
  

Randomized Algorithms
Part Three



  

Announcements

● Problem Set Three due on Monday (or 
Wednesday using a late period.)

● Problem Set Two graded; will be 
returned at the end of lecture.



  

Outline for Today

● Global Minimum Cut
● What is the easiest way to split a graph into 

pieces?

● Karger's Algorithm
● A simple randomized algorithm for finding 

global minimum cuts.

● The Karger-Stein Algorithm
● A fast, simple, and elegant randomized 

divide-and-conquer algorithm.



  

Recap: Global Cuts



  

Disconnecting a Graph



  

Disconnecting a Graph



  

Disconnecting a Graph



  

Disconnecting a Graph



  

Disconnecting a Graph



  

Disconnecting a Graph



  

Disconnecting a Graph



  

Disconnecting a Graph



  

Disconnecting a Graph



  

Disconnecting a Graph



  

Disconnecting a Graph



  

Disconnecting a Graph



  

Global Min Cuts

● A cut in a graph G = (V, E) is a way of 
partitioning V into two sets S and V – S.  We 
denote a cut as the pair (S, V – S).

● The size of a cut is the number of edges with 
one endpoint in S and one endpoint in V – S.  
These edges are said to cross the cut.

● A global minimum cut (or just min cut) is a 
cut with the least total size.
● Intuitively: removing the edges crossing a min 

cut is the easiest way to disconnect the graph.



  

Source: http://sorreluk.deviantart.com/art/Sunflower-VI-134302826

http://sorreluk.deviantart.com/art/Sunflower-VI-134302826
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weighted min cut 

problem, but it's 
closely related to 

unweighted min cut.
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Properties of Min Cuts

● Claim: The size of a min cut is at most the 
minimum degree in the graph.

● If v has the minimum degree, then the cut 
({v}, V – {v}) has size equal to deg(v).

● Since the minimum cut is no larger than 
any cut in the graph, this means that 
minimum cut has size at most deg(v) for any 
v ∈ V.



  

Properties of Min Cuts

Theorem: In an n-node graph, if there is a min cut
with cost k, there must be at least nk / 2 edges.

Proof: If there is a minimum cut with cost k, every
node must have degree at least k (since
otherwise there would be a cut with cost less
than k).  Therefore, by the handshaking lemma,
we have

And so m ≥ nk / 2, as required. ■

m =

∑
v∈V

deg(v)

2
≥

∑
v∈V

k

2
=

nk
2



  

Finding a Global Min Cut:
Karger's Algorithm



  



  



  



  



  



  

A multigraph is a 
graph where parallel 
edges between nodes 

are permitted.
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Karger's Algorithm

● Given an edge (u, v) in a multigraph, we can 
contract u and v as follows:
● Delete all edges between u and v.
● Replace u and v with a new “supernode” uv.
● Replace all edges incident to u or v with edges 

incident to the supernode uv.

● Karger's algorithm is as follows:
● If there are exactly two nodes left, stop.  The 

edges crossing those nodes form a cut.
● Otherwise, pick a random edge, contract it, then 

repeat.



  



  



  



  



  



  



  



  

Karger's Algorithm

● Consider any cut C = (S, V – S).
● If we ever contract an edge crossing C, 

then the contraction algorithm will not 
produce the cut C.
● Contracting an edge (u, v) crossing the cut 

will place some node from S and some node 
from V – S into the same cluster.

● When the algorithm terminates, the 
algorithm cannot produce the cut (S, V – S) 
because neither side will be S.



  

The Story So Far

● We now have the following:

Karger's algorithm produces
cut C iff it never contracts

an edge crossing C.
● How does this relate to min cuts?
● Across all cuts, min cuts have the lowest 

probability of having an edge contracted.
● Fewer edges than all non-min cuts.

● Intuitively, we should be more likely to get a min 
cut than a non-min cut.

● What is the probability that we do get a min cut?



  

Defining Random Variables

● Choose any minimum cut C; let its size be k.

● Define the event Ɛ to be the event that Karger's 
algorithm produces C.

● This means that on each iteration, Karger's 
algorithm must not contract any of the edges 
crossing C.

● Let Ɛₖ be the event that on iteration k of the 
algorithm, Karger's algorithm does not 
contract an edge crossing C.

● Then Ɛ=∩
i=1

n−2

Ɛ i Can anyone explain the 
summation bounds?

Can anyone explain the 
summation bounds?



  

Evaluating the Probability

● We want to know

● These events are not independent of one 
another.  (Why?)

● By the chain rule for conditional 
probability:

P (Ɛ )=P (∩i=1

n−2

Ɛ i)

P (∩
i=1

n−2

Ɛ i)=P (Ɛ n−2∣Ɛ n−3 ,…,Ɛ 1)P (Ɛ n−3∣Ɛ n−4 ,…,Ɛ 1)…P (Ɛ 2∣Ɛ 1)P (Ɛ 1)



  

The First Iteration

● First, let's evaluate P(Ɛ₁), the probability that we 
don't contract an edge from C.

● For simplicity, we'll evaluate P(Ɛ₁), the probability 
we do contract an edge from C on the first round.

● If our min cut has k edges, the probability that we 
choose one of the edges from C is given by k / m.

● Since the min cut has k edges, m ≥ kn / 2.  
Therefore:

So

P (Ɛ̄ 1) =
k
m

≤
k

nk/2
=

2
n

P (Ɛ 1) = 1−P (Ɛ̄1) ≥ 1−
2
n

=
n−2

n
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Successive Iterations

● We now need to determine

● This is the probability that we don't contract an 
edge in C in round i, given that we haven't 
contracted any edge in C at this point.

● As before, we'll look at the complement of this 
event:

● This is the probability we do contract an edge 
from C in round i given that we haven't 
contracted any edges before this.

P (Ɛ i∣Ɛ i−1Ɛ i−2…Ɛ1)

P (Ɛ̄ i∣Ɛ i−1Ɛ i−2…Ɛ1)



  

Successive Iterations

● At iteration i, n – i + 1 supernodes remain.

● Claim: Any cut in the contracted graph is also 
a cut in the original graph..
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Successive Iterations

● At iteration i, n – i + 1 supernodes remain.

● Claim: Any cut in the contracted graph is also 
a cut in the original graph.

● Since C has size k, all n – i + 1 supernodes 
must have at least k incident edges. (Why?)

● Total number of edges at least k(n – i + 1) / 2.
● Probability we contract an edge from C is

● So

P (Ɛ̄ i∣Ɛ i−1Ɛ i−2…Ɛ 1) ≤
k

k(n−i+1)/2
=

2
n−i+1

P (Ɛ i∣Ɛ i−1Ɛ i−2…Ɛ 1) ≥ 1−
2

n−i+1
=

n−i−1
n−i+1



  

P (Ɛ ) = P (Ɛ n−2∣Ɛ n−3 ,…,Ɛ 1)…P (Ɛ 2∣Ɛ 1)P (Ɛ 1)

≥
n−(n−2)−1
n−(n−2)+1

⋅
n−(n−3)−1
n−(n−3)+1

⋅…
n−2

n
          

=
1
3
⋅
2
4
⋅…

n−2
n

                                          

= ∏
i=1

n−2 i
i+2

                                                 

= ∏
i=1

n−2

i / ∏
i=1

n−2

i+2                                     

= ∏
i=1

n−2

i / ∏
i=3

n

i                                         

= (1⋅2⋅∏
i=3

n−2

i) / (n⋅(n−1)⋅∏
i=3

n−2

i)                  
=

2
n(n−1)
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The Success Probability

● Right now, the probability that the 
algorithm finds a minimum cut is at least

 
● This number is low, but it's not as low as 

it might seem.
● How may total cuts are there?
● If we picked a cut randomly and there was 

just one min cut, what's the probability that 
we would find it?

2
n(n−1)



  

Amplifying the Probability

● Recall: running an algorithm multiple 
times and taking the best result can 
amplify the success probability.

● Run Karger's algorithm for k iterations 
and take the smallest cut found. What is 
the probability that we don't get a 
minimum cut?

(1−
2

n(n−1) )
k



  

A Useful Inequality

● For any x ≥ 1, we have

● If we run Karger's algorithm n(n – 1) / 2 times, the 
probability we don't get a minimum cut is

● If we run Karger's algorithm (n (n – 1) / 2) ln n times, 
the probability we don't get a minimum cut is

1
4

≤ (1−
1
x )

x

≤
1
e

(1−
2

n(n−1) )
n(n−1)

2 ≤
1
e

(1−
2

n(n−1) )
(
n(n−1)

2
)lnn

≤ (1e )
lnn

=
1
n
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x
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1
e

(1−
2

n(n−1) )
(
n(n−1)

2
)lnn

≤ (1e )
lnn
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1
n

More generally: If the success 
rate is 1 / f(n), running the 

algorithm f(n) ln n times gives 
1 / n chance of failure.

More generally: If the success 
rate is 1 / f(n), running the 

algorithm f(n) ln n times gives 
1 / n chance of failure.



  

The Overall Result

● Running Karger's algorithm O(n2 log n) 
times produces a minimum cut with high 
probability.

● Claim: Using adjacency matrices, it's 
possible to run Karger's algorithm once 
in time O(n2).

● Theorem: Running Karger's algorithm 
O(n2 log n) times gives a minimum cut 
with high probability and takes time 
O(n4 log n).



  

Speeding Things Up:
The Karger-Stein Algorithm



  

Some Quick History

● David Karger developed the contraction 
algorithm in 1993.  Its runtime was O(n4 log n).

● In 1996, David Karger and Clifford Stein (the 
“S” in CLRS) published an improved version of 
the algorithm that is dramatically faster.

● The Good News: The algorithm makes 
intuitive sense.

● The Bad News: Some of the math is really, 
really hard.



  

Some Observations

● Karger's algorithm only fails if it 
contracts an edge in the min cut.

● The probability of contracting the wrong 
edge increases as the number of 
supernodes decreases.
● (Why?)

● Since failures are more likely later in the 
algorithm, repeat just the later stages of 
the algorithm when the algorithm fails.



  

Intelligent Restarts

● Interesting fact: If we contract from n 
nodes down to         nodes, the 
probability that we don't contract an 
edge in the min cut is about 50%.
● Can work out the math yourself if you'd like.

● What happens if we do the following?
● Contract down to         nodes.
● Run two passes of the contraction algorithm 

from this point.
● Take the better of the two cuts.

n/√2

n/√2



  

The Success Probability

● This algorithm finds a min cut iff
● The partial contraction step doesn't contract 

an edge in the min cut, and
● At least one of the two remaining contractions 

does find a min cut.

● The first step succeeds with probability 
around 50%.

● Each remaining call succeeds with 
probability at least 4 / n(n – 1).
● (Why?)



  

The Success Probability

P (success) ≥
1
2 (1−(1−

4
n(n−1))

2

)               
=

1
2 (1−(1−

8
n(n−1)

+
16

n2
(n−1)

2 ))
=

1
2 ( 8

n(n−1)
−

16
n2

(n−1)
2 )            

=
4

n(n−1)
−

8
n2

(n−1)
2               
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A Success Story

● This new algorithm has roughly twice the 
success probability as the original algorithm!

● Key Insight: Keep repeating this process!
● Base case: When size is some small constant, 

just brute-force the answer.
● Otherwise, contract down to         nodes, then 

recursively apply this algorithm twice to the 
remaining graph and take the better of the two 
results.

● This is the Karger-Stein algorithm.

n/√2



  

Two Questions

● What is the success probability of this 
new algorithm?
● This is extremely difficult to determine.
● We'll talk about it later.

● What is the runtime of this new 
algorithm?
● Let's use the Master Theorem?



  

The Runtime

● We have the following recurrence 
relation:

● What does the Master Theorem say 
about it?

T(n) = O(n2 log n)  

T(n) = c if n ≤ n₀
T(n) = 2T(n /    ) + O(n2) otherwise
T(n) = c if n ≤ n₀
T(n) = 2T(n /    ) + O(n2) otherwise√2



  

The Runtime

● We have the following recurrence 
relation:

● What does the Master Theorem say 
about it?

T(n) = O(n2 log n)  

T(n) = c if n ≤ n₀
T(n) = 2T(n /    ) + O(n2) otherwise
T(n) = c if n ≤ n₀
T(n) = 2T(n /    ) + O(n2) otherwise√2



  

The Runtime
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The Accuracy

● By solving a very tricky recurrence relation, we 
can show that this algorithm returns a min cut 
with probability Ω(1 / log n).

● If we run the algorithm roughly ln2 n times, the 
probability that all runs fail is roughly

● Theorem: The Karger-Stein algorithm is an 
O(n2 log3 n)-time algorithm for finding a min 
cut with high probability.

(1−
1

lnn )
ln2n

≤ (1e )
lnn

=
1
n



  

Major Ideas from Today

● You can increase the success rate of a 
Monte Carlo algorithm by iterating it 
multiple times and taking the best option 
found.
● If the probability of success is 1 / f(n), then 

running it O(f(n) log n) times gives a high 
probability of success.

● If you're more intelligent about how you 
iterate the algorithm, you can often do 
much better than this.



  

Next Time

● Hash Tables
● Universal Hashing
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