Divide-and-Conquer Algorithms
Part Three
Announcements

- Problem Set One graded; will be returned at the end of lecture.
 - If you submitted by email, let us know if you don't hear back by 5PM today.
 - If you submitted through the SCPD office, we'll return your problem set through the SCPD office.
- Handout: “Mathematical Terms and Identities.”
 - Covers useful mathematical definitions, terms, and identities that we'll be using over the rest of the quarter.
 - Let us know if there's anything you'd like us to add for future quarters!
Outline for Today

• **The Master Theorem**
 - A powerful tool for solving recurrences.

• **Applications of the Master Theorem**
 - Rapidly solving a variety of recurrence relations!
One More Recurrence Relation
Finding the Maximum Value
Finding the Maximum Value
Finding the Maximum Value

3 10 9 12 8 11 14 11
Finding the Maximum Value
Finding the Maximum Value

10 12 11 14

3 10 9 12 8 11 14 11

3 1 4 10 5 9 12 6 7 8 11 2 13 14 0 11
Finding the Maximum Value
Finding the Maximum Value

12 14

10 12 11 14

3 10 9 12 8 11 14 11

3 1 4 10 5 9 12 6 7 8 11 2 13 14 0 11
Finding the Maximum Value
Finding the Maximum Value

3 14

12 14

10 12 11 14

3 10 9 12 8 11 14 11

3 1 4 10 5 9 12 6 7 8 11 2 13 14 0 11
Finding the Maximum Value

\[T(1) = \Theta(1) \]
\[T(n) = T(\lfloor n / 2 \rfloor) + \Theta(n) \]
Finding the Maximum Value

\[T(1) \leq c \]
\[T(n) \leq T(\lceil n / 2 \rceil) + cn \]
Finding the Maximum Value

\[
T(1) \leq c \\
T(n) \leq T(n/2) + cn
\]
Finding the Maximum Value

\[T(1) \leq c \]
\[T(n) \leq T(n/2) + cn \]

\[cn + cn/2 + \ldots + c \]
Finding the Maximum Value

\[
T(1) \leq c \\
T(n) \leq T(n/2) + cn
\]

\[
cn + cn/2 + \ldots + c \\
= cn \left(1 + \frac{1}{2} + \ldots + \frac{1}{n}\right)
\]
Finding the Maximum Value

\[
\begin{array}{ccccccccccc}
3 & 10 & 9 & 12 & 8 & 11 & 14 & 11 \\
\end{array}
\]

\[
\begin{array}{ccccccccccc}
3 & 1 & 4 & 10 & 5 & 9 & 12 & 6 & 7 & 8 & 11 & 2 & 13 & 14 & 0 & 11 \\
\end{array}
\]

\[T(1) \leq c\]
\[T(n) \leq T(n/2) + cn\]

\[
cn + cn/2 + ... + c = cn \left(1 + \frac{1}{2} + ... + \frac{1}{n}\right) \leq cn \left(1 + \frac{1}{2} + \frac{1}{4} + ...\right)
\]
Finding the Maximum Value

\[T(1) \leq c \]
\[T(n) \leq T(n/2) + cn \]

\[cn + cn/2 + \ldots + c \]
\[= cn \left(1 + \frac{1}{2} + \ldots + \frac{1}{n} \right) \]
\[\leq cn \left(1 + \frac{1}{2} + \frac{1}{4} + \ldots \right) \]
\[= 2cn \]
Finding the Maximum Value

\[
\begin{align*}
T(1) & \leq c \\
T(n) & \leq T(n/2) + cn
\end{align*}
\]

\[
= cn \left(1 + \frac{1}{2} + \cdots + \frac{1}{n}\right)
\leq cn \left(1 + \frac{1}{2} + \frac{1}{4} + \cdots\right)
= 2cn = O(n)
\]
Three Recurrences

\[
\begin{align*}
T(0) &= \Theta(1) \\
T(1) &= \Theta(1) \\
T(n) &= T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + \Theta(n)
\end{align*}
\]

Solves to \(O(n \log n)\)

\[
\begin{align*}
T(0) &= \Theta(1) \\
T(1) &= \Theta(1) \\
T(n) &= T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + \Theta(1)
\end{align*}
\]

Solves to \(O(n)\)

\[
\begin{align*}
T(1) &= \Theta(1) \\
T(n) &= T(\lceil n/2 \rceil) + \Theta(n)
\end{align*}
\]

Solves to \(O(n)\)
\[T(1) \leq c \]
\[T(n) \leq 2T(n/2) + cn \]

\[O(n \log n) \]
$T(1) \leq c$

$T(n) \leq 2T(n/2) + c$

$O(n)$
\[T(1) \leq c \]
\[T(n) \leq T(n/2) + cn \]

\[\text{O}(n) \]
Categorizing Recurrences

• The recurrences we have seen so far can be categorized into three groups:
 • **Topheavy recurrences**, where the majority of the runtime is dominating by the initial call.
 – Runtime is dominated by initial call.
 • **Balanced recurrences**, where each level in the tree does the same amount of work.
 – Runtime is determined by number of layers times the work per layer.
 • **Bottomheavy recurrences**, where the majority of the runtime is accounted for in the leaves.
 – Runtime is dominated by the work per leaf times the number of leaves.
The Master Theorem

• The **Master Theorem** (given on the next slide) is a theorem for asymptotically bounding recurrences of the type we've seen so far.

• Intuitively, categorizes recurrences into one of the three groups just mentioned, then determines the runtime based on that category.
The Master Theorem

Theorem: Let $T(n)$ be defined as follows:

$$
\begin{align*}
T(1) & \leq \Theta(1) \\
T(n) & \leq aT(\lceil n / b \rceil) + O(n^d)
\end{align*}
$$

Then

$$
T(n) = \begin{cases}
O(n^d) & \text{if } \log_b a < d \\
O(n^d \log n) & \text{if } \log_b a = d \\
O(n^{\log_b a}) & \text{if } \log_b a > d
\end{cases}
$$
Solving Existing Recurrences

- Consider the mergesort recurrence

\[
\begin{align*}
T(0) &= \Theta(1) \\
T(1) &= \Theta(1) \\
T(n) &= T([n / 2]) + T([n / 2]) + \Theta(n)
\end{align*}
\]
Solving Existing Recurrences

- Consider the mergesort recurrence

\[
\begin{align*}
T(0) &= \Theta(1) \\
T(1) &= \Theta(1) \\
T(n) &\leq 2T([n / 2]) + \Theta(n)
\end{align*}
\]
Solving Existing Recurrences

- Consider the mergesort recurrence

\[
\begin{align*}
T(0) & = \Theta(1) \\
T(1) & = \Theta(1) \\
T(n) & \leq 2T(\lceil n/2 \rceil) + \Theta(n)
\end{align*}
\]

- What are \(a\), \(b\), and \(d\)?

\[
T(0) = \Theta(1) \\
T(1) = \Theta(1) \\
T(n) \leq 2T(\lceil n/2 \rceil) + \Theta(n)
\]
Solving Existing Recurrences

- Consider the mergesort recurrence

\[
\begin{align*}
T(0) &= \Theta(1) \\
T(1) &= \Theta(1) \\
T(n) &\leq 2T(\lceil n / 2 \rceil) + \Theta(n)
\end{align*}
\]

- What are \(a \), \(b \), and \(d \)? \(a = 2, b = 2, d = 1 \).
Solving Existing Recurrences

- Consider the mergesort recurrence

\[
\begin{align*}
T(0) &= \Theta(1) \\
T(1) &= \Theta(1) \\
T(n) &\leq 2T(\lfloor n / 2 \rfloor) + \Theta(n)
\end{align*}
\]

- What are \(a\), \(b\), and \(d\)? \(a = 2, b = 2, d = 1\).

- What is \(\log_b a\)?
Solving Existing Recurrences

- Consider the mergesort recurrence

\[
\begin{align*}
T(0) &= \Theta(1) \\
T(1) &= \Theta(1) \\
T(n) &\leq 2T(\lceil n / 2 \rceil) + \Theta(n)
\end{align*}
\]

- What are \(a\), \(b\), and \(d\)? \(a = 2, \ b = 2, \ d = 1\).
- What is \(\log_b a\)? \(1\)
Solving Existing Recurrences

Consider the mergesort recurrence

\[
\begin{align*}
T(0) &= \Theta(1) \\
T(1) &= \Theta(1) \\
T(n) &\leq 2T(\lfloor n/2 \rfloor) + \Theta(n)
\end{align*}
\]

What are \(a\), \(b\), and \(d\)? \(a = 2, b = 2, d = 1\).

What is \(\log_b a\)? \(1\)

By the Master Theorem, \(T(n) = O(n \log n)\).
Solving Existing Recurrences

- Consider the weakly unimodal maximum recurrence:

\[
\begin{align*}
T(1) & \leq c \\
T(n) & \leq 2T(n / 2) + c
\end{align*}
\]
Solving Existing Recurrences

- Consider the weakly unimodal maximum recurrence:

 \[
 \begin{align*}
 T(1) &\leq c \\
 T(n) &\leq 2T(\lfloor n/2 \rfloor) + c
 \end{align*}
 \]
Solving Existing Recurrences

• Consider the weakly unimodal maximum recurrence:

\[
\begin{align*}
T(1) & \leq c \\
T(n) & \leq 2T(\lceil n / 2 \rceil) + c
\end{align*}
\]

• What are \(a, b, d\)?
Solving Existing Recurrences

- Consider the weakly unimodal maximum recurrence:

\[
\begin{align*}
T(1) & \leq c \\
T(n) & \leq 2T(\lfloor n/2 \rfloor) + c
\end{align*}
\]

- What are \(a, b, d\)? \(a = 2, b = 2, d = 0\)
Solving Existing Recurrences

- Consider the weakly unimodal maximum recurrence:

\[
\begin{align*}
T(1) & \leq c \\
T(n) & \leq 2T(\lceil n / 2 \rceil) + c
\end{align*}
\]

- What are \(a, b, d \)? \(a = 2, b = 2, d = 0 \)
- What is \(\log_b a \)?
Solving Existing Recurrences

- Consider the weakly unimodal maximum recurrence:

\[
\begin{align*}
T(1) & \leq c \\
T(n) & \leq 2T(\lceil n / 2 \rceil) + c
\end{align*}
\]

- What are \(a, b, d\)? \(a = 2, b = 2, d = 0\)
- What is \(\log_b a\)? \(1\)
Solving Existing Recurrences

- Consider the weakly unimodal maximum recurrence:

\[
\begin{align*}
T(1) & \leq c \\
T(n) & \leq 2T(\lfloor n / 2 \rfloor) + c
\end{align*}
\]

- What are \(a, b, d\)? \(a = 2, b = 2, d = 0\)
- What is \(\log_b a\)? \(1\)

- By the Master Theorem, \(T(n) = O(n)\)
Solving Existing Recurrences

- Consider the recurrence for the code to find the maximum value in an array:

\[
\begin{align*}
T(1) & \leq c \\
T(n) & \leq T(\lfloor n/2 \rfloor) + cn
\end{align*}
\]
Solving Existing Recurrences

• Consider the recurrence for the code to find the maximum value in an array:

\[
\begin{align*}
T(1) & \leq c \\
T(n) & \leq T(\lfloor n / 2 \rfloor) + cn
\end{align*}
\]

• What are \(a, b, d\)?
Solving Existing Recurrences

- Consider the recurrence for the code to find the maximum value in an array:

\[
\begin{align*}
T(1) & \leq c \\
T(n) & \leq T([n / 2]) + cn
\end{align*}
\]

- What are \(a, b, d\)? \(a = 1, b = 2, d = 1\)
Solving Existing Recurrences

• Consider the recurrence for the code to find the maximum value in an array:

\[
\begin{align*}
T(1) & \leq c \\
T(n) & \leq T(\lceil n/2 \rceil) + cn
\end{align*}
\]

• What are \(a, b, d\)? \(a = 1, b = 2, d = 1\)

• What is \(\log_b a\)?
Solving Existing Recurrences

- Consider the recurrence for the code to find the maximum value in an array:

\[
\begin{align*}
T(1) & \leq c \\
T(n) & \leq T([n / 2]) + cn
\end{align*}
\]

- What are \(a\), \(b\), \(d\)? \(a = 1\), \(b = 2\), \(d = 1\)
- What is \(\log_b a\)? 0
Solving Existing Recurrences

- Consider the recurrence for the code to find the maximum value in an array:

 \[
 \begin{align*}
 T(1) & \leq c \\
 T(n) & \leq T(\lceil n / 2 \rceil) + cn
 \end{align*}
 \]

- What are \(a, b, d \)? \(a = 1, b = 2, d = 1 \)

- What is \(\log_b a \)? \(0 \)

- By the Master Theorem, \(T(n) = O(n) \)
Proving the Master Theorem

- We can prove the Master Theorem by writing out a generic proof using a recursion tree.
 - Draw out the tree.
 - Determine the work per level.
 - Sum across all levels.
- The three cases of the Master Theorem correspond to whether the recurrence is top-heavy, balanced, or bottom-heavy.
Simplifying the Recurrence

- The recurrence given by the Master Theorem is shown here:

\[
\begin{align*}
T(1) & \leq \Theta(1) \\
T(n) & \leq aT(\lceil n / b \rceil) + O(n^d)
\end{align*}
\]
Simplifying the Recurrence

• The recurrence given by the Master Theorem is shown here:

 \[
 \begin{aligned}
 T(1) & \leq \Theta(1) \\
 T(n) & \leq aT(\lceil n / b \rceil) + O(n^d)
 \end{aligned}
 \]

• We will apply our standard simplifications to this recurrence:
 • Assume inputs are powers of \(b \).
 • Replace \(\Theta \) and \(O \) with constant multiples.

 \[
 \begin{aligned}
 T(1) & \leq c \\
 T(n) & \leq aT(n / b) + cn^d
 \end{aligned}
 \]
\[T(1) \leq c \]
\[T(n) \leq aT(n / b) + cn^d \]
Hairy Scary Math

• At internal level k of the tree, the work done is
 \[a^k c \left(\frac{n}{b^k} \right)^d \]
Hairy Scary Math

- At internal level k of the tree, the work done is $a^k c(n / b^k)^d$

- Rearranging:

 $a^k c (n / b^k)^d = cn^d a^k / b^{dk}$
Hairy Scary Math

• At internal level k of the tree, the work done is
 \[a^k c(n / b^k)^d \]

• Rearranging:
 \[
 a^k c \left(\frac{n}{b^k}\right)^d = cn^d \frac{a^k}{b^{dk}} = cn^d \left(\frac{a}{b^d}\right)^k
 \]
Hairy Scary Math

- At internal level k of the tree, the work done is $a^k c(n / b^k)^d$

- Rearranging:

 $$a^k c (n / b^k)^d = cn^d a^k / b^{dk} = cn^d (a / b^d)^k$$

- Therefore:

 $$T(n) \leq c a^{\log_b n} + \sum_{k=0}^{\log_b n-1} c n^d \left(\frac{a}{b^d}\right)^k$$
Hairy Scary Math

- At internal level k of the tree, the work done is
 \[a^k c (n / b^k)^d \]

- Rearranging:
 \[
 a^k c (n / b^k)^d = cn^d a^k / b^{dk} \\
 = cn^d (a / b^d)^k
 \]

- Therefore:
 \[
 T(n) \leq c a^{\log_b n} + \sum_{k=0}^{\log_b n-1} c n^d \left(\frac{a}{b^d} \right)^k \\
 = c a^{\log_b n} + c n^d \sum_{k=0}^{\log_b n-1} \left(\frac{a}{b^d} \right)^k
 \]
Icky Tricky Math

• Let's see if we can simplify

\[T(n) \leq c a^{\log_b n} + \sum_{k=0}^{c} n^d \log_b n - 1 \left(\frac{a}{b^d} \right)^k \]
Icky Tricky Math

• Let's see if we can simplify

\[T(n) \leq c a^{\log_b n} + \sum_{k=0}^{c} n^d \log_b n - 1 \left(\frac{a}{b^d} \right)^k \]

• Let's look at the first term. Note that

\[a^{\log_b n} = (b^{\log_b a})^{\log_b n} \]
Icky Tricky Math

• Let's see if we can simplify

\[T(n) \leq ca^{\log_b n} + \sum_{k=0}^{c} n^d \log_b n - 1 \left(\frac{a}{b^d} \right)^k \]

• Let's look at the first term. Note that

\[a^{\log_b n} = (b^{\log_b a})^{\log_b n} = b^{(\log_b a)(\log_b n)} \]
Icky Tricky Math

• Let's see if we can simplify

\[T(n) \leq c a^{\log_b n} + \sum_{k=0}^{c} n^d \log_b n - 1 \left(\frac{a}{b^d} \right)^k \]

• Let's look at the first term. Note that

\[a^{\log_b n} = \left(b^{\log_b a} \right)^{\log_b n} \]

\[= b^{(\log_b a)(\log_b n)} \]

\[= \left(b^{\log_b n} \right)^{\log_b a} \]
Icky Tricky Math

• Let's see if we can simplify

\[T(n) \leq c \, a^{\log_b n} + \sum_{k=0}^{c} n^d \log_b n - 1 \left(\frac{a}{b^d} \right)^k \]

• Let's look at the first term. Note that

\[a^{\log_b n} = (b^{\log_b a})^{\log_b n} \]

\[= b^{(\log_b a)(\log_b n)} \]

\[= (b^{\log_b n})^{\log_b a} \]

\[= n^{\log_b a} \]
Icky Tricky Math

• Let's see if we can simplify

\[T(n) \leq c a^{\log_b n} + \sum_{k=0}^{c} n^d \log_b n - 1 \left(\frac{a}{b^d} \right)^k \]

• Let's look at the first term. Note that

\[a^{\log_b n} = (b^{\log_b a})^{\log_b n} = b^{(\log_b a)(\log_b n)} = (b^{\log_b n})^{\log_b a} = n^{\log_b a} \]

so \[T(n) \leq c n^{\log_b a} + c n^d \sum_{k=0}^{\log_b n - 1} \left(\frac{a}{b^d} \right)^k \]
Frightening Enlightening Math

• All that's left to do now is to simplify

\[T(n) \leq c n^{\log_b a} + c n^d \sum_{k=0}^{\log_b n - 1} \left(\frac{a}{b^d} \right)^k \]
Frightening Enlightening Math

- All that's left to do now is to simplify

\[T(n) \leq c n^{\log_b a} + c n^d \sum_{k=0}^{\log_b n - 1} \left(\frac{a}{b^d} \right)^k \]

- **Case 1**: What if \(a / b^d = 1 \)?
Frightening Enlightening Math

- All that's left to do now is to simplify

\[T(n) \leq c n^{\log_b a} + c n^d \sum_{k=0}^{\log_b n-1} \left(\frac{a}{b^d} \right)^k \]

- **Case 1:** What if \(a / b^d = 1 \)?
Frightening Enlightening Math

- All that's left to do now is to simplify

\[T(n) \leq c n^{\log_b a} + c n^d \sum_{k=0}^{\log_b n-1} \left(\frac{a}{b^d} \right)^k \]

- **Case 1:** What if \(a / b^d = 1 \)?

\[
\begin{array}{c}
a / b^d = 1 \\
a = b^d
\end{array}
\]
Frightening Enlightening Math

- All that's left to do now is to simplify

\[T(n) \leq c n^{\log_b a} + c n^d \sum_{k=0}^{\log_b n - 1} \left(\frac{a}{b^d} \right)^k \]

- **Case 1:** What if \(a / b^d = 1 \)?

\[a / b^d = 1 \\
 a = b^d \\
 \log_b a = d \]
All that's left to do now is to simplify

\[T(n) \leq c n^{\log_b a} + c n^d \sum_{k=0}^{\log_b n - 1} \left(\frac{a}{b^d} \right)^k \]

Case 1: What if \(a / b^d = 1? \) Then \(\log_b a = d \)
All that's left to do now is to simplify

\[T(n) \leq c n^{\log_b a} + cn^d \sum_{k=0}^{\log_b n - 1} \left(\frac{a}{b^d} \right)^k \]

Case 1: What if \(a / b^d = 1 \)? Then \(\log_b a = d \), so

\[T(n) \leq c n^d + cn^d \sum_{k=0}^{\log_b n - 1} 1 \]
Frightening Enlightening Math

- All that's left to do now is to simplify

\[T(n) \leq c n^{\log_b a} + c n^d \sum_{k=0}^{\log_b n - 1} \left(\frac{a}{b^d} \right)^k \]

- **Case 1:** What if \(a / b^d = 1 \)? Then \(\log_b a = d \), so

\[T(n) \leq c n^d + c n^d \sum_{k=0}^{\log_b n - 1} 1 \]

\[= c n^d + c n^d \log_b n \]
Frightening Enlightening Math

- All that's left to do now is to simplify
 \[
 T(n) \leq c n^{\log_b a} + c n^d \sum_{k=0}^{\log_b n - 1} \left(\frac{a}{b^d} \right)^k
 \]

- **Case 1:** What if \(a / b^d = 1 \)? Then \(\log_b a = d \), so
 \[
 T(n) \leq c n^d + c n^d \sum_{k=0}^{\log_b n - 1} 1
 \]
 \[
 = c n^d + c n^d \log_b n
 \]
 \[
 = O(n^d \log n)
 \]
Frightening Enlightening Math

- All that's left to do now is to simplify

\[T(n) \leq c n^{\log_b a} + c n^d \sum_{k=0}^{\log_b n - 1} \left(\frac{a}{b^d} \right)^k \]

- **Case 2**: What if \(a / b^d < 1 \)?
Frightening Enlightening Math

- All that's left to do now is to simplify

\[T(n) \leq c n^{\log_b a} + c n^d \sum_{k=0}^{\log_b n - 1} \left(\frac{a}{b^d} \right)^k \]

- **Case 2:** What if \(a / b^d < 1 \)? Then \(\log_b a < d \)
Frightening Enlightening Math

- All that's left to do now is to simplify

\[T(n) \leq c n^{\log_b a} + c n^d \sum_{k=0}^{\log_b n - 1} \left(\frac{a}{b^d} \right)^k \]

- **Case 2:** What if \(a / b^d < 1 \)? Then \(\log_b a < d \), so

\[T(n) < c n^d + c n^d \sum_{k=0}^{\log_b n - 1} \left(\frac{a}{b^d} \right)^k \]
Frightening Enlightening Math

• All that's left to do now is to simplify

\[T(n) \leq c\, n^{\log_b a} + c\, n^d \sum_{k=0}^{\log_b n-1} \left(\frac{a}{b^d} \right)^k \]

• Case 2: What if \(a / b^d < 1 \)? Then \(\log_b a < d \), so

\[T(n) < c\, n^d + c\, n^d \sum_{k=0}^{\log_b n-1} \left(\frac{a}{b^d} \right)^k \]

\[< c\, n^d + c\, n^d \sum_{k=0}^{\infty} \left(\frac{a}{b^d} \right)^k \]
Frightening Enlightening Math

- All that's left to do now is to simplify

\[T(n) \leq cn^{\log_b a} + cn^d \sum_{k=0}^{\log_b n - 1} \left(\frac{a}{b^d} \right)^k \]

- **Case 2:** What if \(\frac{a}{b^d} < 1 \)? Then \(\log_b a < d \), so

\[T(n) < cn^d + cn^d \sum_{k=0}^{\log_b n - 1} \left(\frac{a}{b^d} \right)^k \]

\[< cn^d + \sum_{k=0}^{\infty} \left(\frac{a}{b^d} \right)^k \]

\[< cn^d \left(1 + \frac{1}{1 - a/b^d} \right) \]
Frightening Enlightening Math

- All that's left to do now is to simplify

\[T(n) \leq c n^{\log_b a} + c n^d \sum_{k=0}^{\log_b n-1} \left(\frac{a}{b^d} \right)^k \]

- **Case 2:** What if \(a / b^d < 1? \) Then \(\log_b a < d, \) so

\[T(n) < c n^d + c n^d \sum_{k=0}^{\log_b n-1} \left(\frac{a}{b^d} \right)^k \]

\[< c n^d + c n^d \sum_{k=0}^{\infty} \left(\frac{a}{b^d} \right)^k \]

\[< c n^d \left(1 + \frac{1}{1 - a/b^d} \right) \]

\[= O(n^d) \]
Case 3: What if $a / b^d > 1$?
Case 3: What if $a / b^d > 1$? Then $\log_b a > d$
Case 3: What if \(a / b^d > 1 \)? Then \(\log_b a > d \), so

\[
T(n) \leq cn^{\log_b a} + cn^d \sum_{k=0}^{\log_b n - 1} \left(\frac{a}{b^d} \right)^k
\]
Case 3: What if \(a / b^d > 1 \)? Then \(\log_b a > d \), so

\[
T(n) \leq c n^{\log_b a} + cn^d \sum_{k=0}^{\log_b n-1} \left(\frac{a}{b^d} \right)^k
\]

\[
= c n^{\log_b a} + cn^d \frac{(a/b^d)^{\log_b n} - 1}{(a/b^d) - 1}
\]
Case 3: What if $a / b^d > 1$? Then $\log_b a > d$, so

$$T(n) \leq c n^{\log_b a} + cn^d \sum_{k=0}^{\log_b n - 1} \left(\frac{a}{b^d} \right)^k$$

$$= c n^{\log_b a} + cn^d \frac{(a/b^d)^{\log_b n} - 1}{(a/b^d) - 1}$$

$$< c n^{\log_b a} + cn^d (a/b^d)^{\log_b n} \frac{1}{(a/b^d) - 1}$$
Case 3: What if $a / b^d > 1$? Then $\log_b a > d$, so

$$T(n) \leq c n^{\log_b a} + c n^d \sum_{k=0}^{\log_b n - 1} \left(\frac{a}{b^d} \right)^k$$

$$= c n^{\log_b a} + c n^d \left(\frac{a/b^d)^{\log_b n}}{(a/b^d)^{1}} \right) - 1$$

$$< c n^{\log_b a} + c n^d (a/b^d)^{\log_b n} \frac{1}{(a/b^d)^{1}} - 1$$

$$= c n^{\log_b a} + c n^d (a/b^d)^{\log_b n} \Theta(1)$$
Case 3: What if $a / b^d > 1$? Then $\log_b a > d$, so

\[
T(n) \leq cn^{\log_b a} + cn^d \sum_{k=0}^{\log_b n-1} \left(\frac{a}{b^d} \right)^k
\]

\[
= cn^{\log_b a} + cn^d \left(\frac{a/b^d}{\log_b n} - 1 \right)
\]

\[
< cn^{\log_b a} + cn^d \left(\frac{a/b^d}{\log_b n} - 1 \right)
\]

\[
= cn^{\log_b a} + cn^d \left(\frac{a/b^d}{\log_b n} \right) \Theta(1)
\]

\[
= cn^{\log_b a} + cn^d \left(a^{\log_b n} / b^d \log_b n \right) \Theta(1)
\]
Case 3: What if \(a / b^d > 1 \)? Then \(\log_b a > d \), so

\[
T(n) \leq c n^{\log_b a} + c n^d \sum_{k=0}^{\log_b n - 1} \left(\frac{a}{b^d} \right)^k
\]

\[
= c n^{\log_b a} + c n^d \frac{(a/b^d)^{\log_b n} - 1}{(a/b^d) - 1}
\]

\[
< c n^{\log_b a} + c n^d (a/b^d)^{\log_b n} \frac{1}{(a/b^d) - 1}
\]

\[
= c n^{\log_b a} + c n^d (a/b^d)^{\log_b n} \Theta(1)
\]

\[
= c n^{\log_b a} + c n^d \left(a^{\log_b n} / b^{d \log_b n} \right) \Theta(1)
\]

\[
= c n^{\log_b a} + c n^d \left(n^{\log_b a / n^d} \right) \Theta(1)
\]
Case 3: What if $a / b^d > 1$? Then $\log_b a > d$, so

$$T(n) \leq cn^{\log_b a} + cn^d \sum_{k=0}^{\log_b n - 1} \left(\frac{a}{b^d} \right)^k$$

$$= cn^{\log_b a} + cn^d \frac{(a/b^d)^{\log_b n} - 1}{(a/b^d) - 1}$$

$$< cn^{\log_b a} + cn^d (a/b^d)^{\log_b n} \frac{1}{(a/b^d) - 1}$$

$$= cn^{\log_b a} + cn^d (a/b^d)^{\log_b n} \Theta(1)$$

$$= cn^{\log_b a} + cn^d (a^{\log_b n} / b^d)^{\log_b n} \Theta(1)$$

$$= cn^{\log_b a} + cn^d (n^{\log_b a} / n^d) \Theta(1)$$

$$= cn^{\log_b a} + cn^{\log_b a} \Theta(1)$$
Case 3: What if $a / b^d > 1$? Then $\log_b a > d$, so

$$T(n) \leq c n^{\log_b a} + c n^d \sum_{k=0}^{\log_b n-1} \left(\frac{a}{b^d} \right)^k$$

$$= c n^{\log_b a} + c n^d \frac{(a/b^d)^{\log_b n} - 1}{(a/b^d) - 1}$$

$$< c n^{\log_b a} + c n^d (a/b^d)^{\log_b n} \frac{1}{(a/b^d) - 1}$$

$$= c n^{\log_b a} + c n^d (a/b^d)^{\log_b n} \Theta(1)$$

$$= c n^{\log_b a} + c n^d (\log_b n / b^{d \log_b n}) \Theta(1)$$

$$= c n^{\log_b a} + c n^d (n^{\log_b a} / n^d) \Theta(1)$$

$$= c n^{\log_b a} + c n^{\log_b a} \Theta(1)$$

$$= O(n^{\log_b a})$$
Why the Master Theorem Matters

• The proof of the Master Theorem can be thought of as a single proof that works for all recurrences of the form handled by the theorem.

• From this point forward, we can just call back to the Master Theorem when applicable.

• Not all recurrences can be solved by the Master Theorem; more on that next time.
Applications of the Master Theorem:
A Sampler of Algorithms
Tiling with Triominoes

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

The square grid is partially filled with black triangles, indicating a triomino tile covering three adjacent squares.
Tiling with Triominoes

To tile a $2^k \times 2^k$ board missing a single square, do the following:

- If the board has size 1×1, it is has no uncovered squares (because one square is missing) and we're done.
- Otherwise, place a triomino in the center to cover up one square from each quadrant that isn't missing a square, then recursively fill in the four smaller squares.

\[
T(1) = \Theta(1) \\
T(n) = 4T(n/2) + \Theta(1)
\]
Solving the Recurrence

- We have the recurrence
 \[
 \begin{align*}
 T(1) &= \Theta(1) \\
 T(n) &= 4T(n/2) + \Theta(1)
 \end{align*}
 \]

- What are \(a\), \(b\), and \(d\)?
- What is \(\log_b a\)?
- What runtime do we get from the Master Theorem?
- Does that make sense?
Searching a Grid, Take Two
<table>
<thead>
<tr>
<th>10</th>
<th>12</th>
<th>13</th>
<th>21</th>
<th>32</th>
<th>34</th>
<th>43</th>
<th>51</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>21</td>
<td>23</td>
<td>26</td>
<td>40</td>
<td>54</td>
<td>65</td>
<td>67</td>
</tr>
<tr>
<td>21</td>
<td>23</td>
<td>31</td>
<td>33</td>
<td>54</td>
<td>58</td>
<td>74</td>
<td>77</td>
</tr>
<tr>
<td>32</td>
<td>46</td>
<td>59</td>
<td>65</td>
<td>74</td>
<td>88</td>
<td>99</td>
<td>103</td>
</tr>
<tr>
<td>53</td>
<td>75</td>
<td>96</td>
<td>115</td>
<td>124</td>
<td>131</td>
<td>132</td>
<td>136</td>
</tr>
<tr>
<td>85</td>
<td>86</td>
<td>98</td>
<td>145</td>
<td>146</td>
<td>151</td>
<td>173</td>
<td>187</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>10</td>
<td>12</td>
<td>13</td>
<td>21</td>
<td>32</td>
<td>34</td>
<td>43</td>
<td>51</td>
</tr>
<tr>
<td>16</td>
<td>21</td>
<td>23</td>
<td>26</td>
<td>40</td>
<td>54</td>
<td>65</td>
<td>67</td>
</tr>
<tr>
<td>21</td>
<td>23</td>
<td>31</td>
<td>33</td>
<td>54</td>
<td>58</td>
<td>74</td>
<td>77</td>
</tr>
<tr>
<td>32</td>
<td>46</td>
<td>59</td>
<td>65</td>
<td>74</td>
<td>88</td>
<td>99</td>
<td>103</td>
</tr>
<tr>
<td>53</td>
<td>75</td>
<td>96</td>
<td>115</td>
<td>124</td>
<td>131</td>
<td>132</td>
<td>136</td>
</tr>
<tr>
<td>85</td>
<td>86</td>
<td>98</td>
<td>145</td>
<td>146</td>
<td>151</td>
<td>173</td>
<td>187</td>
</tr>
</tbody>
</table>
\[
T(0) = \Theta(1) \\
T(1) = \Theta(1) \\
T(Z) \leq 3T([Z / 4]) + \Theta(1)
\]
Recursive Sorted Searching

- We now have the recurrence

\[
\begin{align*}
T(0) &= \Theta(1) \\
T(1) &= \Theta(1) \\
T(Z) &\leq 3T(\lceil Z / 4 \rceil) + \Theta(1)
\end{align*}
\]
Recursive Sorted Searching

• We now have the recurrence

\[
\begin{align*}
T(0) &= \Theta(1) \\
T(1) &= \Theta(1) \\
T(Z) &\leq 3T(\lceil Z / 4 \rceil) + \Theta(1)
\end{align*}
\]

• What are \(a\), \(b\), and \(d\)?
Recursive Sorted Searching

• We now have the recurrence

\[
\begin{align*}
T(0) &= \Theta(1) \\
T(1) &= \Theta(1) \\
T(Z) &\leq 3T(\lceil Z / 4 \rceil) + \Theta(1)
\end{align*}
\]

• What are \(a\), \(b\), and \(d\)?
• What does this recurrence solve to?
Recursive Sorted Searching

- We now have the recurrence

\[
\begin{align*}
T(0) &= \Theta(1) \\
T(1) &= \Theta(1) \\
T(Z) &\leq 3T(\lceil Z / 4 \rceil) + \Theta(1)
\end{align*}
\]

- What are \(a\), \(b\), and \(d\)?
- What does this recurrence solve to?
- Since \(T(Z) = O(Z^{\log_4 3})\), the runtime is \(O((mn)^{\log_4 3}) \approx O((mn)^{0.79})\)
One More Example:

Integer Multiplication
Some Efficiency Claims

- Claim: The following can be done in $\Theta(1)$ time:
 - Multiplying two one-digit numbers.
 - Adding two one-digit numbers.
- Suppose that A and B have n digits each. Then these operations have the following costs:
 - Computing $A + B$: $\Theta(n)$
 - Computing $A - B$: $\Theta(n)$
 - Computing $A \cdot 10^k$: $O(n + k)$
 - Computing $A \mod 10^k$: $O(n + k)$
Algorism Efficiency

• Recall: **Algorism** refers to place-value arithmetic.

• What is the cost of computing $A \cdot B$, where A and B are n-digit numbers?

 • Does $\Theta(n)$ rounds of the following:

 - Multiply each digit in A by a digit in B: $\Theta(n)$ time, including time to carry across columns.
 - Shift the resulting number $O(n)$ places: $O(n)$ time.

 • $\Theta(n)$ additions of $O(n)$-digit numbers: time $\Theta(n^2)$.

 • Overall runtime: $\Theta(n^2)$.
A Quick History Lesson
Multiply with Divide-and-Conquer

- Suppose that you want to multiply together two numbers X and Y, both of which are n digits long.
- Write
 \[
 X = a \cdot 10^{\lfloor n/2 \rfloor} + b
 \]
 \[
 Y = c \cdot 10^{\lfloor n/2 \rfloor} + d
 \]
 where \(b, d < 10^{\lfloor n/2 \rfloor} \)
- If \(X = 13579 \) and \(Y = 24680 \), what are \(a, b, c \) and \(d \)?
Multiplying with Divide-and-Conquer

- If $X = a \cdot 10^{\lfloor n/2 \rfloor} + b$ and $Y = c \cdot 10^{\lfloor n/2 \rfloor} + d$, then

What is the cost of directly evaluating this expression?

- Does 4 multiplications on numbers with $\lceil n/2 \rceil$ digits.
- Does three additions of numbers with $O(n)$ digits.
- Does two multiplications by powers of ten, each of which takes $O(n)$ time.
Multiplying with Divide-and-Conquer

- If $X = a \cdot 10^{\lfloor n/2 \rfloor} + b$ and $Y = c \cdot 10^{\lfloor n/2 \rfloor} + d$, then

 $X \cdot Y = (a \cdot 10^{\lfloor n/2 \rfloor} + b) \cdot (c \cdot 10^{\lfloor n/2 \rfloor} + d)$

- What is the cost of directly evaluating this expression?
 - Does 4 multiplications on numbers with $\lceil n/2 \rceil$ digits.
 - Does three additions of numbers with $O(n)$ digits.
 - Does two multiplications by powers of ten, each of which takes $O(n)$ time.
Multiplying with Divide-and-Conquer

- If $X = a \cdot 10^{\lfloor n/2 \rfloor} + b$ and $Y = c \cdot 10^{\lfloor n/2 \rfloor} + d$, then

$$X \cdot Y = (a \cdot 10^{\lfloor n/2 \rfloor} + b) \cdot (c \cdot 10^{\lfloor n/2 \rfloor} + d)$$

$$= ac \cdot 10^{2\lfloor n/2 \rfloor} + ad \cdot 10^{\lfloor n/2 \rfloor} + bc \cdot 10^{\lfloor n/2 \rfloor} + bd$$
Multiplying with Divide-and-Conquer

- If \(X = a \cdot 10^{\lfloor n/2 \rfloor} + b \) and \(Y = c \cdot 10^{\lfloor n/2 \rfloor} + d \), then

\[
X \cdot Y = (a \cdot 10^{\lfloor n/2 \rfloor} + b) \cdot (c \cdot 10^{\lfloor n/2 \rfloor} + d)
\]

\[
= ac \cdot 10^{2\lfloor n/2 \rfloor} + ad \cdot 10^{\lfloor n/2 \rfloor} + bc \cdot 10^{\lfloor n/2 \rfloor} + bd
\]

\[
= ac \cdot 10^{2\lfloor n/2 \rfloor} + (ad + bc) \cdot 10^{\lfloor n/2 \rfloor} + bd
\]
Multiplying with Divide-and-Conquer

- If $X = a \cdot 10^{\lfloor n/2 \rfloor} + b$ and $Y = c \cdot 10^{\lfloor n/2 \rfloor} + d$, then
 \[
 X \cdot Y = (a \cdot 10^{\lfloor n/2 \rfloor} + b) \cdot (c \cdot 10^{\lfloor n/2 \rfloor} + d)
 = ac \cdot 10^{2\lfloor n/2 \rfloor} + ad \cdot 10^{\lfloor n/2 \rfloor} + bc \cdot 10^{\lfloor n/2 \rfloor} + bd
 = ac \cdot 10^{2\lfloor n/2 \rfloor} + (ad + bc) \cdot 10^{\lfloor n/2 \rfloor} + bd
 \]

- What is the cost of directly evaluating this expression?
 - Does 4 multiplications on numbers with $\lceil n / 2 \rceil$ digits.
 - Does three additions of numbers with $\mathcal{O}(n)$ digits.
 - Does two multiplications by powers of ten, each of which takes $\mathcal{O}(n)$ time.
Multiplying with Divide-and-Conquer

- If $X = a \cdot 10^{\lfloor n/2 \rfloor} + b$ and $Y = c \cdot 10^{\lfloor n/2 \rfloor} + d$, then
 \[
 X \cdot Y = (a \cdot 10^{\lfloor n/2 \rfloor} + b) \cdot (c \cdot 10^{\lfloor n/2 \rfloor} + d)
 = ac \cdot 10^{2\lfloor n/2 \rfloor} + ad \cdot 10^{\lfloor n/2 \rfloor} + bc \cdot 10^{\lfloor n/2 \rfloor} + bd
 = ac \cdot 10^{2\lfloor n/2 \rfloor} + (ad + bc) \cdot 10^{\lfloor n/2 \rfloor} + bd
 \]

- What is the cost of directly evaluating this expression?
 - Does 4 multiplications on numbers with $\lfloor n / 2 \rfloor$ digits.
 - Does three additions of numbers with $O(n)$ digits.
 - Does two multiplications by powers of ten, each of which takes $O(n)$ time.

\[
\begin{align*}
T(1) &= \Theta(1) \\
T(n) &= 4T(\lfloor n / 2 \rfloor) + O(n)
\end{align*}
\]
Solving the Recurrence

- We now have the recurrence
 \[
 \begin{align*}
 T(1) &= \Theta(1) \\
 T(n) &= 4T(\lceil n / 2 \rceil) + O(n)
 \end{align*}
 \]

- What does the Master Theorem say?

- Runtime is $O(n^2)$. But that's no better than before...
Karatsuba's Observation

• Karatsuba arrived at this expression:
 \[X \cdot Y = ac \cdot 10^{2\lfloor n/2 \rfloor} + (ad + bc) \cdot 10^{\lfloor n/2 \rfloor} + bd \]

• Karatsuba's key question: Is it possible to compute \(ac \), \(ad + bc \), and \(bd \) without making four multiplications?
Karatsuba's Observation

• Consider these three products:

\[E = ac \]
\[F = bd \]
\[G = (a + b)(c + d) = ac + ad + bc + bd \]

• We can compute these values with two additions and three multiplications.

• Note that

\[ac = E \]
\[bd = F \]
\[ad + bc = G - E - F \]
Karatsuba's Algorithm

- Write \(X = a \cdot 10^{\lfloor n/2 \rfloor} + b \) and \(Y = c \cdot 10^{\lfloor n/2 \rfloor} + d \)
- Recursively compute
 \[
 E = ac \quad F = bd \quad G = (a + b)(c + d)
 \]
- Then
 \[
 X \cdot Y = E \cdot 10^{2\lfloor n/2 \rfloor} + (G - E - F) \cdot 10^{\lfloor n/2 \rfloor} + F
 \]
- Does two multiplications by powers of ten (\(O(n) \) each), four additions (\(O(n) \) each), two subtractions (\(O(n) \) each), and three recursive multiplies on numbers with at most \(\lfloor n / 2 \rfloor \) digits.

\[
\begin{align*}
T(1) &= \Theta(1) \\
T(n) &= 3T(\lfloor n / 2 \rfloor) + O(n)
\end{align*}
\]
Karatsuba's Algorithm

- We now have the recurrence

\[
\begin{align*}
T(1) &= \Theta(1) \\
T(n) &= 3T(\lceil n / 2 \rceil) + O(n)
\end{align*}
\]

- What does the Master Theorem tell us?
- Runtime is \(O(n^{\log_2 3}) \approx O(n^{1.585})\)
- This is asymptotically better than the normal algorithm!

Standard algorithm is not the optimal algorithm!
After Karatsuba

• Several other algorithms for multiplying numbers have arisen since Karatsuba's algorithm.

• **Toom-Cook** uses a similar set of techniques to multiply *n*-digit numbers in time $O(n^{\log_3 5})$.

• **Schönhage–Strassen** uses a completely different approach (based on the fast Fourier transform) to achieve $O(n \log n \log \log n)$ runtime.

• Recently (2008), **Fürer's algorithm** achieved runtime $n \log n 2^{O(\log^* n)}$, where $\log^* n$ is an extremely slowly-growing function.

• **Finding an optimal multiplication algorithm is still an open problem!**
Next Time

• The Selection Problem
• The Median of Medians Algorithm
• The Substitution Method