$$
\begin{aligned}
\mathrm{T}(n) & \leq 2^{k} \mathrm{~T}\left(\frac{n}{2^{k}}\right)+\left(2^{k}-1\right) c \\
& \leq 2^{\log _{2} n} \mathrm{~T}(1)+\left(2^{\log _{2} n}-1\right) c \\
& =n \mathrm{~T}(1)+c(n-1) \\
& \leq c n c c(n-1) \\
& =2 c-c \\
& =O(n)
\end{aligned}
$$

```
\(\mathrm{T}(1) \leq c\)
\(\mathrm{T}(n) \leq 2 \mathrm{~T}(n / 2)+c\)
```


Another Recurrence Relation

- The recurrence relation

$$
\begin{aligned}
& \mathrm{T}(1)=\Theta(1) \\
& \mathrm{T}(n) \leq \mathrm{T}([n / 2\rceil)+\mathrm{T}(\lfloor n / 2\rfloor)+\Theta(1)
\end{aligned}
$$

solves to $\mathrm{T}(n)=\mathbf{O}(\boldsymbol{n})$

- Intuitively, the recursion tree is "bottomheavy:" the bottom of the tree accounts for almost all of the work.

Unimodal Arrays

- Our recurrence shows that the work done is $\mathrm{O}(n)$, but this might not be a tight bound.
- Does our algorithm ever do $\Omega(n)$ work?
- Yes: What happens if all array values are equal to one another?
- Can we do better?

A Lower Bound

- Claim: Every correct algorithm for finding the maximum value in a unimodal array must do $\Omega(n)$ work in the worst-case.
- Note that this claim is over all possible algorithms, so the argument had better be watertight!

A Lower Bound

- We will prove that any algorithm for finding the maximum value of a unimodal array must, on at least one input, inspect all n locations.
- Proof idea: Suppose that the algorithm didn't do this.

A Lower Bound

- We will prove that any algorithm for finding the maximum value of a unimodal array must, on at least one input, inspect all n locations.
- Proof idea: Suppose that the algorithm didn't do this.

A Lower Bound

- We will prove that any algorithm for finding the maximum value of a unimodal array must, on at least one input, inspect all n locations.
- Proof idea: Suppose that the algorithm didn't do this.

Algorithmic Lower Bounds

- The argument we just saw is called an adversarial argument and is often used to establish algorithmic lower bounds.
- Idea: Show that if an algorithm doesn't do enough work, then it cannot distinguish two different inputs that require different outputs.
- Therefore, the algorithm cannot always be correct.

o Notation

- Let $f, g: \mathbb{N} \rightarrow \mathbb{N}$.
- We say that $\boldsymbol{f}(\boldsymbol{n})=\boldsymbol{o}(\boldsymbol{g}(\boldsymbol{n}))(f$ is little-o of $g)$ iff

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0
$$

- In other words, f grows strictly slower than g.
- Often used to describe impossibility results.
- For example: There is no o(n)-time algorithm for finding the maximum element of a weakly unimodal array.

What Does This Mean?

- In the worst-case, our algorithm must do $\Omega(n)$ work.
- That's the same as a linear scan over the input array!
- Is our algorithm even worth it?
- Yes: In most cases, the runtime is $\Theta(\log n)$ or close to it.

Binary Heaps

Data Structures Matter

- We have seen two instances where a better choice of data structure improved the runtime of an algorithm:
- Using adjacency lists instead of adjacency matrices in graph algorithms.
- Using a double-ended queue in 0/1 Dijkstra's algorithm.
- Today, we'll explore a data structure that is useful for improving algorithmic efficiency.
- We'll come back to this structure in a few weeks when talking about Prim's algorithm and Kruskal's algorithm.

Priority Queues

- A priority queue is a data structure for storing elements associated with priorities (often called keys).
- Optimized to find the element that currently has the smallest key.
- Supports the following operations:
- enqueue(k, v) which adds element v to the queue with key k.
- is-empty, which returns whether the queue is empty.
- dequeue-min, which removes the element with the least priority from the queue.
- Many implementations are possible with varying tradeoffs.

A Naive Implementation

- One simple way to implement a priority queue is with an unsorted array key/value pairs.
- To enqueue v with key k, append (k, v) to the array in time $\mathrm{O}(1)$.
- To check whether the priority queue is empty, check whether the underlying array is empty in time $\mathrm{O}(1)$.
- To dequeue-min, scan across the array to find an element with minimum key, then remove it in time $\mathrm{O}(n)$.
- Doing n enqueues and n dequeues takes time $O\left(n^{2}\right)$.

A Better Implementation

Binary Heap Efficiency

- The enqueue and dequeue operations on a binary heap all run $\mathrm{O}(h)$, where h is the height of the tree.
- In a perfect binary tree of height h, there are $1+2+4+8+\ldots+2^{h}=2^{h+1}-1$ nodes.
- If there are n nodes, the maximum height would be found by setting $n=2^{h+1}-1$.
- Solving, we get that $h=\log _{2}(n+1)-1$
- Thus $h=\Theta(\log n)$, so enqueue and dequeue take time $O(\log n)$.

Implementing Binary Heaps

- It is extremely rare to actually implement a binary heap as a tree structure.
- Can encode the heap as an array:

Application: Heapsort

Heapsort

- The heapsort algorithm is as follows:
- Build a max-heap from the array elements, using the array itself to represent the heap.
- Repeatedly dequeue from the heap until all elements are placed in sorted order.
- This algorithm runs in time $O(n \log n)$, since it does n enqueues and n dequeues.
- Only requires $O(1)$ auxiliary storage space, compared with $O(n)$ space required in mergesort.

An Optimization: Heapify

Making a Binary Heap

- Suppose that you have n elements and want to build a binary heap from them.
- One way to do this is to enqueue all of them, one after another, into the binary heap.
- We can upper-bound the runtime as n calls to an $\mathrm{O}(\log n)$ operation, giving a total runtime of $\mathrm{O}(n \log n)$.
- Is that a tight bound?

Making a Binary Heap

Total Runtime: $\Theta(n \log n)$

Quickly Making a Binary Heap

- Here is a slightly different algorithm for building a binary heap out of a set of data:
- Put the nodes, in any order, into a complete binary tree of the right size. (Shape property holds, but heap property might not.)
- For each node, starting at the bottom layer and going upward, run a bubble-down step on that node.

Analyzing the Runtime

- At most half of the elements start one layer above that and can move down at most once.
- At most a quarter of the elements start one layer above that and can move down at most twice.
- At most an eighth of the elements start two layers above that and can move down at most thrice.
- More generally: At most $n / 2^{k}$ of the elements can move down k steps.
- Can upper-bound the runtime with the sum

$$
\mathrm{T}(n) \leq \sum_{i=0}^{\left\lceil\log _{2} n\right\rceil} \frac{n i}{2^{i}}=n \sum_{i=0}^{\left\lceil\log _{2} n\right\rceil} \frac{i}{2^{i}}
$$

Simplifying the Summation

- We want to simplify the sum

$$
\sum_{i=0}^{\left\lceil\log _{2} n\right\rceil} \frac{i}{2^{i}}
$$

- Let's introduce a new variable x, then evaluate the sum when $x=1 / 2$:

$$
\sum_{i=0}^{\left\lceil\log _{2} n\right\rceil} i x^{i}
$$

- If $x<1$, each term is less than the previous, so

$$
\sum_{i=0}^{\left\lceil\log _{2} n\right\rceil} i x^{i}<\sum_{i=0}^{\infty} i x^{i}
$$

Solving the Summation

$$
\begin{aligned}
\sum_{i=0}^{\infty} i x^{i} & =x \sum_{i=0}^{\infty} i x^{i-1} \\
& =x \sum_{i=0}^{\infty} \frac{d}{d x} x^{i} \\
& =x \frac{d}{d x}\left(\sum_{i=0}^{\infty} x^{i}\right) \\
& =x \frac{d}{d x}\left(\frac{1}{1-x}\right) \\
& =x \frac{1}{(1-x)^{2}} \\
& =\frac{x}{(1-x)^{2}}
\end{aligned}
$$

The Finishing Touches

- We know know that

$$
T(n) \leq n \sum_{i=0}^{\left\lceil\log _{2} n\right\rceil} i x^{i}<n \sum_{i=0}^{\infty} i x^{i}=\frac{n x}{(1-x)^{2}}
$$

- Evaluating at $x=1 / 2$, we get

$$
T(n) \leq \frac{n(1 / 2)}{(1-(1 / 2))^{2}}=\frac{n(1 / 2)}{(1 / 2)^{2}}=2 n
$$

- So at most $2 n$ swaps are performed!
- We visit each node once and do at most $\mathrm{O}(n)$ swaps, so the runtime is $\boldsymbol{\Theta}(\boldsymbol{n})$.

