

Divide-and-Conquer Algorithms
Part Three

Announcements

● Problem Set One graded; will be returned at the
end of lecture.
● If you submitted by email, let us know if you don't hear

back by 5PM today.
● If you submitted through the SCPD office, we'll return

your problem set through the SCPD office.
● Handout: “Mathematical Terms and Identities.”

● Covers useful mathematical definitions, terms, and
identities that we'll be using over the rest of the quarter.

● Let us know if there's anything you'd like us to add for
future quarters!

Outline for Today

● The Master Theorem
● A powerful tool for solving recurrences.

● Applications of the Master Theorem
● Rapidly solving a variety of recurrence

relations!

One More Recurrence Relation

Finding the Maximum Value

3 1 4 10 5 9 12 6 7 8 11 2 13 14 0 1111

3 10 9 12 8 11 14 11

10 12 11 14

12 14

14

T(1) ≤ c
T(n) ≤ T(n / 2) + cn

T(1) ≤ c
T(n) ≤ T(n / 2) + cn

= cn + cn / 2 + … + c
= cn (1 + ½ + … + 1/n)
≤ cn (1 + ½ + ¼ + …)
= 2cn = O(n)

= cn + cn / 2 + … + c
= cn (1 + ½ + … + 1/n)
≤ cn (1 + ½ + ¼ + …)
= 2cn = O(n)

Three Recurrences
T(0) = Θ(1)
T(1) = Θ(1)
T(n) = T(⌈n / 2⌉) + T(⌊n / 2⌋) + Θ(n)

T(0) = Θ(1)
T(1) = Θ(1)
T(n) = T(⌈n / 2⌉) + T(⌊n / 2⌋) + Θ(n)

T(0) = Θ(1)
T(1) = Θ(1)
T(n) = T(⌈n / 2⌉) + T(⌊n / 2⌋) + Θ(1)

T(0) = Θ(1)
T(1) = Θ(1)
T(n) = T(⌈n / 2⌉) + T(⌊n / 2⌋) + Θ(1)

Solves to O(n log n)

Solves to O(n)

T(1) = Θ(1)
T(n) = T(⌈n / 2⌉) + Θ(n)

T(1) = Θ(1)
T(n) = T(⌈n / 2⌉) + Θ(n)

Solves to O(n)

cn

cn / 2 cn / 2

cn / 4 cn / 4 cn / 4 cn / 4

c c c c c ccc…

cn

cn

cn

cn

O(n log n)

T(1) ≤ c
T(n) ≤ 2T(n / 2) + cn

T(1) ≤ c
T(n) ≤ 2T(n / 2) + cn

…

T(1) ≤ c
T(n) ≤ 2T(n / 2) + c

T(1) ≤ c
T(n) ≤ 2T(n / 2) + c

c

c c

c c c c

c c c c c c

…

…

c

2c

4c

cn

O(n)

T(1) ≤ c
T(n) ≤ T(n / 2) + cn

T(1) ≤ c
T(n) ≤ T(n / 2) + cn

cn

cn / 2

cn

cn / 2

cn / 4

c

O(n)

cn / 4

c

…

Categorizing Recurrences

● The recurrences we have seen so far can be
categorized into three groups:
● Topheavy recurrences, where the majority of

the runtime is dominating by the initial call.
– Runtime is dominated by initial call.

● Balanced recurrences, where each level in the
tree does the same amount of work.
– Runtime is determined by number of layers times the

work per layer.
● Bottomheavy recurrences, where the majority

of the runtime is accounted for in the leaves.
– Runtime is dominated by the work per leaf times the

number of leaves.

The Master Theorem

● The Master Theorem (given on the next
slide) is a theorem for asymptotically
bounding recurrences of the type we've
seen so far.

● Intuitively, categorizes recurrences into
one of the three groups just mentioned,
then determines the runtime based on
that category.

The Master Theorem

Theorem: Let T(n) be defined as follows:

Then

T(1) ≤ Θ(1)
T(n) ≤ aT(⌈n / b⌉) + O(nd)
T(1) ≤ Θ(1)
T(n) ≤ aT(⌈n / b⌉) + O(nd)

T(n) =

if logb a < d

if logb a = d

if logb a > d

O(nd logn)

O(nd)

O(nlogba
)

Solving Existing Recurrences

● Consider the mergesort recurrence

● What are a, b, and d? a = 2, b = 2, d = 1.

● What is logb a? 1

● By the Master Theorem, T(n) = O(n log n).

T(0) = Θ(1)
T(1) = Θ(1)
T(n) ≤ 2T(⌈n / 2⌉) + Θ(n)

T(0) = Θ(1)
T(1) = Θ(1)
T(n) ≤ 2T(⌈n / 2⌉) + Θ(n)

Solving Existing Recurrences

● Consider the weakly unimodal maximum
recurrence:

● What are a, b, d? a = 2, b = 2, d = 0

● What is logb a? 1

● By the Master Theorem, T(n) = O(n)

T(1) ≤ c
T(n) ≤ 2T(⌈n / 2⌉) + c
T(1) ≤ c
T(n) ≤ 2T(⌈n / 2⌉) + c

Solving Existing Recurrences

● Consider the recurrence for the code to
find the maximum value in an array:

● What are a, b, d? a = 1, b = 2, d = 1

● What is logb a? 0

● By the Master Theorem, T(n) = O(n)

T(1) ≤ c
T(n) ≤ T(⌈n / 2⌉) + cn
T(1) ≤ c
T(n) ≤ T(⌈n / 2⌉) + cn

Proving the Master Theorem

● We can prove the Master Theorem by
writing out a generic proof using a
recursion tree.
● Draw out the tree.
● Determine the work per level.
● Sum across all levels.

● The three cases of the Master Theorem
correspond to whether the recurrence is
topheavy, balanced, or bottomheavy.

Simplifying the Recurrence

● The recurrence given by the Master
Theorem is shown here:

● We will apply our standard simplifications
to this recurrence:
● Assume inputs are powers of b.
● Replace Θ and O with constant multiples.

T(1) ≤ Θ(1)
T(n) ≤ aT(⌈n / b⌉) + O(nd)
T(1) ≤ Θ(1)
T(n) ≤ aT(⌈n / b⌉) + O(nd)

T(1) ≤ c
T(n) ≤ aT(n / b) + cnd

T(1) ≤ c
T(n) ≤ aT(n / b) + cnd

T(1) ≤ c
T(n) ≤ aT(n / b) + cnd

T(1) ≤ c
T(n) ≤ aT(n / b) + cnd

cnd

c(n / b)d c(n / b)d c(n / b)d

c(n / b2)d c(n / b2)d c(n / b2)d

c c c

c(n / b3)d c(n / b3)d c(n / b3)d

...

...

cnd

ac(n / b)d

a2c(n / b2)d

a3c(n / b3)d

ca
logbn

...

Hairy Scary Math

● At internal level k of the tree, the work done is

ak c(n / bk)d

● Rearranging:

 ak c (n / bk)d = cnd ak / bdk

 ak c (n / bk)d = cnd (a / bd)k

● Therefore:

T (n) ≤ c a
logbn

+ ∑
k=0

logbn−1

cnd(a

bd)
k

= c a
logbn

+cnd ∑
k=0

logbn−1

(a

bd)
k

Icky Tricky Math

● Let's see if we can simplify

● Let's look at the first term. Note that

so

T (n) ≤ c a
logbn

+∑
k=0

c

nd logbn−1(a

bd)
k

a
logbn

= (b
logba

)
logbn

= b
(logba)(logbn)

= (b
logbn

)
logba

= n
logba

T (n) ≤ cn
logba

+cnd ∑
k=0

logbn−1

(a

bd)
k

Frightening Enlightening Math
● All that's left to do now is to simplify

● Case 1: What if a / bd = 1? Then logb a = d, so

T (n) ≤ cn
logba

+cnd ∑
k=0

logbn−1

(a

bd)
k

T (n) ≤ cnd+cnd ∑
k=0

logbn−1

1

= cnd+cnd logbn

= O(nd logn)

Frightening Enlightening Math
● All that's left to do now is to simplify

● Case 2: What if a / bd < 1? Then logb a < d, so

T (n) < cnd+cnd ∑
k=0

logbn−1

(a
bd)

k

< cnd+cnd ∑
k=0

∞

(a
bd)

k

< cnd(1+
1

1−a/bd)
= O(nd)

T (n) ≤ cn
logba

+cnd ∑
k=0

logbn−1

(a

bd)
k

Case 3: What if a / bd > 1? Then logb a > d, so

T (n) ≤ cn
logba

+cnd ∑
k=0

logbn−1

(a
bd)

k

= cn
logba

+cnd (a/bd)
logbn

−1

(a/bd)−1

< cn
logba

+cnd(a/bd)
logbn 1

(a/bd)−1

= cn
logba

+cnd(a/bd)
logbn

Θ(1)

= cn
logba

+cnd(a
logbn

/b
d logbn

)Θ(1)

= cn
logba

+cnd(n
logba

/nd)Θ(1)

= cn
logba

+cn
logba

Θ(1)

= O(n
logba

)

Why the Master Theorem Matters

● The proof of the Master Theorem can be
thought of as a single proof that works for
all recurrences of the form handled by the
theorem.

● From this point forward, we can just call
back to the Master Theorem when
applicable.

● Not all recurrences can be solved by the
Master Theorem; more on that next time.

Applications of the Master Theorem:
A Sampler of Algorithms

Tiling with Triominoes

Tiling with Triominoes

Tiling with Triominoes

Tiling with Triominoes

Tiling with Triominoes

● To tile a 2k × 2k board missing a single
square, do the following:
● If the board has size 1 × 1, is has no

uncovered squares (because one square is
missing) and we're done.

● Otherwise, place a triomino in the center to
cover up one square from each quadrant that
isn't missing a square, then recursively fill in
the four smaller squares.

T(1) = Θ(1)
T(n) = 4T(n / 2) + Θ(1)
T(1) = Θ(1)
T(n) = 4T(n / 2) + Θ(1)

Solving the Recurrence

● We have the recurrence

● What are a, b, and d?

● What is logb a?

● What runtime do we get from the Master
Theorem?

● Does that make sense?

T(1) = Θ(1)
T(n) = 4T(n / 2) + Θ(1)

T(1) = Θ(1)
T(n) = 4T(n / 2) + Θ(1)

Searching a Grid, Take Two

10 12 13 21 32 34 43 51

16 21 23 26 40 54 65 67

21 23 31 33 54 58 74 77

32 46 59 65 74 88 99 103

53 75 96 115 124 131 132 136

85 86 98 145 146 151 173 187

10 12 13 21 32 34 43 51

16 21 23 26 40 54 65 67

21 23 31 33 54 58 74 77

32 46 59 65 74 88 99 103

53 75 96 115 124 131 132 136

85 86 98 145 146 151 173 187

10 12 13 21 32 34 43 51

16 21 23 26 40 54 65 67

21 23 31 33 54 58 74 77

32 46 59 65 74 88 99 103

53 75 96 115 124 131 132 136

85 86 98 145 146 151 173 187

T(0) = Θ(1)
T(1) = Θ(1)
T(Z) ≤ 3T(⌈Z / 4⌉) + Θ(1)

T(0) = Θ(1)
T(1) = Θ(1)
T(Z) ≤ 3T(⌈Z / 4⌉) + Θ(1)

Recursive Sorted Searching

● We now have the recurrence

● What are a, b, and d?
● What does this recurrence solve to?
● Since T(Z) = O(Z log₄ 3), the runtime is

O((mn)log₄ 3) ≈ O((mn)0.79)

T(0) = Θ(1)
T(1) = Θ(1)
T(Z) ≤ 3T(⌈Z / 4⌉) + Θ(1)

T(0) = Θ(1)
T(1) = Θ(1)
T(Z) ≤ 3T(⌈Z / 4⌉) + Θ(1)

One More Example:
Integer Multiplication

Some Efficiency Claims

● Claim: The following can be done in Θ(1) time:
● Multiplying two one-digit numbers.
● Adding two one-digit numbers.

● Suppose that A and B have n digits each. Then
these operations have the following costs:
● Computing A + B: Θ(n)
● Computing A – B: Θ(n)
● Computing A · 10k: O(n + k)
● Computing A mod 10k: O(n + k)

Algorism Efficiency

● Recall: Algorism refers to place-value
arithmetic.

● What is the cost of computing A · B, where A
and B are n-digit numbers?
● Does Θ(n) rounds of the following:

– Multiply each digit in A by a digit in B: Θ(n)
time, including time to carry across columns.

– Shift the resulting number O(n) places: O(n)
time.

● Θ(n) additions of O(n)-digit numbers: time Θ(n2).
● Overall runtime: Θ(n2).

A Quick History Lesson

Multiplying with Divide-and-Conquer

● Suppose that you want to multiply
together two numbers X and Y, both of
which are n digits long.

● Write

X = a · 10 ⌊n / 2⌋ + b

Y = c · 10 ⌊n / 2⌋ + d

where b, d < 10⌊n / 2⌋

● If X = 13579 and Y = 24680, what are
a, b, c and d?

Multiplying with Divide-and-Conquer

T(1) = Θ(1)
T(n) = 4T(⌈n / 2⌉) + O(n)
T(1) = Θ(1)
T(n) = 4T(⌈n / 2⌉) + O(n)

● If X = a · 10 ⌊n / 2⌋ + b and Y = c · 10 ⌊n / 2⌋ + d, then

 X · Y = (a · 10 ⌊n / 2⌋ + b) · (c · 10 ⌊n / 2⌋ + d)
 X · Y = ac · 102⌊n / 2⌋ + ad · 10⌊n / 2⌋ + bc · 10⌊n / 2⌋ + bd
 X · Y = ac · 102⌊n / 2⌋ + (ad + bc) · 10⌊n / 2⌋ + bd

● What is the cost of directly evaluating this expression?

● Does 4 multiplications on numbers with ⌈n / 2⌉ digits.
● Does three additions of numbers with O(n) digits.
● Does two multiplications by powers of ten, each of

which takes O(n) time.

Solving the Recurrence

● We now have the recurrence

● What does the Master Theorem say?
● Runtime is O(n2). But that's no better

than before...

T(1) = Θ(1)
T(n) = 4T(⌈n / 2⌉) + O(n)
T(1) = Θ(1)
T(n) = 4T(⌈n / 2⌉) + O(n)

Karatsuba's Observation

● Karatsuba arrived at this expression:

X·Y = ac·102⌊n/2⌋ + (ad + bc)·10⌊n/2⌋ + bd
● Karatsuba's key question: Is it possible to

compute ac, ad + bc, and bd without
making four multiplications?

Karatsuba's Observation

● Consider these three products:

E = ac

F = bd

G = (a + b)(c + d) = ac + ad + bc + bd
● We can compute these values with two additions

and three multiplications.
● Note that

 ac = E

 bd = F

 ad + bc = G – E – F

Karatsuba's Algorithm

T(1) = Θ(1)
T(n) = 3T(⌈n / 2⌉) + O(n)

T(1) = Θ(1)
T(n) = 3T(⌈n / 2⌉) + O(n)

● Write X = a·10 ⌊n / 2⌋ + b and Y = c·10 ⌊n / 2⌋ + d
● Recursively compute

E = ac F = bd G = (a + b)(c + d)
● Then

X · Y = E · 102⌊n / 2⌋ + (G – E – F) · 10⌊n / 2⌋ + F
● Does two multiplications by powers of ten (O(n)

each), four additions (O(n) each), two subtractions
(O(n) each), and three recursive multiplies on
numbers with at most ⌈n / 2⌉ digits.

Karatsuba's Algorithm

● We now have the recurrence

● What does the Master Theorem tell us?
● Runtime is O(nlog₂ 3) ≈ O(n1.585)
● This is asymptotically better than the

normal algorithm!
● Standard algorism is not the optimal

algorism algorithm!

T(1) = Θ(1)
T(n) = 3T(⌈n / 2⌉) + O(n)

T(1) = Θ(1)
T(n) = 3T(⌈n / 2⌉) + O(n)

After Karatsuba

● Several other algorithms for multiplying numbers
have arisen since Karatsuba's algorithm.

● Toom-Cook uses a similar set of techniques to
multiply n-digit numbers in time O(nlog₃ 5).

● Schönhage–Strassen uses a completely different
approach (based on the fast Fourier transform) to
achieve O(n log n log log n) runtime.

● Recently (2008), Fürer's algorithm achieved
runtime n log n 2O(log* n), where log* n is an
extremely slowly-growing function.

● Finding an optimal multiplication algorithm
is still an open problem!

Next Time

● The Selection Problem
● The Median of Medians Algorithm
● The Substitution Method

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49

