Announcements

• Problem Set 2 due right now if you're using a late period.
 • Solutions released right after lecture.
• Julie's Tuesday office hours this week will be remote office hours. Details emailed out tomorrow.
Outline for Today

- **Randomized Algorithms**
 - How can randomness help solve problems?

- **Quickselect**
 - Can we do away with median-of-medians?

- **Techniques in Randomization**
 - Linearity of expectation, the union bound, and other tricks.
Randomized Algorithms
Deterministic Algorithms

• The algorithms we've seen so far have been deterministic.

• We want to aim for properties like
 • Good worst-case behavior.
 • Getting exact solutions.

• Much of our complexity arises from the fact that there is little flexibility here.

• Often find complex algorithms with nuanced correctness proofs.
Randomized Algorithms

- A **randomized algorithm** is an algorithm that incorporates randomness as part of its operation.
- Often aim for properties like
 - Good *average-case* behavior.
 - Getting exact answers *with high probability*.
 - Getting answers that are *close* to the right answer.
- Often find very simple algorithms with dense but clean analyses.
Where We're Going

- Motivating examples:
 - Quickselect and quicksort are Las Vegas algorithms: they always find the right answer, but might take a while to do so.
 - Karger's algorithm is a Monte Carlo algorithm: it might not always find the right answer, but has dependable performance.
 - Hash tables with universal hash functions are randomized data structures that have high performance due to randomness.
Our First Randomized Algorithm:

Quickselect
The Selection Problem

- Recall from last time: the selection problem is to find the kth largest element in an unsorted array.
- Can solve in $O(n \log n)$ time by sorting and taking the kth largest element.
- Can solve in $O(n)$ time (with a large constant factor) using the “median-of-medians” algorithm.
Comparison of Selection Algorithms

<table>
<thead>
<tr>
<th>Array Size</th>
<th>Sorting</th>
<th>Median of Medians</th>
</tr>
</thead>
<tbody>
<tr>
<td>100000000</td>
<td>0.92</td>
<td>0.37</td>
</tr>
<tr>
<td>200000000</td>
<td>1.9</td>
<td>0.74</td>
</tr>
<tr>
<td>300000000</td>
<td>2.9</td>
<td>1.05</td>
</tr>
<tr>
<td>400000000</td>
<td>3.94</td>
<td>1.43</td>
</tr>
<tr>
<td>500000000</td>
<td>5.01</td>
<td>1.83</td>
</tr>
<tr>
<td>600000000</td>
<td>6.06</td>
<td>2.12</td>
</tr>
<tr>
<td>700000000</td>
<td>7.16</td>
<td>2.54</td>
</tr>
<tr>
<td>800000000</td>
<td>8.26</td>
<td>2.89</td>
</tr>
<tr>
<td>900000000</td>
<td>9.3</td>
<td>3.2</td>
</tr>
</tbody>
</table>
Partition-Based Selection

- Recall: The median-of-medians algorithm belongs to a family of algorithms based on the partition algorithm:
 - Choose a pivot.
 - Use partition to place it correctly.
 - Stop if the pivot is in the right place.
 - Recurse on one piece of the array otherwise.
- With no constraints on how the pivot is chosen, runtime is $\Omega(n)$ and $O(n^2)$.
Partition-Based Selection

21 32 18 38 17 41 52 53 54 68 70 99 85 98
Randomized Selection

- Silly question: What happens if you pick pivots completely at random?
- Intuitively, gives reasonably good probability of picking a good pivot.
- This algorithm is called **quickselect**.
Analyzing Quickselect

- When analyzing a randomized algorithm, we typically are interested in learning the following:
 - What is the average-case runtime of the function?
 - How likely are we to achieve that average-case runtime?
- We'll answer these questions in a few minutes.
- For now, let's start off with a simpler question...
The Worst Case

• In the worst-case, a partition-based selection algorithm can take $O(n^2)$ time.

• Recall: What triggers the worst-case behavior of the selection algorithm?

• **Answer:** Continuously pick the largest or smallest element on each iteration.

• Since quickselect picks pivots randomly, what is the probability that this happens in quickselect?
Triggering the Worst Case

• Let \mathcal{E}_k be the event that we pick the largest or smallest element of the array when there are k elements left.

• Let event \mathcal{E} correspond to the worst-case runtime of quickselect occurring.

• We can then define \mathcal{E} as the event

$$\mathcal{E} = \bigcap_{i=1}^{n} \mathcal{E}_i$$

• Question: What is $P(\mathcal{E})$?
Triggering the Worst Case

- We have

\[P(\mathcal{E}) = P\left(\bigcap_{i=1}^{n} \mathcal{E}_i\right) \]
Triggering the Worst Case

- We have

\[P(\mathcal{E}) = P \left(\bigcap_{i=1}^{n} \mathcal{E}_i \right) \]

- Since all \(\mathcal{E}_i \)'s are independent (we make independent random choices at each level), this simplifies to

\[P(\mathcal{E}) = P \left(\bigcap_{i=1}^{n} \mathcal{E}_i \right) = \prod_{i=1}^{n} P(\mathcal{E}_i) \]
Triggering the Worst Case

- We have

\[P(\mathcal{E}) = P(\bigcap_{i=1}^{n} \mathcal{E}_i) \]

- Since all \(\mathcal{E}_i \)'s are independent (we make independent random choices at each level), this simplifies to

\[P(\mathcal{E}) = P(\bigcap_{i=1}^{n} \mathcal{E}_i) = \prod_{i=1}^{n} P(\mathcal{E}_i) \]

- If \(i > 1 \), then \(P(\mathcal{E}_i) = 2 / i \). \(P(\mathcal{E}_1) = 1 \).
Triggering the Worst Case

• We have

\[P(\mathcal{E}) = P(\bigcap_{i=1}^{n} \mathcal{E}_i) \]

• Since all \(\mathcal{E}_i \)'s are independent (we make independent random choices at each level), this simplifies to

\[P(\mathcal{E}) = P(\bigcap_{i=1}^{n} \mathcal{E}_i) = \prod_{i=1}^{n} P(\mathcal{E}_i) \]

• If \(i > 1 \), then \(P(\mathcal{E}_i) = 2 / i \). \(P(\mathcal{E}_1) = 1 \). Thus

\[P(\mathcal{E}) = \prod_{i=1}^{n} P(\mathcal{E}_i) \]
Triggering the Worst Case

- We have
 \[P(\mathcal{E}) = P\left(\bigcap_{i=1}^{n} \mathcal{E}_i\right) \]

- Since all \(\mathcal{E}_i \)'s are independent (we make independent random choices at each level), this simplifies to
 \[P(\mathcal{E}) = P\left(\bigcap_{i=1}^{n} \mathcal{E}_i\right) = \prod_{i=1}^{n} P(\mathcal{E}_i) \]

- If \(i > 1 \), then \(P(\mathcal{E}_i) = 2 / i \). \(P(\mathcal{E}_1) = 1 \). Thus
 \[P(\mathcal{E}) = \prod_{i=1}^{n} P(\mathcal{E}_i) = \prod_{i=2}^{n} \frac{2}{i} \]
Triggering the Worst Case

- We have

\[P(\mathcal{E}) = P(\bigcap_{i=1}^{n} \mathcal{E}_i) \]

- Since all \(\mathcal{E}_i \)'s are independent (we make independent random choices at each level), this simplifies to

\[P(\mathcal{E}) = P(\bigcap_{i=1}^{n} \mathcal{E}_i) = \prod_{i=1}^{n} P(\mathcal{E}_i) \]

- If \(i > 1 \), then \(P(\mathcal{E}_i) = 2 / i \). \(P(\mathcal{E}_1) = 1 \). Thus

\[P(\mathcal{E}) = \prod_{i=1}^{n} P(\mathcal{E}_i) = \prod_{i=2}^{n} \frac{2}{i} = \frac{2^{n-1}}{n!} \]
Eensy Weensy Numbers

- The probability of triggering the worst-case behavior of quickselect is

\[P(\mathcal{E}) = \frac{2^{n-1}}{n!} \]

- To put that in perspective: if \(n = 31 \), then \(2^{n-1} \approx 10^9 \) and \(n! \approx 8 \times 10^{33} \).

- This is extremely unlikely!
On Average

- We know that the probability of getting a worst-case runtime is vanishingly small.
- But how does the algorithm do on average? Is it $\Theta(n)$? $\Theta(n \log n)$? Something else?
- Totally reasonable thing to do: try running it and see what happens!
Comparison of Selection Algorithms

<table>
<thead>
<tr>
<th>Array Size</th>
<th>Sorting</th>
<th>Median of Medians</th>
<th>Quickselect</th>
</tr>
</thead>
<tbody>
<tr>
<td>10000000</td>
<td>0.92</td>
<td>0.37</td>
<td>0.11</td>
</tr>
<tr>
<td>20000000</td>
<td>1.9</td>
<td>0.74</td>
<td>0.14</td>
</tr>
<tr>
<td>30000000</td>
<td>2.9</td>
<td>1.05</td>
<td>0.27</td>
</tr>
<tr>
<td>40000000</td>
<td>3.94</td>
<td>1.43</td>
<td>0.44</td>
</tr>
<tr>
<td>50000000</td>
<td>5.01</td>
<td>1.83</td>
<td>0.53</td>
</tr>
<tr>
<td>60000000</td>
<td>6.06</td>
<td>2.12</td>
<td>0.64</td>
</tr>
<tr>
<td>70000000</td>
<td>7.16</td>
<td>2.54</td>
<td>0.69</td>
</tr>
<tr>
<td>80000000</td>
<td>8.26</td>
<td>2.89</td>
<td>1.01</td>
</tr>
<tr>
<td>90000000</td>
<td>9.3</td>
<td>3.2</td>
<td>0.72</td>
</tr>
</tbody>
</table>
An Average-Case Analysis

- Our guess: average runtime is $\Theta(n)$.
- How would we go about proving this?
- Since algorithm is recursive, might want to write a recurrence relation.
- This is challenging: the split size isn't guaranteed, so we have no idea how big our subproblems will be!
- Let's try another approach...
An Accounting Trick

- Because quickselect makes at most one recursive call, we can think of the algorithm as a chain of recursive calls:

 137 → 96 → 64 → 42 → 13 → 7

- Accounting trick: group multiple calls together into one “phase” of the algorithm.
An Accounting Trick

• Because quickselect makes at most one recursive call, we can think of the algorithm as a chain of recursive calls:

• Accounting trick: group multiple calls together into one “phase” of the algorithm.

• The sum of the work done by all calls is equal to the sum of the work done by all phases.

• Goal: Pick phases intelligently to simplify analysis.
Picking Phases

• Let's define one “phase” of the algorithm to be when the algorithm decreases the size of the input array to 75% of the original size or less.

• Why 75%?
 • If array shrinks by any constant factor from phase to phase and only does linear work per phase, total work done is linear.
 • The number 75% has a nice intuition...
Triggering 75% / 25%

- Suppose that we pick a pivot whose value is in the middle 50% of all array values.
- Then 25% of array values are larger and 25% of array values are smaller.
- Guaranteed to get a 75% / 25% split!
- A phase ends as soon as we pick a pivot in the middle 50% of all values.
Analyzing the Runtime

- Number the phases 0, 1, 2, ...

\[\text{number of phases is at most } \lceil \log_{4/3} n \rceil.\]

Let \(X_k\) be a random variable equal to the number of recursive calls in phase \(k\).

Work done in phase \(k\) is at most

\[X_k \cdot c \cdot n \cdot (3^{4})^k.\]

Let \(W\) be a random variable denoting the total work done. Then

\[W \leq \sum_{k=0}^{\lceil \log_{4/3} n \rceil} (X_k \cdot c \cdot n \cdot (3^{4})^k).\]
Analyzing the Runtime

- Number the phases 0, 1, 2, ...
- In phase k, the array size is at most $n(3/4)^k$.

Let X_k be a random variable equal to the number of recursive calls in phase k.

Work done in phase k is at most $X_k \cdot c n (3/4)^k$ (for some constant c).

Let W be a random variable denoting the total work done. Then

$$W \leq \sum_{k=0}^{\lceil \log_{4/3} n \rceil} (X_k \cdot c n (3/4)^k) = c n \sum_{k=0}^{\lceil \log_{4/3} n \rceil} (X_k (3/4)^k)$$
Analyzing the Runtime

- Number the phases 0, 1, 2, ...
- In phase k, the array size is at most $n(\frac{3}{4})^k$.
- Last phase numbered at most $\lceil \log_{\frac{4}{3}} n \rceil$.

Let X_k be a random variable equal to the number of recursive calls in phase k.

Work done in phase k is at most $X_k \cdot c \cdot n(\frac{3}{4})^k$ (for some constant c).

Let W be a random variable denoting the total work done. Then

$$W \leq \sum_{k=0}^{\lceil \log_{\frac{4}{3}} n \rceil} (X_k \cdot c \cdot n(\frac{3}{4})^k) = c \cdot n \sum_{k=0}^{\lceil \log_{\frac{4}{3}} n \rceil} (X_k (\frac{3}{4})^k)$$
Analyzing the Runtime

- Number the phases 0, 1, 2, ...
- In phase k, the array size is at most $n(3 / 4)^k$.
- Last phase numbered at most $\lceil \log_{4/3} n \rceil$.
- Let X_k be a random variable equal to the number of recursive calls in phase k.
Analyzing the Runtime

- Number the phases 0, 1, 2, ...
- In phase \(k \), the array size is at most \(n(3 / 4)^k \).
- Last phase numbered at most \([\log_{4/3} n]\).
- Let \(X_k \) be a random variable equal to the number of recursive calls in phase \(k \).
- Work done in phase \(k \) is at most
 \[X_k \cdot c n\left(\frac{3}{4}\right)^k \]
 (for some constant \(c \))
Analyzing the Runtime

- Number the phases 0, 1, 2, ...
- In phase k, the array size is at most $n(3/4)^k$.
- Last phase numbered at most $\lceil \log_{4/3} n \rceil$.
- Let X_k be a random variable equal to the number of recursive calls in phase k.
- Work done in phase k is at most $X_k \cdot cn\left(\frac{3}{4}\right)^k$ (for some constant c)
- Let W be a random variable denoting the total work done. Then
 $$W \leq \sum_{k=0}^{\lceil \log_{4/3} n \rceil} \left(X_k \cdot cn\left(\frac{3}{4}\right)^k\right)$$
Analyzing the Runtime

- Number the phases 0, 1, 2, ...
- In phase k, the array size is at most $n(3 / 4)^k$.
- Last phase numbered at most $\lceil \log_{4/3} n \rceil$.
- Let X_k be a random variable equal to the number of recursive calls in phase k.
- Work done in phase k is at most
 \[X_k \cdot c n \left(\frac{3}{4} \right)^k \]
 (for some constant c)
- Let W be a random variable denoting the total work done. Then
 \[
 W \leq \sum_{k=0}^{\lceil \log_{4/3} n \rceil} \left(X_k \cdot c n \left(\frac{3}{4} \right)^k \right) = c n \sum_{k=0}^{\lceil \log_{4/3} n \rceil} \left(X_k \left(\frac{3}{4} \right)^k \right)
 \]
The Average-Case Analysis

• Our goal is to determine the expected runtime for quickselect on an array of size \(n \).
• This is \(E[W] \), the expected value of \(W \).
• This is given by

\[
E[W] \leq E \left[cn \sum_{k=0}^{\lfloor \log_{4/3} n \rfloor} X_k \left(\frac{3}{4} \right)^k \right]
\]
Properties of Expectation

• The expected value of a constant or non-random variable is just that constant or variable itself:

\[E[c] = c \]

• Expected value is a linear operator:

\[E[aX + b] = aE[X] + b \]
\[E[X + Y] = E[X] + E[Y] \]

• Note that the second claim holds even if \(X \) and \(Y \) are dependent variables.
Simplifying Our Expression

\[E[W] \leq E \left[cn \sum_{k=0}^{\lceil \log_{4/3} n \rceil} \left(X_k \left(\frac{3}{4} \right)^k \right) \right] \]
Simplifying Our Expression

\[
E[W] \leq E \left[cn \sum_{k=0}^{\lceil \log_{4/3} n \rceil} \left(X_k \left(\frac{3}{4} \right)^k \right) \right] \\
= cn \cdot E \left[\sum_{k=0}^{\lceil \log_{4/3} n \rceil} \left(X_k \left(\frac{3}{4} \right)^k \right) \right]
\]
Simplifying Our Expression

$$E[W] \leq E \left[cn \sum_{k=0}^{\lceil \log_{4/3} n \rceil} \left(X_k \left(\frac{3}{4} \right) \right)^k \right]$$

$$= cn \cdot E \left[\sum_{k=0}^{\lceil \log_{4/3} n \rceil} \left(X_k \left(\frac{3}{4} \right) \right)^k \right]$$

$$= cn \cdot \sum_{k=0}^{\lceil \log_{4/3} n \rceil} E \left[X_k \left(\frac{3}{4} \right)^k \right]$$
Simplifying Our Expression

\[E[W] \leq E \left[cn \sum_{k=0}^{\left\lceil \log_{4/3} n \right\rceil} \left(X_k \left(\frac{3}{4} \right)^k \right) \right] \]

\[= cn \cdot E \left[\sum_{k=0}^{\left\lceil \log_{4/3} n \right\rceil} \left(X_k \left(\frac{3}{4} \right)^k \right) \right] \]

\[= cn \cdot \sum_{k=0}^{\left\lceil \log_{4/3} n \right\rceil} E \left[X_k \left(\frac{3}{4} \right)^k \right] \]

\[= cn \cdot \sum_{k=0}^{\left\lceil \log_{4/3} n \right\rceil} E[X_k] \left(\frac{3}{4} \right)^k \]
Simplifying Our Expression

\[
E[W] \leq E\left[c n \sum_{k=0}^{\lceil \log_{4/3} n \rceil} \left(X_k \left(\frac{3}{4} \right)^k \right) \right]
\]

\[
= c n \cdot E\left[\sum_{k=0}^{\lceil \log_{4/3} n \rceil} \left(X_k \left(\frac{3}{4} \right)^k \right) \right]
\]

\[
= c n \cdot \sum_{k=0}^{\lceil \log_{4/3} n \rceil} E \left[X_k \left(\frac{3}{4} \right)^k \right]
\]

\[
= c n \cdot \sum_{k=0}^{\lceil \log_{4/3} n \rceil} E \left[X_k \right] \left(\frac{3}{4} \right)^k
\]
\[E[X_k] \]

- By definition:
 \[E[X_k] = \sum_{i=0}^{\infty} i \cdot P(X_k = i) \]
 Recall: \(X_k \) is the number of calls within phase \(k \).
- Equivalently: The number of calls before a pivot is chosen in the middle 50% of the elements.
- Can we determine this explicitly?
\[\mathbb{E}[X_k] \]

- \(\mathbb{E}[X_k] \) is defined by
 \[
 \mathbb{E}[X_k] = \sum_{i=0}^{\infty} i \cdot P(X_k = i)
 \]

- \(P(X_k = i) \) is the probability that the first \(i - 1 \) pivots we chose weren't in the middle 50% and that the \(i \)th pivot is in the middle 50%.
 - (As an edge case, it's 0 when \(i = 0 \).)

- As a simplification: assume that whenever we pick a pivot, we can choose from any of the \(n \) elements present at the start of the phase.

- Only makes it harder to end the phase; provides an upper bound on the phase length.
$E[X_k]$

- Recall: $E[X_k]$ is defined by

$$E[X_k] = \sum_{i=0}^{\infty} i \cdot P(X_k = i)$$
\[\mathbb{E}[X_k] \]

• Recall: \(\mathbb{E}[X_k] \) is defined by
 \[
 \mathbb{E}[X_k] = \sum_{i=0}^{\infty} i \cdot P(X_k = i)
 \]

• Under the assumption that all pivot choices are independent, \(P(X_k = i) \) is given by
 \[
 P(X_k = i) = \left(\frac{1}{2} \right)^i
 \]
\[E[X_k] \]

- Recall: \(E[X_k] \) is defined by
 \[
 E[X_k] = \sum_{i=0}^{\infty} i \cdot P(X_k = i)
 \]

- Under the assumption that all pivot choices are independent, \(P(X_k = i) \) is given by
 \[
 P(X_k = i) = (1/2)^i
 \]

- Probability the first \(i - 1 \) pivots are in the outer 50% and the \(i \)th pivot was in the inner 50%.
\[E[X_k] \]

- Recall: \(E[X_k] \) is defined by
 \[
 E[X_k] = \sum_{i=0}^{\infty} i \cdot P(X_k = i)
 \]

- Under the assumption that all pivot choices are independent, \(P(X_k = i) \) is given by
 \[
 P(X_k = i) = \left(\frac{1}{2}\right)^i
 \]

- Probability the first \(i - 1 \) pivots are in the outer 50% and the \(i \)th pivot was in the inner 50%.

- Therefore
 \[
 E[X_k] = \sum_{i=0}^{\infty} i \cdot P(X_k = i)
 \]
E[X_k]

- Recall: \(E[X_k] \) is defined by
 \[
 \mathbb{E}[X_k] = \sum_{i=0}^{\infty} i \cdot P(X_k = i)
 \]

- Under the assumption that all pivot choices are independent, \(P(X_k = i) \) is given by
 \[
 P(X_k = i) = (1 / 2)^i
 \]

- Probability the first \(i - 1 \) pivots are in the outer 50% and the \(i \)th pivot was in the inner 50%.

- Therefore
 \[
 \mathbb{E}[X_k] = \sum_{i=0}^{\infty} i \cdot P(X_k = i) \leq \sum_{i=1}^{\infty} \frac{i}{2^i}
 \]
$E[X_k]$

- Recall: $E[X_k]$ is defined by
 $$E[X_k] = \sum_{i=0}^{\infty} i \cdot P(X_k=i)$$
- Under the assumption that all pivot choices are independent, $P(X_k = i)$ is given by
 $$P(X_k = i) = (1 / 2)^i$$
- Probability the first $i - 1$ pivots are in the outer 50% and the ith pivot was in the inner 50%.
- Therefore
 $$E[X_k] \leq \sum_{i=1}^{\infty} \frac{i}{2^i} = 2$$
Finalizing the Computation

\[E[W] \leq cn \cdot \sum_{k=0}^{\lceil \log_{4/3} n \rceil} E[X_k]\left(\frac{3}{4}\right)^k \]
Finalizing the Computation

\[E[W] \leq cn \cdot \sum_{k=0}^{\lceil \log_{4/3} n \rceil} E[X_k](\frac{3}{4})^k \]

\[\leq cn \cdot \sum_{k=0}^{\lceil \log_{4/3} n \rceil} 2^{k} \left(\frac{3}{4}\right)^k \]
Finalizing the Computation

\[E[W] \leq c n \cdot \sum_{k=0}^{\lfloor \log_{4/3} n \rfloor} E[X_k] \left(\frac{3}{4} \right)^k \]

\[\leq c n \cdot \sum_{k=0}^{\lfloor \log_{4/3} n \rfloor} 2 \left(\frac{3}{4} \right)^k \]

\[= 2 c n \cdot \sum_{k=0}^{\lfloor \log_{4/3} n \rfloor} \left(\frac{3}{4} \right)^k \]
Finalizing the Computation

\[
E[W] \leq c n \cdot \sum_{k=0}^{\left\lfloor \log_{4/3} n \right\rfloor} E[X_k] \left(\frac{3}{4} \right)^k
\]

\[
\leq c n \cdot \sum_{k=0}^{\left\lfloor \log_{4/3} n \right\rfloor} 2 \left(\frac{3}{4} \right)^k
\]

\[
= 2c n \cdot \sum_{k=0}^{\left\lfloor \log_{4/3} n \right\rfloor} \left(\frac{3}{4} \right)^k
\]

\[
\leq 2c n \cdot \sum_{k=0}^{\infty} \left(\frac{3}{4} \right)^k
\]
Finalizing the Computation

\[E[W] \leq cn \cdot \sum_{k=0}^{[\log_{4/3} n]} E[X_k] \left(\frac{3}{4} \right)^k \]

\[\leq cn \cdot \sum_{k=0}^{[\log_{4/3} n]} 2 \left(\frac{3}{4} \right)^k \]

\[= 2cn \cdot \sum_{k=0}^{[\log_{4/3} n]} \left(\frac{3}{4} \right)^k \]

\[\leq 2cn \cdot \sum_{k=0}^{\infty} \left(\frac{3}{4} \right)^k \]

\[= 8cn \]
Finalizing the Computation

\[E[W] \leq c n \cdot \sum_{k=0}^{\lfloor \log_{4/3} n \rfloor} E[X_k] \left(\frac{3}{4} \right)^k \]

\[\leq c n \cdot \sum_{k=0}^{\lfloor \log_{4/3} n \rfloor} 2 \left(\frac{3}{4} \right)^k \]

\[= 2 c n \cdot \sum_{k=0}^{\lfloor \log_{4/3} n \rfloor} \left(\frac{3}{4} \right)^k \]

\[\leq 2 c n \cdot \sum_{k=0}^{\infty} \left(\frac{3}{4} \right)^k \]

\[= 8 c n \]

\[= O(n) \]
Bounding the Spread

- We now know that quickselect runs in expected $O(n)$ time.
- How *likely* is it that the runtime is $O(n)$?
Bounding the Spread

- Idea: Devise a formula for the probability that every phase terminates within r steps.
Bounding the Spread

• Idea: Devise a formula for the probability that every phase terminates within r steps.

• If this happens, quickselect will run in time

$$cn \cdot \sum_{k=0}^{[\log_{4/3} n]} X_k \left(\frac{3}{4} \right)^k$$
Bounding the Spread

- Idea: Devise a formula for the probability that every phase terminates within r steps.

- If this happens, quickselect will run in time

$$cn \cdot \sum_{k=0}^{\lceil \log_{4/3} n \rceil} X_k \left(\frac{3}{4}\right)^k \leq cn \cdot \sum_{k=0}^{\lceil \log_{4/3} n \rceil} r \left(\frac{3}{4}\right)^k$$
Bounding the Spread

- Idea: Devise a formula for the probability that every phase terminates within r steps.
- If this happens, quickselect will run in time

$$c n \cdot \sum_{k=0}^{\lceil \log_{4/3} n \rceil} X_k \left(\frac{3}{4} \right)^k \leq c n \cdot \sum_{k=0}^{\lceil \log_{4/3} n \rceil} r \left(\frac{3}{4} \right)^k$$

$$= c n r \cdot \sum_{k=0}^{\lceil \log_{4/3} n \rceil} \left(\frac{3}{4} \right)^k = O(n r)$$
Bounding the Spread

- Idea: Devise a formula for the probability that every phase terminates within \(r \) steps.
- If this happens, quickselect will run in time

\[
\begin{align*}
 cn \cdot \sum_{k=0}^{\lceil \log_{4/3} n \rceil} X_k \left(\frac{3}{4}\right)^k & \leq cn \cdot \sum_{k=0}^{\lceil \log_{4/3} n \rceil} r \left(\frac{3}{4}\right)^k \\
 & = cnr \cdot \sum_{k=0}^{\lceil \log_{4/3} n \rceil} \left(\frac{3}{4}\right)^k \\
 & \leq 4cnr
\end{align*}
\]
Bounding the Spread

- Idea: Devise a formula for the probability that every phase terminates within r steps.
- If this happens, quickselect will run in time

$$c n \cdot \sum_{k=0}^{\lceil \log_{4/3} n \rceil} X_k \left(\frac{3}{4} \right)^k \leq c n \cdot \sum_{k=0}^{\lceil \log_{4/3} n \rceil} r \left(\frac{3}{4} \right)^k$$

$$= c n r \cdot \sum_{k=0}^{\lceil \log_{4/3} n \rceil} \left(\frac{3}{4} \right)^k$$

$$\leq 4 c n r$$

$$= O(n r)$$
Bounding the Spread

- Idea: Devise a formula for the probability that every phase terminates within r steps.
- If this happens, quickselect will run in time

$$c n \cdot \sum_{k=0}^{\left\lceil \log_{4/3} n \right\rceil} X_k \left(\frac{3}{4}\right)^k \leq c n \cdot \sum_{k=0}^{\left\lceil \log_{4/3} n \right\rceil} r \left(\frac{3}{4}\right)^k = c n r \cdot \sum_{k=0}^{\left\lceil \log_{4/3} n \right\rceil} \left(\frac{3}{4}\right)^k \leq 4 c n r = O(n r)$$

- Goal: Find the probability (as a function of r) that this occurs.
Bounding the Spread

• We want the probability of the event

 All phases terminate within r steps.

• Mathematically, it's easier to work with the probability of the complement of this event:

 At least one phase terminates in at least $r + 1$ steps.

• We can compute the probability of the first event by subtracting the probability of the second event from one.
Long Phase Runtimes

• The probability that phase \(k \) takes more than \(r \) steps to finish is given by

\[
P(X_k > r)
\]
Long Phase Runtimes

- The probability that phase k takes more than r steps to finish is given by
 \[P(X_k > r) \]

- This is
 \[P(X_k > r) = P(\bigcup_{i=r+1}^{\infty} X_k = i) \]
Long Phase Runtimes

• The probability that phase k takes more than r steps to finish is given by

$$P(X_k > r)$$

• This is

$$P(X_k > r) = P\left(\bigcup_{i=r+1}^{\infty} X_k = i \right)$$

• Since these events are all mutually exclusive:

$$P(X_k > r) = \sum_{i=r+1}^{\infty} P(X_k = i)$$
Long Phase Runtimes

- The probability that phase k takes more than r steps to finish is given by
 \[P(X_k > r) \]

- This is
 \[P(X_k > r) = P\left(\bigcup_{i=r+1}^{\infty} X_k = i \right) \]

- Since these events are all mutually exclusive:
 \[P(X_k > r) = \sum_{i=r+1}^{\infty} P(X_k = i) \leq \sum_{i=r+1}^{\infty} \frac{1}{2^i} \]
Long Phase Runtimes

- The probability that phase k takes more than r steps to finish is given by
 \[P(X_k > r) \]

- This is
 \[P(X_k > r) = P(\bigcup_{i=r+1}^{\infty} X_k = i) \]

- Since these events are all mutually exclusive:
 \[P(X_k > r) = \sum_{i=r+1}^{\infty} P(X_k = i) \leq \sum_{i=r+1}^{\infty} \frac{1}{2^i} = \frac{1}{2^r} \]
Long Phase Runtimes

- The probability that any phase takes more than \(r \) steps to finish is
 \[
P\left(\bigcup_{i=0}^{\lfloor \log_{4/3} n \rfloor} X_i > r \right)
 \]
- These are not mutually exclusive events – we may have multiple different phases finish in more than \(r \) steps.
- We can use the union bound to get an upper-bound on the true value:
 \[
P\left(\bigcup_{i=0}^{\infty} \mathcal{E}_i \right) \leq \sum_{i=0}^{\infty} P(\mathcal{E}_i)
 \]
Long Phase Runtimes

• The probability that any phase takes more than r steps to finish is

$$P\left(\bigcup_{i=0}^{\lceil \log_{4/3} n \rceil} X_i > r \right)$$
Long Phase Runtimes

• The probability that any phase takes more than r steps to finish is

\[
P\left(\bigcup_{i=0}^{\lceil \log_{4/3} n \rceil} X_i > r \right)
\]

• Using the union bound:

\[
P\left(\bigcup_{i=0}^{\lceil \log_{4/3} n \rceil} X_i > r \right) \leq \sum_{i=0}^{\lceil \log_{4/3} n \rceil} P(X_i > r)
\]
Long Phase Runtimes

• The probability that *any* phase takes more than \(r \) steps to finish is

\[
P\left(\bigcup_{i=0}^{\lceil \log_{4/3} n \rceil} X_i > r \right)
\]

• Using the union bound:

\[
P\left(\bigcup_{i=0}^{\lceil \log_{4/3} n \rceil} X_i > r \right) \leq \sum_{i=0}^{\lceil \log_{4/3} n \rceil} P(X_i > r) \leq \sum_{i=0}^{\lceil \log_{4/3} n \rceil} \frac{1}{2^r}
\]
Long Phase Runtimes

- The probability that any phase takes more than \(r \) steps to finish is:
 \[
P(\bigcup_{i=0}^{\lceil \log_{4/3} n \rceil} X_i > r) \leq \sum_{i=0}^{\lceil \log_{4/3} n \rceil} P(X_i > r) \leq \sum_{i=0}^{\lceil \log_{4/3} n \rceil} \frac{1}{2^r} = \frac{\lceil \log_{4/3} n \rceil + 1}{2^r}
 \]

- Using the union bound:
Long Phase Runtimes

• For any number r, the probability that any one phase takes more than r steps to finish is

$$\frac{\lceil \log_{4/3} n \rceil + 1}{2^r}$$
Long Phase Runtimes

• For any number r, the probability that any one phase takes more than r steps to finish is
 \[\frac{\lceil \log_{4/3} n \rceil + 1}{2^r} \]

• If for any value s we pick $r = s + \log_2(\lceil \log_{4/3} n \rceil + 1)$, then the probability that any phase takes more than r steps to complete is at most
 \[\frac{\lceil \log_{4/3} n \rceil + 1}{2^r} \]
Long Phase Runtimes

• For any number r, the probability that any one phase takes more than r steps to finish is

$$\frac{\lceil \log_{4/3} n \rceil + 1}{2^r}$$

• If for any value s we pick $r = s + \log_2(\lceil \log_{4/3} n \rceil + 1)$, then the probability that any phase takes more than r steps to complete is at most

$$\frac{\lceil \log_{4/3} n \rceil + 1}{2^r} = \frac{\lceil \log_{4/3} n \rceil + 1}{2^{s + \log_2(\lceil \log_{4/3} n \rceil + 1)}}$$
Long Phase Runtimes

• For any number r, the probability that any one phase takes more than r steps to finish is
 \[
 \frac{\lceil \log_{4/3} n \rceil + 1}{2^r}
 \]

• If for any value s we pick $r = s + \log_2(\lceil \log_{4/3} n \rceil + 1)$, then the probability that any phase takes more than r steps to complete is at most
 \[
 \frac{\lceil \log_{4/3} n \rceil + 1}{2^r} = \frac{\lceil \log_{4/3} n \rceil + 1}{2^{s + \log_2(\lceil \log_{4/3} n \rceil + 1)}} = \frac{\lceil \log_{4/3} n \rceil + 1}{2^s(\lceil \log_{4/3} n \rceil + 1)}
 \]
Long Phase Runtimes

- For any number r, the probability that any one phase takes more than r steps to finish is
 \[
 \frac{\lceil \log_{4/3} n \rceil + 1}{2^r}
 \]

- If for any value s we pick $r = s + \log_2(\lceil \log_{4/3} n \rceil + 1)$, then the probability that any phase takes more than r steps to complete is at most
 \[
 \frac{\lceil \log_{4/3} n \rceil + 1}{2^r} = \frac{\lceil \log_{4/3} n \rceil + 1}{2^{s + \log_2(\lceil \log_{4/3} n \rceil + 1)}} = \frac{\lceil \log_{4/3} n \rceil + 1}{2^s(\lceil \log_{4/3} n \rceil + 1)} = \frac{1}{2^s}
 \]
Bounding the Runtime

- Recall: If all phases terminate within \(r \) steps, the total runtime will be \(\mathcal{O}(nr) \).

- If we pick \(r = s + \log_2\left(\lceil \log_{4/3} n \rceil + 1\right) \), then the runtime will be \(\mathcal{O}(ns + n \log \log n) \) with probability at least \(1 - 1/2^s \).

- For any constant \(k \), pick \(s = \log_2 n^k = k \log_2 n \). Probability that the runtime is \(\mathcal{O}(n \log n) \) is at least \(1 - 1 / n^k \).

- **Definition:** Event \(\mathcal{E} \) occurs with high probability iff \(P(\mathcal{E}) \geq 1 - 1 / n^c \) for some \(c \geq 1 \).

- Quickselect runs in time at most \(\mathcal{O}(n \log n) \) with high probability.
Wrap-Up: **Introselect**
Where We Stand

- The median-of-medians algorithm has runtime $O(n)$, but has a large constant factor.
- Quickselect has average-case runtime $O(n)$ with a low constant factor, but isn't guaranteed to run in time $O(n)$.
- Can we get the best of both worlds?
Introspective Selection

- The **introselect** algorithm intelligently combines median-of-medi an s and quick select.

- Idea: Run quick select, but keep track of how many iterations have passed in the current phase.

- If the phase ends before the number of iterations exceeds some constant k, reset the counter and continue.

- Otherwise, run the median-of-medians algorithm to choose a pivot and reset the counter.
Introspective Selection

- Assuming introselect makes good random choices, it is inappreciably slower than normal quickselect.
- If it makes too many bad choices, we do some expensive median-of-medians steps, which is slower but ensures linear time.
- Net result is an algorithm that has worst-case $O(n)$ runtime and on expectation matches quickselect's runtime.
Comparison of Selection Algorithms

<table>
<thead>
<tr>
<th>Array Size</th>
<th>Sorting</th>
<th>Median of Medians</th>
<th>Quickselect</th>
<th>Introselect</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000000000</td>
<td>0.92</td>
<td>0.37</td>
<td>0.11</td>
<td>0.07</td>
</tr>
<tr>
<td>2000000000</td>
<td>1.9</td>
<td>0.74</td>
<td>0.14</td>
<td>0.17</td>
</tr>
<tr>
<td>3000000000</td>
<td>2.9</td>
<td>1.05</td>
<td>0.27</td>
<td>0.17</td>
</tr>
<tr>
<td>4000000000</td>
<td>3.94</td>
<td>1.43</td>
<td>0.44</td>
<td>0.33</td>
</tr>
<tr>
<td>5000000000</td>
<td>5.01</td>
<td>1.83</td>
<td>0.53</td>
<td>0.42</td>
</tr>
<tr>
<td>6000000000</td>
<td>6.06</td>
<td>2.12</td>
<td>0.64</td>
<td>0.41</td>
</tr>
<tr>
<td>7000000000</td>
<td>7.16</td>
<td>2.54</td>
<td>0.69</td>
<td>0.51</td>
</tr>
<tr>
<td>8000000000</td>
<td>8.26</td>
<td>2.89</td>
<td>1.01</td>
<td>0.56</td>
</tr>
<tr>
<td>9000000000</td>
<td>9.3</td>
<td>3.2</td>
<td>0.72</td>
<td>0.88</td>
</tr>
</tbody>
</table>
Next Time

- Quicksort
- Indicator Random Variables
- Harmonic Numbers