

Randomized Algorithms
Part Three

Announcements

● Problem Set Three due on Monday (or
Wednesday using a late period.)

● Problem Set Two graded; will be
returned at the end of lecture.

Outline for Today

● Global Minimum Cut
● What is the easiest way to split a graph into

pieces?

● Karger's Algorithm
● A simple randomized algorithm for finding

global minimum cuts.

● The Karger-Stein Algorithm
● A fast, simple, and elegant randomized

divide-and-conquer algorithm.

Recap: Global Cuts

Disconnecting a Graph

Disconnecting a Graph

Disconnecting a Graph

Disconnecting a Graph

Disconnecting a Graph

Disconnecting a Graph

Disconnecting a Graph

Disconnecting a Graph

Disconnecting a Graph

Disconnecting a Graph

Disconnecting a Graph

Disconnecting a Graph

Global Min Cuts

● A cut in a graph G = (V, E) is a way of
partitioning V into two sets S and V – S. We
denote a cut as the pair (S, V – S).

● The size of a cut is the number of edges with
one endpoint in S and one endpoint in V – S.
These edges are said to cross the cut.

● A global minimum cut (or just min cut) is a
cut with the least total size.
● Intuitively: removing the edges crossing a min

cut is the easiest way to disconnect the graph.

Source: http://sorreluk.deviantart.com/art/Sunflower-VI-134302826

http://sorreluk.deviantart.com/art/Sunflower-VI-134302826

Image Segmentation

Image Segmentation

Image Segmentation

Image Segmentation
8 1 7

1 9 7

8 1 9 9

8 1 7

8 1 7

8 9 9 9

8 1 9 9

Image Segmentation
8 1 7

1 9 7

8 1 9 9

8 1 7

8 1 7

8 9 9 9

8 1 9 9

Image Segmentation
8 1 7

1 9 7

8 1 9 9

8 1 7

8 1 7

8 9 9 9

8 1 9 9

Technically, this is the
weighted min cut

problem, but it's
closely related to

unweighted min cut.

Technically, this is the
weighted min cut

problem, but it's
closely related to

unweighted min cut.

Properties of Min Cuts

Properties of Min Cuts

Properties of Min Cuts

Properties of Min Cuts

Properties of Min Cuts

● Claim: The size of a min cut is at most the
minimum degree in the graph.

● If v has the minimum degree, then the cut
({v}, V – {v}) has size equal to deg(v).

● Since the minimum cut is no larger than
any cut in the graph, this means that
minimum cut has size at most deg(v) for any
v ∈ V.

Properties of Min Cuts

Theorem: In an n-node graph, if there is a min cut
with cost k, there must be at least nk / 2 edges.

Proof: If there is a minimum cut with cost k, every
node must have degree at least k (since
otherwise there would be a cut with cost less
than k). Therefore, by the handshaking lemma,
we have

And so m ≥ nk / 2, as required. ■

m =

∑
v∈V

deg(v)

2
≥

∑
v∈V

k

2
=

nk
2

Finding a Global Min Cut:
Karger's Algorithm

A multigraph is a
graph where parallel
edges between nodes

are permitted.

A multigraph is a
graph where parallel
edges between nodes

are permitted.

Karger's Algorithm

● Given an edge (u, v) in a multigraph, we can
contract u and v as follows:
● Delete all edges between u and v.
● Replace u and v with a new “supernode” uv.
● Replace all edges incident to u or v with edges

incident to the supernode uv.

● Karger's algorithm is as follows:
● If there are exactly two nodes left, stop. The

edges crossing those nodes form a cut.
● Otherwise, pick a random edge, contract it, then

repeat.

Karger's Algorithm

● Consider any cut C = (S, V – S).
● If we ever contract an edge crossing C,

then the contraction algorithm will not
produce the cut C.
● Contracting an edge (u, v) crossing the cut

will place some node from S and some node
from V – S into the same cluster.

● When the algorithm terminates, the
algorithm cannot produce the cut (S, V – S)
because neither side will be S.

The Story So Far

● We now have the following:

Karger's algorithm produces
cut C iff it never contracts

an edge crossing C.
● How does this relate to min cuts?
● Across all cuts, min cuts have the lowest

probability of having an edge contracted.
● Fewer edges than all non-min cuts.

● Intuitively, we should be more likely to get a min
cut than a non-min cut.

● What is the probability that we do get a min cut?

Defining Random Variables

● Choose any minimum cut C; let its size be k.

● Define the event Ɛ to be the event that Karger's
algorithm produces C.

● This means that on each iteration, Karger's
algorithm must not contract any of the edges
crossing C.

● Let Ɛₖ be the event that on iteration k of the
algorithm, Karger's algorithm does not
contract an edge crossing C.

● Then Ɛ=∩
i=1

n−2

Ɛ i Can anyone explain the
summation bounds?

Can anyone explain the
summation bounds?

Evaluating the Probability

● We want to know

● These events are not independent of one
another. (Why?)

● By the chain rule for conditional
probability:

P (Ɛ)=P (∩i=1

n−2

Ɛ i)

P (∩
i=1

n−2

Ɛ i)=P (Ɛ n−2∣Ɛ n−3 ,…,Ɛ 1)P (Ɛ n−3∣Ɛ n−4 ,…,Ɛ 1)…P (Ɛ 2∣Ɛ 1)P (Ɛ 1)

The First Iteration

● First, let's evaluate P(Ɛ₁), the probability that we
don't contract an edge from C.

● For simplicity, we'll evaluate P(Ɛ₁), the probability
we do contract an edge from C on the first round.

● If our min cut has k edges, the probability that we
choose one of the edges from C is given by k / m.

● Since the min cut has k edges, m ≥ kn / 2.
Therefore:

So

P (Ɛ̄ 1) =
k
m

≤
k

nk/2
=

2
n

P (Ɛ 1) = 1−P (Ɛ̄1) ≥ 1−
2
n

=
n−2

n

The First Iteration

● First, let's evaluate P(Ɛ₁), the probability that we
don't contract an edge from C.

● For simplicity, we'll evaluate P(Ɛ₁), the probability
we do contract an edge from C on the first round.

● If our min cut has k edges, the probability that we
choose one of the edges from C is given by k / m.

● Since the min cut has k edges, m ≥ kn / 2.
Therefore:

So

P (Ɛ̄ 1) =
k
m

≤
k

nk/2
=

2
n

P (Ɛ 1) = 1−P (Ɛ̄1) ≥ 1−
2
n

=
n−2

n

The First Iteration

● First, let's evaluate P(Ɛ₁), the probability that we
don't contract an edge from C.

● For simplicity, we'll evaluate P(Ɛ₁), the probability
we do contract an edge from C on the first round.

● If our min cut has k edges, the probability that we
choose one of the edges from C is given by k / m.

● Since the min cut has k edges, m ≥ kn / 2.
Therefore:

So

P (Ɛ̄ 1) =
k
m

≤
k

nk/2
=

2
n

P (Ɛ 1) = 1−P (Ɛ̄1) ≥ 1−
2
n

=
n−2

n

The First Iteration

● First, let's evaluate P(Ɛ₁), the probability that we
don't contract an edge from C.

● For simplicity, we'll evaluate P(Ɛ₁), the probability
we do contract an edge from C on the first round.

● If our min cut has k edges, the probability that we
choose one of the edges from C is given by k / m.

● Since the min cut has k edges, m ≥ kn / 2.
Therefore:

So

P (Ɛ̄ 1) =
k
m

≤
k

nk/2
=

2
n

P (Ɛ 1) = 1−P (Ɛ̄1) ≥ 1−
2
n

=
n−2

n

The First Iteration

● First, let's evaluate P(Ɛ₁), the probability that we
don't contract an edge from C.

● For simplicity, we'll evaluate P(Ɛ₁), the probability
we do contract an edge from C on the first round.

● If our min cut has k edges, the probability that we
choose one of the edges from C is given by k / m.

● Since the min cut has k edges, m ≥ kn / 2.
Therefore:

So

P (Ɛ̄ 1) =
k
m

≤
k

nk/2
=

2
n

P (Ɛ 1) = 1−P (Ɛ̄1) ≥ 1−
2
n

=
n−2

n

The First Iteration

● First, let's evaluate P(Ɛ₁), the probability that we
don't contract an edge from C.

● For simplicity, we'll evaluate P(Ɛ₁), the probability
we do contract an edge from C on the first round.

● If our min cut has k edges, the probability that we
choose one of the edges from C is given by k / m.

● Since the min cut has k edges, m ≥ kn / 2.
Therefore:

So

P (Ɛ̄ 1) =
k
m

≤
k

nk/2
=

2
n

P (Ɛ 1) = 1−P (Ɛ̄1) ≥ 1−
2
n

=
n−2

n

The First Iteration

● First, let's evaluate P(Ɛ₁), the probability that we
don't contract an edge from C.

● For simplicity, we'll evaluate P(Ɛ₁), the probability
we do contract an edge from C on the first round.

● If our min cut has k edges, the probability that we
choose one of the edges from C is given by k / m.

● Since the min cut has k edges, m ≥ kn / 2.
Therefore:

● So

P (Ɛ̄ 1) =
k
m

≤
k

nk/2
=

2
n

P (Ɛ 1) = 1−P (Ɛ̄1) ≥ 1−
2
n

=
n−2

n

The First Iteration

● First, let's evaluate P(Ɛ₁), the probability that we
don't contract an edge from C.

● For simplicity, we'll evaluate P(Ɛ₁), the probability
we do contract an edge from C on the first round.

● If our min cut has k edges, the probability that we
choose one of the edges from C is given by k / m.

● Since the min cut has k edges, m ≥ kn / 2.
Therefore:

● So

P (Ɛ̄ 1) =
k
m

≤
k

nk/2
=

2
n

P (Ɛ 1) = 1−P (Ɛ̄1) ≥ 1−
2
n

=
n−2

n

The First Iteration

● First, let's evaluate P(Ɛ₁), the probability that we
don't contract an edge from C.

● For simplicity, we'll evaluate P(Ɛ₁), the probability
we do contract an edge from C on the first round.

● If our min cut has k edges, the probability that we
choose one of the edges from C is given by k / m.

● Since the min cut has k edges, m ≥ kn / 2.
Therefore:

● So

P (Ɛ̄ 1) =
k
m

≤
k

nk/2
=

2
n

P (Ɛ 1) = 1−P (Ɛ̄1) ≥ 1−
2
n

=
n−2

n

The First Iteration

● First, let's evaluate P(Ɛ₁), the probability that we
don't contract an edge from C.

● For simplicity, we'll evaluate P(Ɛ₁), the probability
we do contract an edge from C on the first round.

● If our min cut has k edges, the probability that we
choose one of the edges from C is given by k / m.

● Since the min cut has k edges, m ≥ kn / 2.
Therefore:

● So

P (Ɛ̄ 1) =
k
m

≤
k

nk/2
=

2
n

P (Ɛ 1) = 1−P (Ɛ̄1) ≥ 1−
2
n

=
n−2

n

Successive Iterations

● We now need to determine

● This is the probability that we don't contract an
edge in C in round i, given that we haven't
contracted any edge in C at this point.

● As before, we'll look at the complement of this
event:

● This is the probability we do contract an edge
from C in round i given that we haven't
contracted any edges before this.

P (Ɛ i∣Ɛ i−1Ɛ i−2…Ɛ1)

P (Ɛ̄ i∣Ɛ i−1Ɛ i−2…Ɛ1)

Successive Iterations

● At iteration i, n – i + 1 supernodes remain.

● Claim: Any cut in the contracted graph is also
a cut in the original graph..

Successive Iterations

● At iteration i, n – i + 1 supernodes remain.

● Claim: Any cut in the contracted graph is also
a cut in the original graph..

Successive Iterations

● At iteration i, n – i + 1 supernodes remain.

● Claim: Any cut in the contracted graph is also
a cut in the original graph..

Successive Iterations

● At iteration i, n – i + 1 supernodes remain.

● Claim: Any cut in the contracted graph is also
a cut in the original graph.

● Since C has size k, all n – i + 1 supernodes
must have at least k incident edges. (Why?)

● Total number of edges at least k(n – i + 1) / 2.
● Probability we contract an edge from C is

● So

P (Ɛ̄ i∣Ɛ i−1Ɛ i−2…Ɛ 1) ≤
k

k(n−i+1)/2
=

2
n−i+1

P (Ɛ i∣Ɛ i−1Ɛ i−2…Ɛ 1) ≥ 1−
2

n−i+1
=

n−i−1
n−i+1

P (Ɛ) = P (Ɛ n−2∣Ɛ n−3 ,…,Ɛ 1)…P (Ɛ 2∣Ɛ 1)P (Ɛ 1)

≥
n−(n−2)−1
n−(n−2)+1

⋅
n−(n−3)−1
n−(n−3)+1

⋅…
n−2

n

=
1
3
⋅
2
4
⋅…

n−2
n

= ∏
i=1

n−2 i
i+2

= ∏
i=1

n−2

i / ∏
i=1

n−2

i+2

= ∏
i=1

n−2

i / ∏
i=3

n

i

= (1⋅2⋅∏
i=3

n−2

i) / (n⋅(n−1)⋅∏
i=3

n−2

i)
=

2
n(n−1)

P (Ɛ) = P (Ɛ n−2∣Ɛ n−3 ,…,Ɛ 1)…P (Ɛ 2∣Ɛ 1)P (Ɛ 1)

≥
n−(n−2)−1
n−(n−2)+1

⋅
n−(n−3)−1
n−(n−3)+1

⋅…
n−2

n

=
1
3
⋅
2
4
⋅…

n−2
n

= ∏
i=1

n−2 i
i+2

= ∏
i=1

n−2

i / ∏
i=1

n−2

i+2

= ∏
i=1

n−2

i / ∏
i=3

n

i

= (1⋅2⋅∏
i=3

n−2

i) / (n⋅(n−1)⋅∏
i=3

n−2

i)
=

2
n(n−1)

P (Ɛ) = P (Ɛ n−2∣Ɛ n−3 ,…,Ɛ 1)…P (Ɛ 2∣Ɛ 1)P (Ɛ 1)

≥
n−(n−2)−1
n−(n−2)+1

⋅
n−(n−3)−1
n−(n−3)+1

⋅…
n−2

n

=
1
3
⋅
2
4
⋅…

n−2
n

= ∏
i=1

n−2 i
i+2

= ∏
i=1

n−2

i / ∏
i=1

n−2

i+2

= ∏
i=1

n−2

i / ∏
i=3

n

i

= (1⋅2⋅∏
i=3

n−2

i) / (n⋅(n−1)⋅∏
i=3

n−2

i)
=

2
n(n−1)

P (Ɛ) = P (Ɛ n−2∣Ɛ n−3 ,…,Ɛ 1)…P (Ɛ 2∣Ɛ 1)P (Ɛ 1)

≥
n−(n−2)−1
n−(n−2)+1

⋅
n−(n−3)−1
n−(n−3)+1

⋅…
n−2

n

=
1
3
⋅
2
4
⋅…

n−2
n

= ∏
i=1

n−2 i
i+2

= ∏
i=1

n−2

i / ∏
i=1

n−2

i+2

= ∏
i=1

n−2

i / ∏
i=3

n

i

= (1⋅2⋅∏
i=3

n−2

i) / (n⋅(n−1)⋅∏
i=3

n−2

i)
=

2
n(n−1)

P (Ɛ) = P (Ɛ n−2∣Ɛ n−3 ,…,Ɛ 1)…P (Ɛ 2∣Ɛ 1)P (Ɛ 1)

≥
n−(n−2)−1
n−(n−2)+1

⋅
n−(n−3)−1
n−(n−3)+1

⋅…
n−2

n

=
1
3
⋅
2
4
⋅…

n−2
n

= ∏
i=1

n−2 i
i+2

= ∏
i=1

n−2

i / ∏
i=1

n−2

i+2

= ∏
i=1

n−2

i / ∏
i=3

n

i

= (1⋅2⋅∏
i=3

n−2

i) / (n⋅(n−1)⋅∏
i=3

n−2

i)
=

2
n(n−1)

P (Ɛ) = P (Ɛ n−2∣Ɛ n−3 ,…,Ɛ 1)…P (Ɛ 2∣Ɛ 1)P (Ɛ 1)

≥
n−(n−2)−1
n−(n−2)+1

⋅
n−(n−3)−1
n−(n−3)+1

⋅…
n−2

n

=
1
3
⋅
2
4
⋅…

n−2
n

= ∏
i=1

n−2 i
i+2

= ∏
i=1

n−2

i / ∏
i=1

n−2

i+2

= ∏
i=1

n−2

i / ∏
i=3

n

i

= (1⋅2⋅∏
i=3

n−2

i) / (n⋅(n−1)⋅∏
i=3

n−2

i)
=

2
n(n−1)

P (Ɛ) = P (Ɛ n−2∣Ɛ n−3 ,…,Ɛ 1)…P (Ɛ 2∣Ɛ 1)P (Ɛ 1)

≥
n−(n−2)−1
n−(n−2)+1

⋅
n−(n−3)−1
n−(n−3)+1

⋅…
n−2

n

=
1
3
⋅
2
4
⋅…

n−2
n

= ∏
i=1

n−2 i
i+2

= ∏
i=1

n−2

i / ∏
i=1

n−2

i+2

= ∏
i=1

n−2

i / ∏
i=3

n

i

= (1⋅2⋅∏
i=3

n−2

i) / (n⋅(n−1)⋅∏
i=3

n−2

i)
=

2
n(n−1)

P (Ɛ) = P (Ɛ n−2∣Ɛ n−3 ,…,Ɛ 1)…P (Ɛ 2∣Ɛ 1)P (Ɛ 1)

≥
n−(n−2)−1
n−(n−2)+1

⋅
n−(n−3)−1
n−(n−3)+1

⋅…
n−2

n

=
1
3
⋅
2
4
⋅…

n−2
n

= ∏
i=1

n−2 i
i+2

= ∏
i=1

n−2

i / ∏
i=1

n−2

i+2

= ∏
i=1

n−2

i / ∏
i=3

n

i

= (1⋅2⋅∏
i=3

n−2

i) / (n⋅(n−1)⋅∏
i=3

n−2

i)
=

2
n(n−1)

The Success Probability

● Right now, the probability that the
algorithm finds a minimum cut is at least

● This number is low, but it's not as low as

it might seem.
● How may total cuts are there?
● If we picked a cut randomly and there was

just one min cut, what's the probability that
we would find it?

2
n(n−1)

Amplifying the Probability

● Recall: running an algorithm multiple
times and taking the best result can
amplify the success probability.

● Run Karger's algorithm for k iterations
and take the smallest cut found. What is
the probability that we don't get a
minimum cut?

(1−
2

n(n−1))
k

A Useful Inequality

● For any x ≥ 1, we have

● If we run Karger's algorithm n(n – 1) / 2 times, the
probability we don't get a minimum cut is

● If we run Karger's algorithm (n (n – 1) / 2) ln n times,
the probability we don't get a minimum cut is

1
4

≤ (1−
1
x)

x

≤
1
e

(1−
2

n(n−1))
n(n−1)

2 ≤
1
e

(1−
2

n(n−1))
(
n(n−1)

2
)lnn

≤ (1e)
lnn

=
1
n

A Useful Inequality

● For any x ≥ 1, we have

● If we run Karger's algorithm n(n – 1) / 2 times, the
probability we don't get a minimum cut is

● If we run Karger's algorithm (n (n – 1) / 2) ln n times,
the probability we don't get a minimum cut is

1
4

≤ (1−
1
x)

x

≤
1
e

(1−
2

n(n−1))
n(n−1)

2 ≤
1
e

(1−
2

n(n−1))
(
n(n−1)

2
)lnn

≤ (1e)
lnn

=
1
n

More generally: If the success
rate is 1 / f(n), running the

algorithm f(n) ln n times gives
1 / n chance of failure.

More generally: If the success
rate is 1 / f(n), running the

algorithm f(n) ln n times gives
1 / n chance of failure.

The Overall Result

● Running Karger's algorithm O(n2 log n)
times produces a minimum cut with high
probability.

● Claim: Using adjacency matrices, it's
possible to run Karger's algorithm once
in time O(n2).

● Theorem: Running Karger's algorithm
O(n2 log n) times gives a minimum cut
with high probability and takes time
O(n4 log n).

Speeding Things Up:
The Karger-Stein Algorithm

Some Quick History

● David Karger developed the contraction
algorithm in 1993. Its runtime was O(n4 log n).

● In 1996, David Karger and Clifford Stein (the
“S” in CLRS) published an improved version of
the algorithm that is dramatically faster.

● The Good News: The algorithm makes
intuitive sense.

● The Bad News: Some of the math is really,
really hard.

Some Observations

● Karger's algorithm only fails if it
contracts an edge in the min cut.

● The probability of contracting the wrong
edge increases as the number of
supernodes decreases.
● (Why?)

● Since failures are more likely later in the
algorithm, repeat just the later stages of
the algorithm when the algorithm fails.

Intelligent Restarts

● Interesting fact: If we contract from n
nodes down to nodes, the
probability that we don't contract an
edge in the min cut is about 50%.
● Can work out the math yourself if you'd like.

● What happens if we do the following?
● Contract down to nodes.
● Run two passes of the contraction algorithm

from this point.
● Take the better of the two cuts.

n/√2

n/√2

The Success Probability

● This algorithm finds a min cut iff
● The partial contraction step doesn't contract

an edge in the min cut, and
● At least one of the two remaining contractions

does find a min cut.

● The first step succeeds with probability
around 50%.

● Each remaining call succeeds with
probability at least 4 / n(n – 1).
● (Why?)

The Success Probability

P (success) ≥
1
2 (1−(1−

4
n(n−1))

2

)
=

1
2 (1−(1−

8
n(n−1)

+
16

n2
(n−1)

2))
=

1
2 (8

n(n−1)
−

16
n2

(n−1)
2)

=
4

n(n−1)
−

8
n2

(n−1)
2

The Success Probability

P (success) ≥
1
2 (1−(1−

4
n(n−1))

2

)
=

1
2 (1−(1−

8
n(n−1)

+
16

n2
(n−1)

2))
=

1
2 (8

n(n−1)
−

16
n2

(n−1)
2)

=
4

n(n−1)
−

8
n2

(n−1)
2

The Success Probability

P (success) ≥
1
2 (1−(1−

4
n(n−1))

2

)
=

1
2 (1−(1−

8
n(n−1)

+
16

n2
(n−1)

2))
=

1
2 (8

n(n−1)
−

16
n2

(n−1)
2)

=
4

n(n−1)
−

8
n2

(n−1)
2

The Success Probability

P (success) ≥
1
2 (1−(1−

4
n(n−1))

2

)
=

1
2 (1−(1−

8
n(n−1)

+
16

n2
(n−1)

2))
=

1
2 (8

n(n−1)
−

16
n2

(n−1)
2)

=
4

n(n−1)
−

8
n2

(n−1)
2

A Success Story

● This new algorithm has roughly twice the
success probability as the original algorithm!

● Key Insight: Keep repeating this process!
● Base case: When size is some small constant,

just brute-force the answer.
● Otherwise, contract down to nodes, then

recursively apply this algorithm twice to the
remaining graph and take the better of the two
results.

● This is the Karger-Stein algorithm.

n/√2

Two Questions

● What is the success probability of this
new algorithm?
● This is extremely difficult to determine.
● We'll talk about it later.

● What is the runtime of this new
algorithm?
● Let's use the Master Theorem?

The Runtime

● We have the following recurrence
relation:

● What does the Master Theorem say
about it?

T(n) = O(n2 log n)

T(n) = c if n ≤ n₀
T(n) = 2T(n /) + O(n2) otherwise
T(n) = c if n ≤ n₀
T(n) = 2T(n /) + O(n2) otherwise√2

The Runtime

● We have the following recurrence
relation:

● What does the Master Theorem say
about it?

T(n) = O(n2 log n)

T(n) = c if n ≤ n₀
T(n) = 2T(n /) + O(n2) otherwise
T(n) = c if n ≤ n₀
T(n) = 2T(n /) + O(n2) otherwise√2

The Runtime

● We have the following recurrence
relation:

● What does the Master Theorem say
about it?

T(n) = O(n2 log n)

T(n) = c if n ≤ n₀
T(n) = 2T(n /) + O(n2) otherwise
T(n) = c if n ≤ n₀
T(n) = 2T(n /) + O(n2) otherwise√2

The Accuracy

● By solving a very tricky recurrence relation, we
can show that this algorithm returns a min cut
with probability Ω(1 / log n).

● If we run the algorithm roughly ln2 n times, the
probability that all runs fail is roughly

● Theorem: The Karger-Stein algorithm is an
O(n2 log3 n)-time algorithm for finding a min
cut with high probability.

(1−
1

lnn)
ln2n

≤ (1e)
lnn

=
1
n

Major Ideas from Today

● You can increase the success rate of a
Monte Carlo algorithm by iterating it
multiple times and taking the best option
found.
● If the probability of success is 1 / f(n), then

running it O(f(n) log n) times gives a high
probability of success.

● If you're more intelligent about how you
iterate the algorithm, you can often do
much better than this.

Next Time

● Hash Tables
● Universal Hashing

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118

