
  

Randomized Algorithms
Part One



  

Announcements

● Problem Set 2 due right now if you're 
using a late period.
● Solutions released right after lecture.

● Julie's Tuesday office hours this week will 
be remote office hours.  Details emailed 
out tomorrow.



  

Outline for Today

● Randomized Algorithms
● How can randomness help solve problems?

● Quickselect
● Can we do away with median-of-medians?

● Techniques in Randomization
● Linearity of expectation, the union bound, 

and other tricks.



  

Randomized Algorithms



  

Deterministic Algorithms

● The algorithms we've seen so far have 
been deterministic.

● We want to aim for properties like
● Good worst-case behavior.
● Getting exact solutions.

● Much of our complexity arises from the 
fact that there is little flexibility here.

● Often find complex algorithms with 
nuanced correctness proofs.



  

Randomized Algorithms

● A randomized algorithm is an 
algorithm that incorporates randomness 
as part of its operation.

● Often aim for properties like
● Good average-case behavior.
● Getting exact answers with high probability.
● Getting answers that are close to the right 

answer.

● Often find very simple algorithms with 
dense but clean analyses.



  

Where We're Going

● Motivating examples:
● Quickselect and quicksort are Las Vegas 

algorithms: they always find the right 
answer, but might take a while to do so.

● Karger's algorithm is a Monte Carlo 
algorithm: it might not always find the right 
answer, but has dependable performance.

● Hash tables with universal hash functions 
are randomized data structures that have 
high performance due to randomness. 



  

Our First Randomized Algorithm:
Quickselect



  

The Selection Problem

● Recall from last time: the selection 
problem is to find the kth largest element 
in an unsorted array.

● Can solve in O(n log n) time by sorting 
and taking the kth largest element.

● Can solve in O(n) time (with a large 
constant factor) using the 
“median-of-medians” algorithm.



  

Comparison of Selection Algorithms

Array Size Sorting Median of 
Medians

10000000 0.92 0.37

20000000 1.9 0.74

30000000 2.9 1.05

40000000 3.94 1.43

50000000 5.01 1.83

60000000 6.06 2.12

70000000 7.16 2.54

80000000 8.26 2.89

90000000 9.3 3.2



  

Partition-Based Selection

● Recall: The median-of-medians algorithm 
belongs to a family of algorithms based 
on the partition algorithm:
● Choose a pivot.
● Use partition to place it correctly.
● Stop if the pivot is in the right place.
● Recurse on one piece of the array otherwise.

● With no constraints on how the pivot is 
chosen, runtime is Ω(n) and O(n2).



  

Partition-Based Selection
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Randomized Selection

● Silly question: What happens if you pick 
pivots completely at random?

● Intuitively, gives reasonably good 
probability of picking a good pivot.

● This algorithm is called quickselect.



  

Analyzing Quickselect

● When analyzing a randomized algorithm, we 
typically are interested in learning the 
following:
● What is the average-case runtime of the 

function?
● How likely are we to achieve that average-case 

runtime?
● We'll answer these questions in a few minutes.

● For now, let's start off with a simpler 
question...



  

The Worst Case

● In the worst-case, a partition-based 
selection algorithm can take O(n2) time.

● Recall: What triggers the worst-case 
behavior of the selection algorithm?

● Answer: Continuously pick the largest or 
smallest element on each iteration.

● Since quickselect picks pivots randomly, 
what is the probability that this happens 
in quickselect?



  

Triggering the Worst Case
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Triggering the Worst Case

● Let Ɛₖ be the event that we pick the largest or 
smallest element of the array when there are k 
elements left.

● Let event Ɛ correspond to the worst-case 
runtime of quickselect occurring.

● We can then define Ɛ as the event

● Question: What is P(Ɛ)?

Ɛ = ∩
i=1

n

Ɛi



  

Triggering the Worst Case

● We have

● Since all Ɛi's are independent (we make 
independent random choices at each level), 
this simplifies to

 
If i > 1, then P(Ɛi) = 2 / i.  P(Ɛ1) = 1.  Thus

P (Ɛ) = P (∩
i=1

n

Ɛi)

P (Ɛ) = ∏
i=1

n

P (Ɛi)

P (Ɛ) = ∏
i=1

n

P (Ɛi) = ∏
i=2

n
2
i

=
2n−1

n!
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Eensy Weensy Numbers

● The probability of triggering the 
worst-case behavior of quickselect is

● To put that in perspective: if n = 31, then 
2n-1 ≈ 109 and n! ≈ 8 × 1033.

● This is extremely unlikely!

P (Ɛ) =
2n−1

n!



  

On Average

● We know that the probability of getting a 
worst-case runtime is vanishingly small.

● But how does the algorithm do on 
average?  Is it Θ(n)?  Θ(n log n)?  
Something else?

● Totally reasonable thing to do: try 
running it and see what happens!



  

Comparison of Selection Algorithms
Array Size Sorting Median of 

Medians
Quickselect

10000000 0.92 0.37 0.11

20000000 1.9 0.74 0.14

30000000 2.9 1.05 0.27

40000000 3.94 1.43 0.44

50000000 5.01 1.83 0.53

60000000 6.06 2.12 0.64

70000000 7.16 2.54 0.69

80000000 8.26 2.89 1.01

90000000 9.3 3.2 0.72



  

An Average-Case Analysis

● Our guess: average runtime is Θ(n).
● How would we go about proving this?
● Since algorithm is recursive, might want 

to write a recurrence relation.
● This is challenging: the split size isn't 

guaranteed, so we have no idea how big 
our subproblems will be!

● Let's try another approach...



  

An Accounting Trick

● Because quickselect makes at most one 
recursive call, we can think of the algorithm as 
a chain of recursive calls:

 

● Accounting trick: group multiple calls together 
into one “phase” of the algorithm.

The sum of the work done by all calls is equal 
to the sum of the work done by all phases.

Goal: Pick phases intelligently to simplify 
analysis.

137 96 64 42 13 7
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Picking Phases

● Let's define one “phase” of the algorithm 
to be when the algorithm decreases the 
size of the input array to 75% of the 
original size or less.

● Why 75%?
● If array shrinks by any constant factor from 

phase to phase and only does linear work per 
phase, total work done is linear.

● The number 75% has a nice intuition...



  

Triggering 75% / 25%

● Suppose that we pick a pivot whose value 
is in the middle 50% of all array values.

● Then 25% of array values are larger and 
25% of array values are smaller.

● Guaranteed to get a 75% / 25% split!
● A phase ends as soon as we pick a pivot 

in the middle 50% of all values.



  

Analyzing the Runtime

● Number the phases 0, 1, 2, …

● In phase k, the array size is (3n / 4)k.

● Number of phases is at most ⌈log4/3 n⌉.

● Let Xₖ be a random variable equal to the number of 
recursive calls in phase k.

● Work done in phase k is at most

● Let W be a random variable denoting the total 
work done.  Then

Xk⋅cn(
3
4

)
k

    (for some constant c)

W ≤ ∑
k=0

⌈log4 /3n⌉

(Xk⋅cn(
3
4

)
k

) = cn ∑
k=0

⌈log4 /3n⌉

(Xk(
3
4

)
k

)
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The Average-Case Analysis

● Our goal is to determine the expected 
runtime for quickselect on an array of 
size n.

● This is E[W], the expected value of W.
● This is given by

E[W ] ≤ E [cn ∑
k=0

⌈ log4/3n⌉

(X k(
3
4

)
k

)]



  

Properties of Expectation

● The expected value of a constant or 
non-random variable is just that constant or 
variable itself:

 E[c] = c    
● Expected value is a linear operator:

E[aX + b] = aE[X] + b  

E[X + Y] = E[X] + E[Y]
● Note that the second claim holds even if X and 

Y are dependent variables.



  

Simplifying Our Expression

E[W ] ≤ E [cn ∑
k=0

⌈log4 /3n⌉

(Xk(
3
4

)
k

)]
= cn⋅E [ ∑

k=0

⌈ log4 /3n ⌉

(Xk(
3
4

)
k

)]
= cn⋅ ∑

k=0

⌈ log4/3 n⌉

E [ Xk(
3
4

)
k

]
= cn⋅ ∑

k=0

⌈ log4/3 n⌉

E [X k](
3
4

)
k
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E[Xₖ]

● By definition:

 
Recall: Xₖ is the number of calls within phase k.

● Equivalently: The number of calls before a 
pivot is chosen in the middle 50% of the 
elements.

● Can we determine this explicitly?

E[ Xk]=∑
i=0

∞

i⋅P (Xk=i)



  

E[Xₖ]

E[ Xk]=∑
i=0

∞

i⋅P (Xk=i)

● E[Xₖ] is defined by

 
● P(Xₖ = i) is the probability that the first i – 1 

pivots we chose weren't in the middle 50% and 
that the ith pivot is in the middle 50%.

● (As an edge case, it's 0 when i = 0.)
● As a simplification: assume that whenever we 

pick a pivot, we can choose from any of the n 
elements present at the start of the phase.

● Only makes it harder to end the phase; 
provides an upper bound on the phase length.



  

E[Xₖ]

● Recall: E[Xₖ] is defined by

  
● Under the assumption that all pivot choices are 

independent, P(Xₖ = i) is given by

P(Xₖ = i)  =  (1 / 2)i

Probability the first i – 1 pivots are in the outer 
50% and the ith pivot was in the inner 50%.

● Therefore

E[ Xk]=∑
i=0

∞

i⋅P (Xk=i)

E[ Xk] = ∑
i=0

∞

i⋅P (Xk=i) ≤ ∑
i=1

∞ i
2i

= 2
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Finalizing the Computation

E[W ] ≤ cn⋅ ∑
k=0

⌈ log4/3n⌉

E [X k](
3
4

)
k

= cn⋅ ∑
k=0

⌈ log4/3n⌉

2(
3
4

)
k

= 2cn⋅ ∑
k=0

⌈ log4/3n ⌉

(
3
4

)
k

≤ 2cn⋅∑
k=0

∞

(
3
4

)
k

= 8cn
= O(n)
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Bounding the Spread

● We now know that quickselect runs in 
expected O(n) time.

● How likely is it that the runtime is O(n)?



  

Bounding the Spread

● Idea: Devise a formula for the probability that every 
phase terminates within r steps.

● If this happens, quickselect will run in time

● Goal: Find the probability (as a function of r) 
that this occurs.
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Bounding the Spread

● We want the probability of the event

All phases terminate within r steps.  
● Mathematically, it's easier to work with 

the probability of the complement of this 
event:

At least one phase terminates  
in at least r + 1 steps.  

● We can compute the probability of the 
first event by subtracting the probability 
of the second event from one.



  

Long Phase Runtimes

● The probability that phase k takes more 
than r steps to finish is given by

P(Xₖ > r)
● This is

● Since these events are all mutually 
exclusive:

P (Xk>r ) = ∑
i=r +1

∞

P ( Xk=i) ≤ ∑
i=r+1

∞ 1
2i

=
1
2r

P (Xk > r ) = P ( ∪
i=r +1

∞

Xk=i)
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Long Phase Runtimes

● The probability that any phase takes more than 
r steps to finish is

● These are not mutually exclusive events – we 
may have multiple different phases finish in 
more than r steps.

● We can use the union bound to get an 
upper-bound on the true value:

P ( ∪
i=0

⌈log4/3n⌉

X i>r )

P (∪
i=0

∞

Ɛ i) ≤ ∑
i=0

∞

P (Ɛ i)



  

P ( ∪
i=0

⌈ log4 /3n⌉

X i>r ) ≤ ∑
i=0

⌈log4 /3n⌉

P (X i>r ) ≤ ∑
i=0

⌈log4 /3n⌉
1
2r =

⌈log4/3n⌉

2r

Long Phase Runtimes

● The probability that any phase takes 
more than r steps to finish is

 
● Using the union bound:

P ( ∪
i=0

⌈log4/3n⌉

X i>r )



  

P ( ∪
i=0

⌈ log4 /3n⌉

X i>r ) ≤ ∑
i=0

⌈log4 /3n⌉

P (X i>r ) ≤ ∑
i=0

⌈log4 /3n⌉
1
2r =

⌈log4/3n⌉

2r

Long Phase Runtimes

● The probability that any phase takes 
more than r steps to finish is

 
● Using the union bound:

P ( ∪
i=0

⌈log4/3n⌉

X i>r )



  

P ( ∪
i=0

⌈ log4 /3n⌉

X i>r ) ≤ ∑
i=0

⌈log4 /3n⌉

P (X i>r ) ≤ ∑
i=0

⌈log4 /3n⌉
1
2r =

⌈log4/3n⌉

2r

Long Phase Runtimes

● The probability that any phase takes 
more than r steps to finish is

 
● Using the union bound:

P ( ∪
i=0

⌈log4/3n⌉

X i>r )



  

P ( ∪
i=0

⌈ log4 /3n⌉

X i>r ) ≤ ∑
i=0

⌈log4 /3n⌉

P (X i>r ) ≤ ∑
i=0

⌈log4 /3n⌉
1
2r =

⌈log4/3n⌉+1

2r

Long Phase Runtimes

● The probability that any phase takes 
more than r steps to finish is

 
● Using the union bound:

P ( ∪
i=0

⌈log4/3n⌉

X i>r )



  

Long Phase Runtimes

● For any number r, the probability that any one 
phase takes more than r steps to finish is

 
● If for any value s we pick                                   ,

then the probability that any phase takes at 
most r steps to complete is at most

● So the probability every phase ends within
                             steps is at least 1 – 1 / 2s.

r=s+log2(⌈log4 /3n⌉+1)
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Bounding the Runtime

● Recall: If all phases terminate within r steps, 
the total runtime will be O(nr).

● If we pick                                , then the 
runtime will be O(ns + n log log n) with 
probability at least 1 – 1/2s.

● For any constant k, pick s = log₂ nk = k log₂ n.  
Probability that the runtime is O(n log n) is at 
least 1 – 1 / nk.

● Definition: Event Ɛ occurs with high 
probability iff P(Ɛ) ≥ 1 – 1 / nc for some c ≥ 1.

● Quickselect runs in time at most O(n log n) 
with high probability.

r=s+log2(⌈log4 /3n⌉+1)



  

Wrap-Up: Introselect



  

Where We Stand

● The median-of-medians algorithm has 
runtime O(n), but has a large constant 
factor.

● Quickselect has average-case runtime 
O(n) with a low constant factor, but isn't 
guaranteed to run in time O(n).

● Can we get the best of both worlds?



  

Introspective Selection

● The introselect algorithm intelligently 
combines median-of-medians and quickselect.

● Idea: Run quickselect, but keep track of how 
many iterations have passed in the current 
phase.

● If the phase ends before the number of 
iterations exceeds some constant k, reset the 
counter and continue.

● Otherwise, run the median-of-medians 
algorithm to choose a pivot and reset the 
counter.



  

Introspective Selection

● Assuming introselect makes good random 
choices, it is inappreciably slower than 
normal quickselect.

● If it makes too many bad choices, we do 
some expensive median-of-medians steps, 
which is slower but ensures linear time.

● Net result is an algorithm that has 
worst-case O(n) runtime and on expectation 
matches quickselect's runtime.



  

Comparison of Selection Algorithms

Array Size Sorting Median of 
Medians

Quickselect Introselect

10000000 0.92 0.37 0.11 0.07

20000000 1.9 0.74 0.14 0.17

30000000 2.9 1.05 0.27 0.17

40000000 3.94 1.43 0.44 0.33

50000000 5.01 1.83 0.53 0.42

60000000 6.06 2.12 0.64 0.41

70000000 7.16 2.54 0.69 0.51

80000000 8.26 2.89 1.01 0.56

90000000 9.3 3.2 0.72 0.88



  

Next Time

● Quicksort
● Indicator Random Variables
● Harmonic Numbers
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