
  

Divide-and-Conquer Algorithms
Part Three



  

Announcements

● Problem Set One graded; will be returned at the 
end of lecture.
● If you submitted by email, let us know if you don't hear 

back by 5PM today.
● If you submitted through the SCPD office, we'll return 

your problem set through the SCPD office.
● Handout: “Mathematical Terms and Identities.”

● Covers useful mathematical definitions, terms, and 
identities that we'll be using over the rest of the quarter.

● Let us know if there's anything you'd like us to add for 
future quarters!



  

Outline for Today

● The Master Theorem
● A powerful tool for solving recurrences.

● Applications of the Master Theorem
● Rapidly solving a variety of recurrence 

relations!



  

One More Recurrence Relation



  

Finding the Maximum Value
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3 10 9 12 8 11 14 11
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T(1) ≤ c
T(n) ≤ T(n / 2) + cn

T(1) ≤ c
T(n) ≤ T(n / 2) + cn

= cn + cn / 2 + … + c
= cn (1 + ½ + … + 1/n)
≤ cn (1 + ½ + ¼ + …)
= 2cn = O(n)

= cn + cn / 2 + … + c
= cn (1 + ½ + … + 1/n)
≤ cn (1 + ½ + ¼ + …)
= 2cn = O(n)



  

Three Recurrences
T(0) = Θ(1)
T(1) = Θ(1)
T(n) = T(⌈n / 2⌉) + T(⌊n / 2⌋) + Θ(n)

T(0) = Θ(1)
T(1) = Θ(1)
T(n) = T(⌈n / 2⌉) + T(⌊n / 2⌋) + Θ(n)

T(0) = Θ(1)
T(1) = Θ(1)
T(n) = T(⌈n / 2⌉) + T(⌊n / 2⌋) + Θ(1)

T(0) = Θ(1)
T(1) = Θ(1)
T(n) = T(⌈n / 2⌉) + T(⌊n / 2⌋) + Θ(1)

Solves to O(n log n)

Solves to O(n)

T(1) = Θ(1)
T(n) = T(⌈n / 2⌉) + Θ(n)

T(1) = Θ(1)
T(n) = T(⌈n / 2⌉) + Θ(n)

Solves to O(n)
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Categorizing Recurrences

● The recurrences we have seen so far can be 
categorized into three groups:
● Topheavy recurrences, where the majority of 

the runtime is dominating by the initial call.
– Runtime is dominated by initial call.

● Balanced recurrences, where each level in the 
tree does the same amount of work.
– Runtime is determined by number of layers times the 

work per layer.
● Bottomheavy recurrences, where the majority 

of the runtime is accounted for in the leaves.
– Runtime is dominated by the work per leaf times the 

number of leaves.



  

The Master Theorem

● The Master Theorem (given on the next 
slide) is a theorem for asymptotically 
bounding recurrences of the type we've 
seen so far.

● Intuitively, categorizes recurrences into 
one of the three groups just mentioned, 
then determines the runtime based on 
that category.



  

The Master Theorem

Theorem: Let T(n) be defined as follows:

 

Then

T(1) ≤ Θ(1)
T(n) ≤ aT(⌈n / b⌉) + O(nd)
T(1) ≤ Θ(1)
T(n) ≤ aT(⌈n / b⌉) + O(nd)

T(n) =

if logb a < d

if logb a = d

if logb a > d

O(nd logn)

O(nd)

O(nlogba
)



  

Solving Existing Recurrences

● Consider the mergesort recurrence

● What are a, b, and d? a = 2, b = 2, d = 1.

● What is logb a?  1

● By the Master Theorem, T(n) = O(n log n).

T(0) = Θ(1)
T(1) = Θ(1)
T(n) ≤ 2T(⌈n / 2⌉) + Θ(n)

T(0) = Θ(1)
T(1) = Θ(1)
T(n) ≤ 2T(⌈n / 2⌉) + Θ(n)



  

Solving Existing Recurrences

● Consider the weakly unimodal maximum 
recurrence:

● What are a, b, d? a = 2, b = 2, d = 0

● What is logb a? 1

● By the Master Theorem, T(n) = O(n)

T(1) ≤ c
T(n) ≤ 2T(⌈n / 2⌉) + c
T(1) ≤ c
T(n) ≤ 2T(⌈n / 2⌉) + c



  

Solving Existing Recurrences

● Consider the recurrence for the code to 
find the maximum value in an array:

● What are a, b, d? a = 1, b = 2, d = 1

● What is logb a? 0

● By the Master Theorem, T(n) = O(n)

T(1) ≤ c
T(n) ≤ T(⌈n / 2⌉) + cn
T(1) ≤ c
T(n) ≤ T(⌈n / 2⌉) + cn



  

Proving the Master Theorem

● We can prove the Master Theorem by 
writing out a generic proof using a 
recursion tree.
● Draw out the tree.
● Determine the work per level.
● Sum across all levels.

● The three cases of the Master Theorem 
correspond to whether the recurrence is 
topheavy, balanced, or bottomheavy.



  

Simplifying the Recurrence

● The recurrence given by the Master 
Theorem is shown here:

● We will apply our standard simplifications 
to this recurrence:
● Assume inputs are powers of b.
● Replace Θ and O with constant multiples.

T(1) ≤ Θ(1)
T(n) ≤ aT(⌈n / b⌉) + O(nd)
T(1) ≤ Θ(1)
T(n) ≤ aT(⌈n / b⌉) + O(nd)

T(1) ≤ c
T(n) ≤ aT(n / b) + cnd

T(1) ≤ c
T(n) ≤ aT(n / b) + cnd



  

T(1) ≤ c
T(n) ≤ aT(n / b) + cnd

T(1) ≤ c
T(n) ≤ aT(n / b) + cnd

cnd

c(n / b)d c(n / b)d c(n / b)d

c(n / b2)d c(n / b2)d c(n / b2)d

c c c

c(n / b3)d c(n / b3)d c(n / b3)d

...

...

cnd

ac(n / b)d

a2c(n / b2)d

a3c(n / b3)d

ca
logbn

...



  

Hairy Scary Math

● At internal level k of the tree, the work done is

ak c(n / bk)d

● Rearranging:

  ak c (n / bk)d = cnd ak / bdk

  ak c (n / bk)d = cnd (a / bd)k

● Therefore:

T (n) ≤ c a
logbn

+ ∑
k=0

logbn−1

cnd( a

bd )
k

= c a
logbn

+cnd ∑
k=0

logbn−1

( a

bd )
k



  

Icky Tricky Math

● Let's see if we can simplify
 

 

 

● Let's look at the first term.  Note that

so

T (n) ≤ c a
logbn

+∑
k=0

c

nd logbn−1( a

bd )
k

a
logbn

= (b
logba

)
logbn

= b
(logba)(logbn)

= (b
logbn

)
logba

= n
logba

T (n) ≤ cn
logba

+cnd ∑
k=0

logbn−1

( a

bd )
k



  

Frightening Enlightening Math
● All that's left to do now is to simplify

 

● Case 1: What if a / bd = 1?  Then logb a = d, so

T (n) ≤ cn
logba

+cnd ∑
k=0

logbn−1

( a

bd )
k

T (n) ≤ cnd+cnd ∑
k=0

logbn−1

1

= cnd+cnd logbn

= O(nd logn)



  

Frightening Enlightening Math
● All that's left to do now is to simplify

 

● Case 2: What if a / bd < 1?  Then logb a < d, so

T (n) < cnd+cnd ∑
k=0

logbn−1

( a
bd )

k

< cnd+cnd ∑
k=0

∞

( a
bd )

k

< cnd(1+
1

1−a/bd )
= O(nd)

T (n) ≤ cn
logba

+cnd ∑
k=0

logbn−1

( a

bd )
k



  

Case 3: What if a / bd > 1?  Then logb a > d, so

T (n) ≤ cn
logba

+cnd ∑
k=0

logbn−1

( a
bd )

k

= cn
logba

+cnd (a/bd)
logbn

−1

(a/bd)−1

< cn
logba

+cnd(a/bd)
logbn 1

(a/bd)−1

= cn
logba

+cnd(a/bd)
logbn

Θ(1)

= cn
logba

+cnd(a
logbn

/b
d logbn

)Θ(1)

= cn
logba

+cnd(n
logba

/nd)Θ(1)

= cn
logba

+cn
logba

Θ(1)

= O(n
logba

)



  

Why the Master Theorem Matters

● The proof of the Master Theorem can be 
thought of as a single proof that works for 
all recurrences of the form handled by the 
theorem.

● From this point forward, we can just call 
back to the Master Theorem when 
applicable.

● Not all recurrences can be solved by the 
Master Theorem; more on that next time.



  

Applications of the Master Theorem:
A Sampler of Algorithms



  

Tiling with Triominoes



  

Tiling with Triominoes



  

Tiling with Triominoes



  

Tiling with Triominoes



  

Tiling with Triominoes

● To tile a 2k × 2k board missing a single 
square, do the following:
● If the board has size 1 × 1, is has no 

uncovered squares (because one square is 
missing) and we're done.

● Otherwise, place a triomino in the center to 
cover up one square from each quadrant that 
isn't missing a square, then recursively fill in 
the four smaller squares.

T(1) = Θ(1)
T(n) = 4T(n / 2) + Θ(1)
T(1) = Θ(1)
T(n) = 4T(n / 2) + Θ(1)



  

Solving the Recurrence

● We have the recurrence

 

● What are a, b, and d?

● What is logb a?

● What runtime do we get from the Master 
Theorem?

● Does that make sense?

T(1) = Θ(1)
T(n) = 4T(n / 2) + Θ(1)

T(1) = Θ(1)
T(n) = 4T(n / 2) + Θ(1)



  

Searching a Grid, Take Two



  

10 12 13 21 32 34 43 51

16 21 23 26 40 54 65 67

21 23 31 33 54 58 74 77

32 46 59 65 74 88 99 103

53 75 96 115 124 131 132 136

85 86 98 145 146 151 173 187



  

10 12 13 21 32 34 43 51

16 21 23 26 40 54 65 67

21 23 31 33 54 58 74 77

32 46 59 65 74 88 99 103

53 75 96 115 124 131 132 136

85 86 98 145 146 151 173 187



  

10 12 13 21 32 34 43 51

16 21 23 26 40 54 65 67

21 23 31 33 54 58 74 77

32 46 59 65 74 88 99 103

53 75 96 115 124 131 132 136

85 86 98 145 146 151 173 187

T(0) = Θ(1)
T(1) = Θ(1)
T(Z) ≤ 3T(⌈Z / 4⌉) + Θ(1)

T(0) = Θ(1)
T(1) = Θ(1)
T(Z) ≤ 3T(⌈Z / 4⌉) + Θ(1)



  

Recursive Sorted Searching

● We now have the recurrence

  
 

● What are a, b, and d?
● What does this recurrence solve to?
● Since T(Z) = O(Z log₄  3), the runtime is 

O((mn)log₄ 3) ≈ O((mn)0.79)

T(0) = Θ(1)
T(1) = Θ(1)
T(Z) ≤ 3T(⌈Z / 4⌉) + Θ(1)

T(0) = Θ(1)
T(1) = Θ(1)
T(Z) ≤ 3T(⌈Z / 4⌉) + Θ(1)



  

One More Example:
Integer Multiplication



  

Some Efficiency Claims

● Claim: The following can be done in Θ(1) time: 
● Multiplying two one-digit numbers.
● Adding two one-digit numbers.

● Suppose that A and B have n digits each.  Then 
these operations have the following costs:
● Computing A + B: Θ(n)
● Computing A – B: Θ(n)
● Computing A · 10k: O(n + k)
● Computing A mod 10k: O(n + k)



  

Algorism Efficiency

● Recall: Algorism refers to place-value 
arithmetic.

● What is the cost of computing A · B, where A 
and B are n-digit numbers?
● Does Θ(n) rounds of the following:

– Multiply each digit in A by a digit in B: Θ(n) 
time, including time to carry across columns.

– Shift the resulting number O(n) places: O(n) 
time.

● Θ(n) additions of O(n)-digit numbers: time Θ(n2).
● Overall runtime: Θ(n2).



  

A Quick History Lesson



  

Multiplying with Divide-and-Conquer

● Suppose that you want to multiply 
together two numbers X and Y, both of 
which are n digits long.

● Write

X = a · 10 ⌊n / 2⌋  + b

Y = c · 10 ⌊n / 2⌋  + d

where b, d < 10⌊n / 2⌋

● If X = 13579 and Y = 24680, what are 
a, b, c and d?



  

Multiplying with Divide-and-Conquer

T(1) = Θ(1)
T(n) = 4T(⌈n / 2⌉) + O(n)
T(1) = Θ(1)
T(n) = 4T(⌈n / 2⌉) + O(n)

● If X = a · 10 ⌊n / 2⌋  + b and Y = c · 10 ⌊n / 2⌋  + d, then

    X · Y = (a · 10 ⌊n / 2⌋ + b) · (c · 10 ⌊n / 2⌋  + d) 
    X · Y = ac · 102⌊n / 2⌋ + ad · 10⌊n / 2⌋ + bc · 10⌊n / 2⌋ + bd 
    X · Y = ac · 102⌊n / 2⌋ + (ad + bc) · 10⌊n / 2⌋ + bd       

● What is the cost of directly evaluating this expression?

● Does 4 multiplications on numbers with ⌈n / 2⌉ digits.
● Does three additions of numbers with O(n) digits.
● Does two multiplications by powers of ten, each of 

which takes O(n) time.



  

Solving the Recurrence

● We now have the recurrence

● What does the Master Theorem say?
● Runtime is O(n2).  But that's no better 

than before...

T(1) = Θ(1)
T(n) = 4T(⌈n / 2⌉) + O(n)
T(1) = Θ(1)
T(n) = 4T(⌈n / 2⌉) + O(n)



  

Karatsuba's Observation

● Karatsuba arrived at this expression:

X·Y = ac·102⌊n/2⌋ + (ad + bc)·10⌊n/2⌋ + bd  
● Karatsuba's key question: Is it possible to 

compute ac, ad + bc, and bd without 
making four multiplications?



  

Karatsuba's Observation

● Consider these three products:

E = ac

F = bd

G = (a + b)(c + d) = ac + ad + bc + bd
● We can compute these values with two additions 

and three multiplications.
● Note that

               ac = E

               bd = F

               ad + bc = G – E – F



  

Karatsuba's Algorithm

T(1) = Θ(1)
T(n) = 3T(⌈n / 2⌉) + O(n)

T(1) = Θ(1)
T(n) = 3T(⌈n / 2⌉) + O(n)

● Write  X = a·10 ⌊n / 2⌋  + b  and  Y = c·10 ⌊n / 2⌋  + d
● Recursively compute

E = ac    F = bd     G = (a + b)(c + d)
● Then

X · Y = E · 102⌊n / 2⌋ + (G – E – F) · 10⌊n / 2⌋ + F 
● Does two multiplications by powers of ten (O(n) 

each), four additions (O(n) each), two subtractions 
(O(n) each), and three recursive multiplies on 
numbers with at most ⌈n / 2⌉ digits.



  

Karatsuba's Algorithm

● We now have the recurrence

● What does the Master Theorem tell us?
● Runtime is O(nlog₂ 3) ≈ O(n1.585)
● This is asymptotically better than the 

normal algorithm!
● Standard algorism is not the optimal 

algorism algorithm!

T(1) = Θ(1)
T(n) = 3T(⌈n / 2⌉) + O(n)

T(1) = Θ(1)
T(n) = 3T(⌈n / 2⌉) + O(n)



  

After Karatsuba

● Several other algorithms for multiplying numbers 
have arisen since Karatsuba's algorithm.

● Toom-Cook uses a similar set of techniques to 
multiply n-digit numbers in time O(nlog₃ 5).

● Schönhage–Strassen uses a completely different 
approach (based on the fast Fourier transform) to 
achieve O(n log n log log n) runtime.

● Recently (2008), Fürer's algorithm achieved 
runtime n log n 2O(log* n), where log* n is an 
extremely slowly-growing function.

● Finding an optimal multiplication algorithm 
is still an open problem!



  

Next Time

● The Selection Problem
● The Median of Medians Algorithm
● The Substitution Method
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