Randomized Algorithms
Part Two
Outline for Today

- **Quicksort**
 - Can we speed up sorting using randomness?

- **Indicator Variables**
 - A powerful and versatile technique in randomized algorithms.

- **Randomized Max-Cut**
 - Approximating \(\text{NP}\)-hard problems with randomized algorithms.
Quicksort
Quicksort

- **Quicksort** is as follows:
 - If the sequence has 0 elements, it is sorted.
 - Otherwise, choose a pivot and run a partitioning step to put it into the proper place.
 - Recursively apply quicksort to the elements strictly to the left and right of the pivot.
Initial Observations

- Like the partition-based selection algorithms, quicksort's behavior depends on the choice of pivot.

- **Really good case:** Always pick the median element as the pivot:

\[
T(0) = \Theta(1) \\
T(n) = 2T(\lfloor n / 2 \rfloor) + \Theta(n)
\]

\[
T(n) = \Theta(n \log n)
\]
Initial Observations

- Like the partition-based selection algorithms, quicksort's behavior depends on the choice of pivot.

- **Really bad case:** Always pick the min or max element as the pivot:

\[
\begin{align*}
T(0) &= \Theta(1) \\
T(n) &= T(n - 1) + \Theta(n)
\end{align*}
\]

\[T(n) = \Theta(n^2)\]
Choosing Random Pivots

- As with quickselect, we can ask this question: what happens if you pick pivots purely at random?
- This is called **randomized quicksort**.
- Question: What is the expected runtime of randomized quicksort?
Accounting Tricks

- As with quickselect, we will *not* try to analyze quicksort by writing out a recurrence relation.
- Instead, we will try to account for the work done by the algorithm in a different but equivalent method.
- This will keep the math a *lot* simpler.
Work done comes from two sources:

1. Work making recursive calls
2. Work partitioning elements.

How much work is from each source?
Counting Recursive Calls

- When the input array has size $n > 0$, quicksort will
 - Choose a pivot.
 - Recurse on the array formed from all elements before the pivot.
 - Recurse on the array formed from all elements after the pivot.
- Given this information, can we bound the total number of recursive calls the algorithm will make?
Counting Recursive Calls

- Begin with an array of n elements.
- Each recursive call deletes one element from the array and recursively processes the remaining subarrays.
- Therefore, there will be n recursive calls on nonempty subarrays.
- Therefore, can be at most $n + 1$ leaf nodes with calls on arrays of size 0.
- Would expect $2n + 1 = \Theta(n)$ recursive calls regardless of how the recursion plays out.
Theorem: On any input of size \(n \), quicksort will make exactly \(2n + 1 \) total recursive calls.

Proof: By induction. As a base case, the claim is true when \(n = 0 \) since just one call is made.

Assume the claim is true for \(0 \leq n' < n \). Then quicksort will split the input apart into a piece of size \(k \) and a piece of size \(n - k - 1 \). The first piece leads to at most \(2k + 1 \) calls and the second to \(2n - 2k - 2 + 1 = 2n - 2k - 1 \) calls. This gives a total of \(2n \) calls, and adding in the initial call yields a total of \(2n + 1 \) calls. ■
Counting Partition Work

- From before: running partition on an array of size n takes time $\Theta(n)$.
- More precisely: running partition on an array of size n can be done making exactly $n - 1$ comparisons.
- **Idea:** Account for the total work done by the partition step by summing up the total number of comparisons made.
- Will only be off by $\Theta(n)$ (the -1 term from n calls to partition); can fix later.
Work done comes from two sources:
1. Work making recursive calls
2. Work partitioning elements.

How much work is from each source?

$\Theta(n + \#compares)$
Counting Comparisons

- One way to count up total number of comparisons: Look at the sizes of all subarrays across all recursive calls and sum up across those.

- Another way to count up total number of comparisons: Look at all pairs of elements and count how many times each of those pairs was compared.

- Account “vertically” rather than “horizontally”
Return of the Random Variables

- Let's denote by v_i the ith largest value of the array to sort, using 1-indexing.
 - For now, assume no duplicates.
- Let C_{ij} be a random variable equal to the number of times v_i and v_j are compared.
- The total number of comparisons made, denoted by the random variable X, is

$$X = \sum_{i=1}^{n} \sum_{j=i+1}^{n} C_{ij}$$
Expecting the Unexpected

- The expected number of comparisons made is \(E[X] \), which is

\[
E[X] = E\left[\sum_{i=1}^{n} \sum_{j=i+1}^{n} C_{i,j} \right]
\]

\[
= \sum_{i=1}^{n} \sum_{j=i+1}^{n} E[C_{i,j}]
\]

(Isn't linearity of expectation great?)
When Compares Happen

- We need to find a formula for $E[C_{ij}]$, the number of times v_i and v_j are compared.

- Some facts about partition:
 - All $n - 1$ elements other than the pivot are compared against the pivot.
 - No other elements are compared.
 - Therefore, v_i and v_j are compared only when v_i or v_j is a pivot in a partitioning step.
When Compares Happen

- **Claim:** If v_i and v_j are compared once, they are never compared again.
- Suppose v_i and v_j are compared. Then either v_i or v_j is a pivot in a partition step.
- The pivot is never included in either subarray in a recursive call.
- Consequently, this is the only time that v_i and v_j will be compared.
Defining C_{ij}

- We can now give a more rigorous definition of C_{ij}:

$$C_{ij} = \begin{cases}
1 & \text{if } v_i \text{ and } v_j \text{ are compared} \\
0 & \text{otherwise}
\end{cases}$$

- Given this, $E[C_{ij}]$ is given by

$$E[C_{ij}] = 0 \cdot P(C_{ij} = 0) + 1 \cdot P(C_{ij} = 1)$$
$$= P(C_{ij} = 1)$$
$$= P(v_i \text{ and } v_j \text{ are compared})$$
Our Expected Value

- Using the fact that
 \[E[C_{ij}] = P(v_i \text{ and } v_j \text{ are compared}) \]
 we have
 \[
 E[X] = \sum_{i=1}^{n} \sum_{j=i+1}^{n} E[C_{ij}]
 \]
 \[
 = \sum_{i=1}^{n} \sum_{j=i+1}^{n} P(v_i \text{ and } v_j \text{ are compared})
 \]
- Amazingly, this reduces to a sum of probabilities!
Indicator Random Variables

• An *indicator random variable* is a random variable of the form

\[X = \begin{cases}
1 & \text{if event } \mathcal{E} \text{ occurs} \\
0 & \text{otherwise}
\end{cases} \]

• For an indicator random variable X with underlying event \mathcal{E}, $E[X] = P(\mathcal{E})$.

• This interacts very nicely with linearity of expectation, as you just saw.

• We will use indicator random variables extensively when studying randomized algorithms.
What is the probability v_i and v_j are compared?
Comparing Elements

- **Claim:** v_i and v_j are compared iff v_i or v_j is the first pivot chosen from $v_i, v_{i+1}, v_{i+2}, \ldots, v_{j-1}, v_j$.

- **Proof Sketch:** v_i and v_j are together in the same array as long as no pivots from this range are chosen. As soon as a pivot is chosen from here, they are separated. They are only compared iff v_i or v_j is the chosen pivot.

- **Corollary:**

$$P(v_i \text{ and } v_j \text{ are compared}) = \frac{2}{j - i + 1}$$
Plugging and Chugging

\[E[X] = \sum_{i=1}^{n} \sum_{j=i+1}^{n} P(v_i \text{ and } v_j \text{ are compared}) \]

\[= \sum_{i=1}^{n} \sum_{j=i+1}^{n} \frac{2}{j-i+1} \]

Let \(k = j - i \). Then \(k + i = j \), so we can just the loop bounds as

\[
\begin{align*}
& i + 1 \leq j \leq n \\
& i + 1 \leq k + i \leq n \\
& 1 \leq k \leq n - i
\end{align*}
\]
Plugging and Chugging

\[E[X] = \sum_{i=1}^{n} \sum_{j=i+1}^{n} P(v_i \text{ and } v_j \text{ are compared}) \]

\[= \sum_{i=1}^{n} \sum_{j=i+1}^{n} \frac{2}{j-i+1} \]

\[= \sum_{i=1}^{n} \sum_{k=1}^{n-i} \frac{2}{k+1} \]

\[\leq \sum_{i=1}^{n} \sum_{k=1}^{n} \frac{2}{k+1} \]

\[= n \sum_{k=1}^{n} \frac{2}{k+1} = 2n \sum_{k=1}^{n} \frac{1}{k+1} \leq 2n \sum_{k=1}^{n} \frac{1}{k} \]
Harmonic Numbers

- The \(n \)th **harmonic number**, denoted \(H_n \), is defined as

\[
H_n = \sum_{i=1}^{n} \frac{1}{i}
\]

- Some values:
 - \(H_0 = 0 \)
 - \(H_1 = 1 \)
 - \(H_2 = 3/2 \)
 - \(H_3 = 11/6 \)
 - \(H_4 = 25/12 \)
 - \(H_5 = 137/60 \)
Mathematical Harmony

• **Theorem:** \(H_n = \Theta(\log n) \)

• **Proof Idea:**

\[
H_n \leq 1 + \int_{1}^{n} \frac{dx}{x} = \ln n + 1
\]
Mathematical Harmony

- **Theorem:** $H_n = \Theta(\log n)$
- **Proof Idea:**

 $H_n \leq 1 + \int_1^n \frac{dx}{x} = \ln n + 1$

 $H_n \geq \int_0^n \frac{dx}{x+1} = \ln (n+1)$

 $\ln (n+1) \leq H_n \leq \ln n + 1$

\[\frac{1}{x+1} \]
The Finishing Touches

\[E[X] \leq 2n \sum_{k=1}^{n} \frac{1}{k} \]
\[= 2n \cdot H_n \]
\[= 2n \cdot \Theta(\log n) \]
\[= O(n \log n) \]
Why This Matters

• We have just shown that the runtime of randomized quicksort is, on expectation, $O(n \log n)$.

• To do so, we needed to use two new mathematical techniques:
 • Indicator random variables.
 • Bounding summations by integrals.

• We will use the first of these techniques more extensively over the next few days.
Introsort

- As with quickselect, quicksort still has a pathological $\Theta(n^2)$ case, though it's unlikely.
- Quicksort is, on average, faster than heapsort.
- The introsort algorithm addresses this:
 - Run quicksort, tracking the recursion depth.
 - If it exceeds some limit, switch to heapsort.
- Given good pivots, runs just as fast as quicksort.
- Given bad pivots, is only marginally worse than heapsort.
- Guarantees $O(n \log n)$ behavior.
A Different Algorithm: Max-Cut
Global Cuts

- Given an undirected graph $G = (V, E)$, a cut in G is a pair $(S, V - S)$ of two sets S and $V - S$ that split the nodes into two groups.

- The size or cost of a cut, denoted by $c(S, V - S)$, is the number of edges with one endpoint in S and one in $V - S$.

- A global min cut is a cut in G with the least total cost. A global max cut is a cut in G with maximum total cost.
Global Cuts

• Interestingly:
 • There are many polynomial-time algorithms known for global min-cut.
 • Global max-cut is \textbf{NP}-hard and no polynomial-time algorithms are known for it.

• Today, we'll see an algorithm for approximating global max-cut.

• On Friday, we'll see a randomized algorithm for finding a global min-cut.
Approximating Max-Cut

- For a maximization problem, an **α-approximation algorithm** is an algorithm that produces a value that is within a factor of \(\alpha\) of the true value.
- A 0.5-approximation to max-cut would produce a cut whose size is at least 50% the size of the true largest cut.
- Our goal will be to find a randomized approximation algorithm for max-cut.
A Really Simple Algorithm

• Here is our algorithm:
 • For each node, toss a fair coin.
 • If it lands heads, place the node into one part of the cut.
 • If it lands tails, place the node into the other part of the cut.
Analyzing the Algorithm

• On expectation, how large of a cut will this algorithm find?

• For each edge e, C_e be an indicator random variable where

\[
C_e = \begin{cases}
1 & \text{if } e \text{ crosses the cut} \\
0 & \text{otherwise}
\end{cases}
\]

• Then the number of edges X crossing the cut will be given by

\[
X = \sum_{e \in E} C_e
\]
What Did You Expect?

• The expected number of edges crossing the cut is given by $E[X]$.

• This is

$$E[X] = E\left[\sum_{e \in E} C_e \right]$$

$$= \sum_{e \in E} E[C_e]$$

$$= \sum_{e \in E} P(e \text{ crosses the cut})$$
Four Possibilities
That Was Unexpected

- The expected number of edges crossing the cut is given by $E[X]$.

- This is
 \[
 E[X] = \sum_{e \in E} P(e \text{ crosses the cut})
 \]
 \[
 = \sum_{e \in E} \frac{1}{2}
 \]
 \[
 = \frac{m}{2}
 \]

- All cuts have size $\leq m$, so this is always within a factor of two of optimal!
Randomized Approximation Algorithms

- This algorithm is a randomized 0.5-approximation to max-cut.
- The algorithm runs in time $O(n)$.
- It's \textbf{NP}-hard to find a true maximum cut, but it's not at all hard to (on expectation) find a cut that has size at least half that of the maximum cut!
Improving the Odds

• Running our algorithm will, on expectation, produce a cut with size $m / 2$.
• However, we don't know the actual probability that our cut has this size.
• We can use a standard technique to amplify the probability of success.
Do it Again

• Since any *individual* run of the algorithm might not produce a large cut, we could try this approach:
 • Run the algorithm k times.
 • Return the largest cut found.

• Goal: Show that with the right choice of k, this returns a large cut with high probability.
 • Specifically: Will show we get a cut of size $m/4$ with high probability.

• Runtime is $O((m + n)k)$: k rounds of doing $O(m + n)$ work (n to build the cut, m to determine the size.)
More Probabilities

- Let X_1, X_2, \ldots, X_k be random variables corresponding to the sizes of the cuts found by each run of the algorithm.

- Let \mathcal{E} be the event that our algorithm produces a cut of size less than $m/4$. Then

$$
\mathcal{E} = \bigcap_{i=1}^{k} \left(X_i \leq \frac{m}{4} \right)
$$

- Since all X_i variables are independent, we have

$$
P(\mathcal{E}) = P \left(\bigcap_{i=1}^{k} \left(X_i \leq \frac{m}{4} \right) \right) = \prod_{i=1}^{k} P(X_i \leq \frac{m}{4})
$$
A Simplification

• Let Y_1, Y_2, \ldots, Y_k be random variables defined as follows:
 \[Y_i = m - X_i \]

• Then
 \[P(\mathcal{E}) = \prod_{i=1}^{k} P(X_i \leq \frac{m}{4}) = \prod_{i=1}^{k} P(Y_i \geq \frac{3m}{4}) \]

• What now?
Markov's Inequality

• **Markov's Inequality** states that for any nonnegative random variable \(X \), that

\[
P(X \geq c) \leq \frac{E[X]}{c}
\]

• Equivalently:

\[
P(X \geq c \ E[X]) \leq \frac{1}{c}
\]

• This holds for any random variable \(X \).
• Can often get tighter bounds if we know something about the distribution of \(X \).
Markov to the Rescue

- Let $Y_1, Y_2, ..., Y_k$ be random variables defined as follows:
 \[Y_i = m - X_i \]

- Then
 \[E[Y_i] = m - E[X_i] = m - m/2 = m/2 \]

- Then
 \[
P(E) = \prod_{i=1}^{k} P(Y_i \geq \frac{3m}{4}) \leq \prod_{i=1}^{k} \frac{E[Y_i]}{3m/4}
 \[
 = \prod_{i=1}^{k} \frac{m/2}{3m/4} = \prod_{i=1}^{k} \frac{2}{3} = \left(\frac{2}{3}\right)^k
 \]
The Finishing Touches

- If we run the algorithm k times and take the maximum cut we find, then the probability that we don't get $m/4$ edges or more is at most $(2/3)^k$.

- The probability we do get at least $m/4$ edges is at least $1 - (2/3)^k$.

- If we set $k = \log_{3/2} m$, the probability we get at least $m/4$ edges is $1 - 1/m$.

- There is a randomized, $O((m + n) \log m)$-time algorithm that finds a (0.25)-approximation to max-cut with probability $1 - 1/m$.
Why This Works

- Given a randomized algorithm that has a probability p of success, we can amplify that probability significantly by repeating the algorithm multiple times.

- This technique is used extensively in randomized algorithms; we'll see another example of this on Friday.
Next Time

- Karger's Algorithm
- Finding a Global Min-Cut
- Applications of Global Min-Cut