
  

Divide-and-Conquer Algorithms
Part Two



  

Recap from Last Time



  

Divide-and-Conquer Algorithms

● A divide-and-conquer algorithm is one 
that works as follows:
● (Divide) Split the input apart into multiple 

smaller pieces, then recursively invoke the 
algorithm on those pieces.

● (Conquer) Combine those solutions back 
together to form the overall answer.

● Can be analyzed using recurrence 
relations.



  

Two Important Recurrences

T(0) = Θ(1)
T(1) = Θ(1)
T(n) = T(⌈n / 2⌉) + T(⌊n / 2⌋) + Θ(n)

T(0) = Θ(1)
T(1) = Θ(1)
T(n) = T(⌈n / 2⌉) + T(⌊n / 2⌋) + Θ(n)

T(0) = Θ(1)
T(1) = Θ(1)
T(n) ≤ T(⌊n / 2⌋) + Θ(1)

T(0) = Θ(1)
T(1) = Θ(1)
T(n) ≤ T(⌊n / 2⌋) + Θ(1)

Solves to O(n log n)

Solves to O(log n)



  

Outline for Today

● More Recurrences
● Other divide-and-conquer relations.

● Algorithmic Lower Bounds
● Showing that certain problems cannot be 

solved within certain limits.

● Binary Heaps
● A fast data structure for retrieving elements 

in sorted order.



  

Another Algorithm:
Maximizing Unimodal Arrays



  

Unimodality

1 3 4 5 7 8 10 12 10 9 6 213 14

An array is called unimodal 
iff it can be split into an 

increasing sequence followed 
by a decreasing sequence.

An array is called unimodal 
iff it can be split into an 

increasing sequence followed 
by a decreasing sequence.



  

procedure unimodalMax(list A, int low, int high):
  if low = high - 1:
     return A[low]

  let mid = (high + low) / 2⌊ ⌋
  if A[mid] < A[mid + 1]
     return unimodalMax(A, mid + 1, high)
  else:
     return unimodalMax(A, low, mid + 1)

procedure unimodalMax(list A, int low, int high):
  if low = high - 1:
     return A[low]

  let mid = (high + low) / 2⌊ ⌋
  if A[mid] < A[mid + 1]
     return unimodalMax(A, mid + 1, high)
  else:
     return unimodalMax(A, low, mid + 1)

T(1) = Θ(1)
T(n) ≤ T(⌈n / 2⌉) + Θ(1)

T(1) = Θ(1)
T(n) ≤ T(⌈n / 2⌉) + Θ(1)

O(log n)



  

Unimodality II

1 3 4 5 7 8 10 10 10 9 6 213 14

A weakly unimodal array is 
one that can be split into a 
nondecreasing sequence 

followed by a nonincreasing 
sequence.

A weakly unimodal array is 
one that can be split into a 
nondecreasing sequence 

followed by a nonincreasing 
sequence.



  

T(1) = Θ(1)
T(n) ≤ T(⌈n / 2⌉) + T(⌊n / 2⌋) + Θ(1)

T(1) = Θ(1)
T(n) ≤ T(⌈n / 2⌉) + T(⌊n / 2⌋) + Θ(1)

procedure weakUnimodalMax(list A, int low, int high):
  if low = high - 1:
     return A[low]

  let mid = (high + low) / 2⌊ ⌋
  if A[mid] < A[mid + 1]
     return weakUnimodalMax(A, mid + 1, high)
  else if A[mid] > A[mid + 1]
     return weakUnimodalMax(A, low, mid + 1)
  else
     return max(weakUnimodalMax(A, low, mid + 1)
                weakUnimodalMax(A, mid + 1, high))

procedure weakUnimodalMax(list A, int low, int high):
  if low = high - 1:
     return A[low]

  let mid = (high + low) / 2⌊ ⌋
  if A[mid] < A[mid + 1]
     return weakUnimodalMax(A, mid + 1, high)
  else if A[mid] > A[mid + 1]
     return weakUnimodalMax(A, low, mid + 1)
  else
     return max(weakUnimodalMax(A, low, mid + 1)
                weakUnimodalMax(A, mid + 1, high))



  

T(1) ≤ c
T(n) ≤ 2T(n / 2) + c

T(1) ≤ c
T(n) ≤ 2T(n / 2) + c

procedure weakUnimodalMax(list A, int low, int high):
  if low = high - 1:
     return A[low]

  let mid = (high + low) / 2⌊ ⌋
  if A[mid] < A[mid + 1]
     return weakUnimodalMax(A, mid + 1, high)
  else if A[mid] > A[mid + 1]
     return weakUnimodalMax(A, low, mid + 1)
  else
     return max(weakUnimodalMax(A, low, mid + 1)
                weakUnimodalMax(A, mid + 1, high))

procedure weakUnimodalMax(list A, int low, int high):
  if low = high - 1:
     return A[low]

  let mid = (high + low) / 2⌊ ⌋
  if A[mid] < A[mid + 1]
     return weakUnimodalMax(A, mid + 1, high)
  else if A[mid] > A[mid + 1]
     return weakUnimodalMax(A, low, mid + 1)
  else
     return max(weakUnimodalMax(A, low, mid + 1)
                weakUnimodalMax(A, mid + 1, high))



  

T (n) ≤ 2T (n2 )+c
≤ 2(2T (n4 )+c)+c
≤ 4 T(n4 )+2 c+c

= 4 T(n4 )+3c

≤ 4(2T(n8 )+c)+3c

= 8 T (n8 )+4 c+3c

= 8 T (n8 )+7c

...

≤ 2kT (n2k )+(2k−1)c

T(1) ≤ c
T(n) ≤ 2T(n / 2) + c

T(1) ≤ c
T(n) ≤ 2T(n / 2) + c



  

T (n) ≤ 2k T(n2k )+(2k−1)c

≤ 2
log2 nT (1)+(2

log2 n−1)c
= nT (1)+c (n−1)

≤ c n+c (n−1)

= 2c n−c
= O (n)

T(1) ≤ c
T(n) ≤ 2T(n / 2) + c

T(1) ≤ c
T(n) ≤ 2T(n / 2) + c



  

T(1) ≤ c
T(n) ≤ 2T(n / 2) + c

T(1) ≤ c
T(n) ≤ 2T(n / 2) + c

c

c c

c c c c

c c c c c c

…

…

c

2c

4c

cn

2cn – c



  

Another Recurrence Relation

● The recurrence relation

solves to T(n) = O(n)
● Intuitively, the recursion tree is 

“bottomheavy:” the bottom of the tree 
accounts for almost all of the work.

T(1) = Θ(1)
T(n) ≤ T(⌈n / 2⌉) + T(⌊n / 2⌋) + Θ(1)

T(1) = Θ(1)
T(n) ≤ T(⌈n / 2⌉) + T(⌊n / 2⌋) + Θ(1)



  

Unimodal Arrays

● Our recurrence shows that the work 
done is O(n), but this might not be a tight 
bound.

● Does our algorithm ever do Ω(n) work?
● Yes: What happens if all array values are 

equal to one another?
● Can we do better?



  

A Lower Bound

● Claim: Every correct algorithm for 
finding the maximum value in a unimodal 
array must do Ω(n) work in the 
worst-case.

● Note that this claim is over all possible 
algorithms, so the argument had better 
be watertight!



  

A Lower Bound

● We will prove that any algorithm for 
finding the maximum value of a unimodal 
array must, on at least one input, inspect 
all n locations.

● Proof idea: Suppose that the algorithm 
didn't do this.

0 0 0 0 0 0 ? 0 0 0 0 00 0



  

A Lower Bound

● We will prove that any algorithm for 
finding the maximum value of a unimodal 
array must, on at least one input, inspect 
all n locations.

● Proof idea: Suppose that the algorithm 
didn't do this.

0 0 0 0 0 0 10 0 0 0 0 00 0



  

A Lower Bound

● We will prove that any algorithm for 
finding the maximum value of a unimodal 
array must, on at least one input, inspect 
all n locations.

● Proof idea: Suppose that the algorithm 
didn't do this.

0 0 0 0 0 0 0 0 0 0 0 00 0



  

Algorithmic Lower Bounds

● The argument we just saw is called an 
adversarial argument and is often used 
to establish algorithmic lower bounds.

● Idea: Show that if an algorithm doesn't 
do enough work, then it cannot 
distinguish two different inputs that 
require different outputs.

● Therefore, the algorithm cannot always 
be correct.



  

o Notation

● Let f, g : ℕ → ℕ.

● We say that f(n) = o(g(n)) (f is little-o of g) iff 

 

● In other words, f grows strictly slower than g.

● Often used to describe impossibility results.
● For example: There is no o(n)-time algorithm 

for finding the maximum element of a weakly 
unimodal array.

lim
n→∞

f (n)

g(n)
=0



  

What Does This Mean?

● In the worst-case, our algorithm must do 
Ω(n) work.

● That's the same as a linear scan over the 
input array!

● Is our algorithm even worth it?
● Yes: In most cases, the runtime is 

Θ(log n) or close to it.



  

Binary Heaps



  

Data Structures Matter

● We have seen two instances where a better 
choice of data structure improved the runtime 
of an algorithm:
● Using adjacency lists instead of adjacency matrices 

in graph algorithms.
● Using a double-ended queue in 0/1 Dijkstra's 

algorithm.

● Today, we'll explore a data structure that is 
useful for improving algorithmic efficiency.

● We'll come back to this structure in a few weeks 
when talking about Prim's algorithm and 
Kruskal's algorithm.



  

Priority Queues

● A priority queue is a data structure for storing 
elements associated with priorities (often called keys).

● Optimized to find the element that currently has the 
smallest key.

● Supports the following operations:

● enqueue(k, v) which adds element v to the queue with 
key k.

● is-empty, which returns whether the queue is empty.

● dequeue-min, which removes the element with the least 
priority from the queue.

● Many implementations are possible with varying 
tradeoffs.



  

A Naive Implementation

● One simple way to implement a priority queue is with 
an unsorted array key/value pairs.

● To enqueue v with key k, append (k, v) to the array in 
time O(1).

● To check whether the priority queue is empty, check 
whether the underlying array is empty in time O(1).

● To dequeue-min, scan across the array to find an 
element with minimum key, then remove it in time 
O(n).

● Doing n enqueues and n dequeues takes time O(n2).



  

A Better Implementation

1

3 8

4 5 9 This tree obeys the 
heap property: each 

node's key is less 
than or equal to all its 

descendants' keys.

This tree obeys the 
heap property: each 

node's key is less 
than or equal to all its 

descendants' keys.



  

A Better Implementation

1

3 8

4 5 9 This is a complete 
binary tree: every 
level except the last 

one is filled in 
completely.

This is a complete 
binary tree: every 
level except the last 

one is filled in 
completely.



  

A Better Implementation

1

3 2

4 5 9 8



  

A Better Implementation

0

1 2

3 5 9 8

4



  

A Better Implementation

0

1 2

2 5 9 8

4 3



  

A Better Implementation

1 2

2 5 9 8

4 3



  

A Better Implementation

1 2

2 5 9 8

4

3



  

A Better Implementation

2 2

3 5 9 8

4

1



  

Binary Heap Efficiency

● The enqueue and dequeue operations on a 
binary heap all run O(h), where h is the height 
of the tree.

● In a perfect binary tree of height h, there are 
1 + 2 + 4 + 8 + … + 2h = 2h+1 – 1 nodes.

● If there are n nodes, the maximum height 
would be found by setting n = 2h+1 – 1.

● Solving, we get that h = log₂ (n + 1) – 1

● Thus h = Θ(log n), so enqueue and dequeue 
take time O(log n).



  

Implementing Binary Heaps

● It is extremely rare to actually implement a binary 
heap as a tree structure.

● Can encode the heap as an array:

1

3 8

4 5 9

1 3 8 4 5 9

Assuming one-indexing:

Node n has children at 
positions 2n and 2n + 1.

Node n has its parent at 
position ⌊n / 2⌋ 

Assuming one-indexing:

Node n has children at 
positions 2n and 2n + 1.

Node n has its parent at 
position ⌊n / 2⌋ 



  

Application: Heapsort



  

Heapsort

● The heapsort algorithm is as follows:
● Build a max-heap from the array elements, 

using the array itself to represent the heap.
● Repeatedly dequeue from the heap until all 

elements are placed in sorted order.

● This algorithm runs in time O(n log n), 
since it does n enqueues and n dequeues.

● Only requires O(1) auxiliary storage 
space, compared with O(n) space required 
in mergesort.



  

An Optimization: Heapify



  

Making a Binary Heap

● Suppose that you have n elements and 
want to build a binary heap from them.

● One way to do this is to enqueue all of 
them, one after another, into the binary 
heap.

● We can upper-bound the runtime as n 
calls to an O(log n) operation, giving a 
total runtime of O(n log n).

● Is that a tight bound?



  

Making a Binary Heap

                            log₂ (n/2 + 1)

Total Runtime: Θ(n log n)



  

Quickly Making a Binary Heap

● Here is a slightly different algorithm for 
building a binary heap out of a set of 
data:
● Put the nodes, in any order, into a complete 

binary tree of the right size.  (Shape 
property holds, but heap property might 
not.)

● For each node, starting at the bottom layer 
and going upward, run a bubble-down step 
on that node.



  

Analyzing the Runtime

● At most half of the elements start one layer above 
that and can move down at most once.

● At most a quarter of the elements start one layer 
above that and can move down at most twice.

● At most an eighth of the elements start two layers 
above that and can move down at most thrice.

● More generally: At most n / 2k of the elements can 
move down k steps.

● Can upper-bound the runtime with the sum

T (n) ≤ ∑
i=0

⌈ log2n⌉
ni

2i
=n ∑

i=0

⌈ log2n⌉
i

2i



  

Simplifying the Summation

● We want to simplify the sum

● Let's introduce a new variable x, then evaluate the 
sum when x = ½:

● If x < 1, each term is less than the previous, so

∑
i=0

⌈ log2n⌉
i

2i

∑
i=0

⌈ log2n⌉

i xi

∑
i=0

⌈ log2n⌉

i xi<∑
i=0

∞

i xi



  

Solving the Summation
∑
i=0

∞

i xi = x∑
i=0

∞

i xi−1

= x∑
i=0

∞ d
dx

xi

= x
d
dx (∑i=0

∞

xi)
= x

d
dx ( 1

1−x )
= x

1

(1−x)2

=
x

(1−x)2



  

The Finishing Touches

● We know know that

● Evaluating at x = ½, we get

 

● So at most 2n swaps are performed!
● We visit each node once and do at most 

O(n) swaps, so the runtime is Θ(n).

T (n) ≤ n ∑
i=0

⌈ log2n ⌉

i xi < n∑
i=0

∞

i xi =
nx

(1−x)2

T (n)≤
n(1 /2)

(1−(1/2))2
=

n(1 /2)

(1 /2)2
=2n
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