
  

Randomized Algorithms
Part Two



  

Outline for Today

● Quicksort
● Can we speed up sorting using randomness?

● Indicator Variables
● A powerful and versatile technique in 

randomized algorithms.

● Randomized Max-Cut
● Approximating NP-hard problems with 

randomized algorithms.



  

Quicksort



  

Quicksort

● Quicksort is as follows:
● If the sequence has 0 elements, it is 

sorted.
● Otherwise, choose a pivot and run a 

partitioning step to put it into the 
proper place.

● Recursively apply quicksort to the 
elements strictly to the left and right of 
the pivot.



  

Initial Observations

● Like the partition-based selection 
algorithms, quicksort's behavior depends 
on the choice of pivot.

● Really good case: Always pick the 
median element as the pivot:

T(0) = Θ(1)
T(n) = 2T(⌊n / 2⌋) + Θ(n)
T(0) = Θ(1)
T(n) = 2T(⌊n / 2⌋) + Θ(n)

T(n) = Θ(n log n)



  

Initial Observations

● Like the partition-based selection 
algorithms, quicksort's behavior depends 
on the choice of pivot.

● Really bad case: Always pick the min or 
max element as the pivot:

T(0) = Θ(1)
T(n) = T(n – 1) + Θ(n)
T(0) = Θ(1)
T(n) = T(n – 1) + Θ(n)

T(n) = Θ(n2)



  

Choosing Random Pivots

● As with quickselect, we can ask this 
question: what happens if you pick pivots 
purely at random?

● This is called randomized quicksort.
● Question: What is the expected runtime 

of randomized quicksort?



  

Accounting Tricks

● As with quickselect, we will not try to 
analyze quicksort by writing out a 
recurrence relation.

● Instead, we will try to account for the 
work done by the algorithm in a different 
but equivalent method.

● This will keep the math a lot simpler.
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Counting Recursive Calls

● When the input array has size n > 0, 
quicksort will
● Choose a pivot.
● Recurse on the array formed from all 

elements before the pivot.
● Recurse on the array formed from all 

elements after the pivot.

● Given this information, can we bound the 
total number of recursive calls the 
algorithm will make?



  

Counting Recursive Calls

● Begin with an array of n elements.

● Each recursive call deletes one element from 
the array and recursively processes the 
remaining subarrays.

● Therefore, there will be n recursive calls on 
nonempty subarrays.

● Therefore, can be at most n + 1 leaf nodes with 
calls on arrays of size 0.

● Would expect 2n + 1 = Θ(n) recursive calls 
regardless of how the recursion plays out.



  

Counting Recursive Calls

Theorem: On any input of size n, quicksort will
make exactly 2n + 1 total recursive calls.

Proof: By induction.  As a base case, the claim
is true when n = 0 since just one call is made.

Assume the claim is true for 0 ≤ n' < n.  Then 
quicksort will split the input apart into a piece 
of size k and a piece of size n – k – 1.  The first 
piece leads to at most 2k + 1 calls and the 
second to 2n – 2k – 2 + 1 = 2n – 2k – 1 calls.  
This gives a total of 2n calls, and adding in the 
initial call yields a total of 2n + 1 calls. ■



  

Counting Partition Work

● From before: running partition on an 
array of size n takes time Θ(n).

● More precisely: running partition on an 
array of size n can be done making 
exactly n – 1 comparisons.

● Idea: Account for the total work done by 
the partition step by summing up the 
total number of comparisons made.

● Will only be off by Θ(n) (the -1 term from 
n calls to partition); can fix later.
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Θ(n + #compares)



  

Counting Comparisons

● One way to count up total number of 
comparisons: Look at the sizes of all 
subarrays across all recursive calls and 
sum up across those.

● Another way to count up total number of 
comparisons: Look at all pairs of elements 
and count how many times each of those 
pairs was compared.

● Account “vertically” rather than 
“horizontally”



  

Return of the Random Variables

● Let's denote by vi the ith largest value of 
the array to sort, using 1-indexing.
● For now, assume no duplicates.

● Let Cij be a random variable equal to the 
number of times vi and vj are compared.

● The total number of comparisons made, 
denoted by the random variable X, is

X=∑
i=1

n

∑
j=i+1

n

Cij



  

Expecting the Unexpected

● The expected number of comparisons 
made is E[X], which is

(Isn't linearity of expectation great?)

E[ X ] = E[∑
i=1

n

∑
j=i+1

n

Ci j ]

= ∑
i=1

n

∑
j=i+1

n

E[Ci j ]



  

When Compares Happen

● We need to find a formula for E[Cij], the 
number of times vi and vj are compared.

● Some facts about partition:
● All n – 1 elements other than the pivot are 

compared against the pivot.
● No other elements are compared.

● Therefore, vi and vj are compared only 
when vi or vj is a pivot in a partitioning 
step.



  

When Compares Happen

● Claim: If vi and vj are compared once, 
they are never compared again.

● Suppose vi and vj are compared.  Then 
either vi or vj is a pivot in a partition step.

● The pivot is never included in either 
subarray in a recursive call.

● Consequently, this is the only time that vi 
and vj will be compared.



  

Defining Cij

● We can now give a more rigorous 
definition of Cij:

● Given this, E[Cij] is given by

Cij={1 if vi and v j  are compared
0 otherwise

E[Cij ] = 0⋅P (Cij=0)+1⋅P (Cij=1)

= P (Cij=1)

= P (vi and v j  are compared)



  

Our Expected Value

● Using the fact that

E[Cij] = P(vi and vj are compared)

we have

● Amazingly, this reduces to a sum of 
probabilities!

E[ X ] = ∑
i=1

n

∑
j=i+1

n

E [Ci j ]                                 

= ∑
i=1

n

∑
j=i+1

n

P (vi  and v j  are compared)



  

Indicator Random Variables

● An indicator random variable is a random 
variable of the form

● For an indicator random variable X with 
underlying event Ɛ, E[X] = P(Ɛ).

● This interacts very nicely with linearity of 
expectation, as you just saw.

● We will use indicator random variables 
extensively when studying randomized 
algorithms.

X={1 if event Ɛ occurs
0 otherwise



  

What is the probability
vi and vj are compared?



  

Comparing Elements

● Claim: vi and vj are compared iff vi or vj is the 
first pivot chosen from vi, vi+1, vi+2, …, vj-1, vj.

● Proof Sketch: vi and vj are together in the 
same array as long as no pivots from this range 
are chosen.  As soon as a pivot is chosen from 
here, they are separated.  They are only 
compared iff vi or vj is the chosen pivot.

● Corollary:

P(vi and vj are compared) = 2 / (j – i + 1)   



  

E[ X ] = ∑
i=1

n

∑
j=i+1

n

P (vi  and v j  are compared)

= ∑
i=1

n

∑
j=i+1

n 2
j−i+1

                                

= ∑
i=1

n

∑
k=1

n−i
2

k+1
                                     

≤ ∑
i=1

n

∑
k=1

n
2

k+1
                                     

= n∑
k=1

n 2
k+1

= 2n∑
k=1

n 1
k+1

≤ 2n∑
k=1

n 1
k

  

Plugging and Chugging

Let k = j – i.  Then k + i = j, 
so we can just the loop 
bounds as

i + 1 ≤ j ≤ n
i + 1 ≤ k + i ≤ n

1 ≤ k ≤ n - i

Let k = j – i.  Then k + i = j, 
so we can just the loop 
bounds as

i + 1 ≤ j ≤ n
i + 1 ≤ k + i ≤ n

1 ≤ k ≤ n - i



  

Plugging and Chugging
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n

∑
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n
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i=1

n

∑
j=i+1

n 2
j−i+1
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i=1

n

∑
k=1

n−i
2

k+1
                                     

≤ ∑
i=1

n

∑
k=1

n
2

k+1
                                     

= n∑
k=1

n 2
k+1

= 2n∑
k=1

n 1
k+1

≤ 2n∑
k=1

n 1
k

  



  

Harmonic Numbers

● The nth harmonic number, denoted Hₙ, 
is defined as

● Some values:
● H₀ = 0 H₃ = 11 / 6
● H₁ = 1 H₄ = 25 / 12
● H₂ = 3/2 H₅ = 137 / 60

Hn=∑
i=1

n 1
i



  

Mathematical Harmony

● Theorem: Hₙ = Θ(log n)
● Proof Idea:

1 2 3 4 5 6 7 8

Hn ≤ 1+∫
1

n
dx
x

= lnn+1

1
x



  

Mathematical Harmony

● Theorem: Hₙ = Θ(log n)
● Proof Idea:

1 2 3 4 5 6 7 8

1
x+1

Hn ≤ 1+∫
1

n
dx
x

= lnn+1

Hn ≥ ∫
0

n
dx

x+1
= ln(n+1)

ln(n+1) ≤ Hn ≤ lnn+1



  

The Finishing Touches

E[ X ] ≤ 2n∑
k=1

n 1
k

= 2n⋅Hn

= 2n⋅Θ(logn)

= O(n logn)



  

Why This Matters

● We have just shown that the runtime of 
randomized quicksort is, on expectation, 
O(n log n).

● To do so, we needed to use two new 
mathematical techniques:
● Indicator random variables.
● Bounding summations by integrals.

● We will use the first of these techniques 
more extensively over the next few days.



  

Introsort

● As with quickselect, quicksort still has a 
pathological Θ(n2) case, though it's unlikely.

● Quicksort is, on average, faster than heapsort.

● The introsort algorithm addresses this:
● Run quicksort, tracking the recursion depth.
● If it exceeds some limit, switch to heapsort.

● Given good pivots, runs just as fast as quicksort.

● Given bad pivots, is only marginally worse than 
heapsort.

● Guarantees O(n log n) behavior.



  

A Different Algorithm: Max-Cut



  

Global Cuts

● Given an undirected graph G = (V, E), a cut 
in G is a pair (S, V – S) of two sets S and 
V – S that split the nodes into two groups.

● The size or cost of a cut, denoted by
c(S, V – S), is the number of edges with one 
endpoint in S and one in V – S.

● A global min cut is a cut in G with the 
least total cost.  A global max cut is a cut 
in G with maximum total cost.



  

Global Cuts

● Interestingly:
● There are many polynomial-time algorithms 

known for global min-cut.
● Global max-cut is NP-hard and no 

polynomial-time algorithms are known for it.

● Today, we'll see an algorithm for 
approximating global max-cut.

● On Friday, we'll see a randomized 
algorithm for finding a global min-cut.



  

Approximating Max-Cut

● For a maximization problem, an 
α-approximation algorithm is an 
algorithm that produces a value that is 
within a factor of α of the true value.

● A 0.5-approximation to max-cut would 
produce a cut whose size is at least 50% 
the size of the true largest cut.

● Our goal will be to find a randomized 
approximation algorithm for max-cut.



  

A Really Simple Algorithm

● Here is our algorithm:
● For each node, toss a fair coin.
● If it lands heads, place the node into one 

part of the cut.
● If it lands tails, place the node into the other 

part of the cut.



  

Analyzing the Algorithm

● On expectation, how large of a cut will this 
algorithm find?

● For each edge e, Cₑ be an indicator 
random variable where

● Then the number of edges X crossing the 
cut will be given by

Cₑ={1 if e  crosses the cut
0 otherwise

X=∑
e∈E

Ce



  

What Did You Expect?

● The expected number of edges crossing 
the cut is given by E[X].

● This is

E [ X ] = E[∑
e∈E

Ce]

= ∑
e∈E

E [Ce]                        

= ∑
e∈E

P (e  crosses the cut)



  

Four Possibilities



  

That Was Unexpected

E[ X ] = ∑
e∈E

P (e  crosses the cut)

= ∑
e∈E

1
2

                             

=
m
2

                                

● The expected number of edges crossing 
the cut is given by E[X].

● This is

 

● All cuts have size ≤ m, so this is always 
within a factor of two of optimal!



  

Randomized Approximation Algorithms

● This algorithm is a randomized 
0.5-approximation to max-cut.

● The algorithm runs in time O(n).
● It's NP-hard to find a true maximum cut, 

but it's not at all hard to (on expectation) 
find a cut that has size at least half that 
of the maximum cut!



  

Improving the Odds

● Running our algorithm will, on 
expectation, produce a cut with size 
m / 2.

● However, we don't know the actual 
probability that our cut has this size.

● We can use a standard technique to 
amplify the probability of success.



  

Do it Again

● Since any individual run of the algorithm might 
not produce a large cut, we could try this 
approach:
● Run the algorithm k times.
● Return the largest cut found.

● Goal: Show that with the right choice of k, this 
returns a large cut with high probability.
● Specifically: Will show we get a cut of size m / 4 

with high probability.
● Runtime is O((m + n)k): k rounds of doing 

O(m + n) work (n to build the cut, m to determine 
the size.)



  

More Probabilities

● Let X₁, X₂, …, Xₖ be random variables 
corresponding to the sizes of the cuts found by 
each run of the algorithm.

● Let Ɛ be the event that our algorithm produces a 
cut of size less than m / 4.  Then
 

● Since all Xi variables are independent, we have

Ɛ=∩
i=1

k

(X i ≤
m
4 )

P (Ɛ ) = P (∩i=1

k

(X i ≤
m
4 )) = ∏

i=1

k

P (X i ≤
m
4

)



  

A Simplification

● Let Y₁, Y₂, …, Yₖ be random variables 
defined as follows:

Yi = m – Xi

● Then

● What now?

P (Ɛ ) = ∏
i=1

k

P ( X i ≤
m
4

) = ∏
i=1

k

P (Y i ≥
3m
4

)



  

Markov's Inequality

● Markov's Inequality states that for any 
nonnegative random variable X, that

● Equivalently: 

● This holds for any random variable X.
● Can often get tighter bounds if we know 

something about the distribution of X.

P (X ≥ cE[ X ]) ≤
1
c

P ( X ≥ c) ≤
E[ X ]

c



  

Markov to the Rescue

● Let Y₁, Y₂, …, Yₖ be random variables 
defined as follows:

Yi = m – Xi

● Then

E[Yi] = m – E[Xi] = m – m / 2 = m / 2

● Then
P (Ɛ ) = ∏

i=1

k

P (Y i ≥
3m
4

) ≤ ∏
i=1

k E[Y i]

3m/4
       

= ∏
i=1

k
m/2

3m/4
          = ∏

i=1

k

2 /3 = (2
3 )

k



  

The Finishing Touches

● If we run the algorithm k times and take the 
maximum cut we find, then the probability that 
we don't get m / 4 edges or more is at most 
(2 / 3)k.

● The probability we do get at least m / 4 edges 
is at least 1 – (2 / 3)k.

● If we set k = log3/2 m, the probability we get at 
least m / 4 edges is 1 – 1 / m.

● There is a randomized, O((m + n) log m)-time 
algorithm that finds a (0.25)-approximation 
to max-cut with probability 1 – 1 / m.



  

Why This Works

● Given a randomized algorithm that has a 
probability p of success, we can amplify 
that probability significantly by repeating 
the algorithm multiple times.

● This technique is used extensively in 
randomized algorithms; we'll see another 
example of this on Friday.



  

Next Time

● Karger's Algorithm
● Finding a Global Min-Cut
● Applications of Global Min-Cut
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