Randomized Algorithms
Part Four
Announcements

- Problem Set Three due right now.
 - Due Wednesday using a late day.
- Problem Set Four out, due next Monday, July 29.
 - Play around with randomized algorithms!
 - Approximate \textbf{NP}-hard problems!
 - Explore a recent algorithm and why hashing matters!
Outline for Today

- **Chained Hash Tables**
 - How can you compactly store a small subset of a large set of elements?

- **Universal Hash Functions**
 - Groups of functions that distribute elements nicely.
Associative Structures

• The data structures we've seen so far are linear:
 • Stacks, queues, priority queues, lists, etc.
• In many cases, we want to store data in an unordered fashion.
• Queries like
 • Add element x.
 • Remove element x.
 • Is element x contained?
Bitvectors

- A **bitvector** is a data structure for storing a set of integers in the range \{0, 1, 2, 3, ..., Z − 1\}.
- Store as an array of Z bits.
- If bit at position \(x\) is 0, \(x\) does not appear in the set.
- If bit at position \(x\) is 1, \(x\) appears in the set.
Analyzing Bitvectors

- What is the runtime for
 - Inserting an element?
 - Removing an element?
 - Checking if an element is present?
- How much space is used if the bitvector contains all Z possible elements?
- How much space is used if the bitvector contains n of the Z possible elements?
Another Idea

• Store elements in an unsorted array.
• To determine whether x is contained, scan over the array elements and return whether x is found.
• To add x, check to see x is contained and, if not, append x.
• To remove x, check to see if x is contained and, if so, remove x.
Analyzing this Approach

- How much space is used if the array contains all Z possible elements?
- How much space is used if the array contains n of the Z possible elements?
- What is the runtime for
 - Inserting an element?
 - Removing an element?
 - Checking if an element is present?
The Tradeoff

- Bitvectors are fast because we know where to look to find each element.
- Bitvectors are space-inefficient because we store one bit per possible element.
- Unsorted arrays are slow because we have to scan every element.
- Unsorted arrays are space-efficient because we only store the elements we use.
- This is a time-space tradeoff: we can improve performance by using more space.
Combining the Approaches

- Bitvectors always use a fixed amount of space and support fast lookups.
 - Good when number of possible elements is low, bad when number of possible elements is large.
- Unsorted arrays use variable space and don't support fast lookups.
 - Good when number of used elements is low, bad when number of used elements is large.
Chained Hash Tables

- Suppose we have a **universe** U consisting of all possible elements that we could want to store.
- Create m **buckets**, numbered $\{0, 1, 2, \ldots, m-1\}$ as an array of length m. Each bucket is an unsorted array of elements.
- Find a rule associating each element in U with some bucket.
- To see if x is contained, look in the bucket x is associated with and see if x is there.
- To add x, see if x is contained and add it to the appropriate bucket if it's not.
- To remove x, see if x is contained and remove it from its bucket if it is.
Association rule:
\[(\text{length of first name}) \mod 4\]
Bucket 0 Bucket 1 Bucket 2 Bucket 3

Association rule: Party in bucket 1!
Analyzing Runtime

- The three basic operations on a hash table (insert, remove, lookup) all run in time $O(1 + X)$, where X is the total number of elements in the bucket visited.
 - *(Why is there a 1 here?)*
- Runtime depends on how well the elements are distributed.
- If n elements are distributed evenly across all the buckets, runtime is $O(1 + n / m)$.
- If there are n elements distributed all into the same bucket, runtime is $O(n)$.
Hash Functions

• Chained hash tables only work if we have a mechanism for associating elements of the universe with buckets.

• A **hash function** is a function

\[
h : U \rightarrow \{0, 1, 2, ..., m - 1\}
\]

• In other words, for any \(x \in U \), the value of \(h(x) \) is the bucket that \(x \) belongs to.

• Since \(h \) is a mathematical function, it's defined for all inputs in \(U \) and always produces the same output given the same input.

• For simplicity, we'll assume hash functions can be computed in \(O(1) \) time.
Choosing Good Hash Functions

• The efficiency of a hash table depends on the choice of hash function.

• In the upcoming analysis, we will assume $|U| \gg m$ (that is, there are vastly more elements in the universe than there are buckets in the hash table.)

 • Assume at least $|U| > mn$, but probably more.
A Problem

Theorem: For any hash function h, there is a series of n values that, if stored in the table, all hash to the same bucket.

Proof: Because there are m buckets, under the assumption that $|U| > mn$, by the pigeonhole principle there must be at least $n + 1$ elements that hash to the same bucket. Inserting any n of those elements into the hash table places all those elements into the same bucket. ■
A Problem

- No matter how clever we are with our choice of hash function, there will always be an input that will degenerate operations to worst-case $\Omega(n)$ time.
- Theoretically, limits the worst-case effectiveness of chained hashing.
- Practically, leads to denial-of-service attacks.
Randomness to the Rescue

- For any fixed hash function, there is a degenerate series of inputs.
- The hash function itself cannot involve randomness.
 - *(Why?)*
- However, what if we choose which hash function to use at random?
A (Very Strong) Assumption

- Let's suppose that when we create our hash table, we choose a `totally random function` \(h : U \rightarrow \{0, 1, 2, ..., m - 1\} \) as our hash function.
 - This has some issues; more on that later.
- Under this assumption, what would the expected cost of the three major hash table operations be?
Some Notation

• As before, let n be the number of elements in a hash table.
• Let those elements be x_1, x_2, \ldots, x_n.
• Suppose that the element that we're looking up is the element z.
 • Perhaps z is in the list; perhaps it's not.
Analyzing Efficiency

- Suppose we perform an operation (insert, lookup, delete) on element z.
- The runtime is proportional to the number of elements in the same bucket as z.
- For any x_k, let C_k be an indicator variable that is 1 if x_k and z hash to the same bucket (i.e. $h(x_k) = h(z)$) and is 0 otherwise.
- Let random variable X be equal to the number of elements in the same bucket as z. Then

$$X = \sum_{x_i \neq z} C_i$$
Analyzing Efficiency

\[E[X] = E\left[\sum_{x_i \neq z} C_i \right] \]

\[= \sum_{x_i \neq z} E[C_i] \]

\[= \sum_{x_i \neq z} P(h(x_i) = h(z)) \]

\[= \sum_{x_i \neq z} \frac{1}{m} \]

\[\leq \frac{n}{m} \]

So the expected cost of an operation is \(O(1 + E[X]) = O(1 + n / m) \)
Analyzing Efficiency

• Assuming we choose a function uniformly at random from all functions, the expected cost of a hash table operation is $O(1 + n / m)$.

• What's the space usage?
 • $O(m)$ space for buckets.
 • $O(n)$ space for elements.
 • Some unknown amount of space to store the hash function.
A Problem

- We assume h is chosen uniformly at random from all functions from U to $\{0, 1, \ldots, m - 1\}$.
- There are $m^{|U|}$ possible functions from U to $\{0, 1, \ldots, m - 1\}$. (Why?)
- How much memory does it take to store h?
- If we assign k bits to store h, there are 2^k possible combinations of those bits.
- We need at least $|U| \log_2 m$ bits to store h.
- **Question:** How can we get this performance without the huge space penalty?
Analyzing Efficiency

$$E[X] = E\left[\sum_{x_i \neq z} C_i \right]$$

$$= \sum_{x_i \neq z} E[C_i]$$

$$= \sum_{x_i \neq z} P(h(x_i) = h(z))$$

$$= \sum_{x_i \neq z} \frac{1}{m}$$

$$\leq \frac{n}{m}$$

So the expected cost of an operation is $O(1 + E[X]) = O(1 + n / m)$
Universal Hash Functions

- A set \(\mathcal{H} \) of hash functions from \(U \) to \(\{0, 1, \ldots, m - 1\} \) is called a **universal family of hash functions** iff

 For any \(x, y \in U \) where \(x \neq y \), if \(h \) is drawn uniformly at random from \(\mathcal{H} \), then

 \[
 P(h(x) = h(y)) \leq 1 / m
 \]

- In other words, the probability of a collision between two elements is at most \(1 / m \) as long as we choose \(h \) from \(\mathcal{H} \) uniformly at random.
Universal Hashing

\[E[X] = E \left[\sum_{x_i \neq z} C_i \right] \]

\[= \sum_{x_i \neq z} E[C_i] \]

\[= \sum_{x_i \neq z} P(h(x_i) = h(z)) \]

\[\leq \sum_{x_i \neq z} \frac{1}{m} \]

\[\leq \frac{n}{m} \]

So the expected cost of an operation is

\[O(1 + E[X]) = O(1 + n / m) \]
Universal Hash Functions

- The set of all possible functions from U to $\{0, 1, ..., m - 1\}$ is a universal family of hash functions.
 - However, requires $\Omega(|U| \log m)$ space.
- For certain types of elements, can find families of universal hash functions we can evaluate in $O(1)$ time and store in $O(1)$ space.
- **The Good News:** The intuitions behind these functions are quite nice.
- **The Bad News:** Formally proving that they're universal requires number theory and/or field theory, which is beyond the scope of this class.
Simple Universal Hash Functions

- We'll start with a simplifying assumption and generalize from there.
- Assume $U = \{0, 1, 2, \ldots, m - 1\}$ and that m is prime. (We'll relax this later.)
- Let \mathcal{H} be the set of all functions of the form

 $$h(x) = ax + b \pmod{m}$$

 - Where $a, b \in \{0, 1, 2, \ldots, m - 1\}$

 Claim: \mathcal{H} is universal.
Showing Universality

• We'll show \mathcal{H} is universal by showing it obeys a stronger property called **2-independence**:

For any $x_1, x_2 \in U$ where $x_1 \neq x_2$, if h is chosen uniformly at random from \mathcal{H}, then for any y_1 and y_2 we have

$$P(h(x_1) = y_1 \land h(x_2) = y_2) = \frac{1}{m^2}.$$

• (The probability that you can guess where any two distinct elements will be hashed is $1 / m^2$).

• **Claim**: Any 2-independent family of hash functions is universal.
\[h(x) = ax + b \]
Showing Universality

- If $h(x) = ax + b \pmod{m}$, knowing two points on the line determines the entire line.

- Can only guess the output at two points by guessing the coefficients: probability is $1 / m^2$!

- Need to use some more advanced math to formalize why this works; revolves around the fact that \mathbb{F}_m is a finite field.
Generalizing the Result

• This hash function only works if m is prime and $|U| = m$.

• Suppose we can break apart any $x \in U$ into k integer “blocks” x_1, x_2, \ldots, x_k, where each block is between 0 and $m - 1$.

• Then the set \mathcal{H} of all hash functions of the form

$$h(x) = a_1x_1 + a_2x_2 + \ldots + a_kx_k + b \pmod{m}$$

is universal.

• Intuitively, after evaluating $k - 1$ of the products, you're left with a linear function in one remaining block and the same argument applies.
A Quick Aside

- Most programming languages associate “a” hash code with each object:
 - Java: `Object.hashCode`
 - Python: `__hash__`
 - C++: `std::hash`
- Unless special care is taken, there always exists the possibility of extensive hash collisions!
Looking Forward

• This is not the only type of hash table; others exist as well:

 • **Dynamic perfect hash tables** have worst-case $O(1)$ lookup times and $O(n)$ total storage space, but use a bit more memory.

 • Open addressing hash tables avoid chaining and have better locality, but require stronger guarantees on the hash function.

• Hash functions have *lots* of applications beyond hash tables; you'll see one in the problem set.
Next Time

- Greedy Algorithms
- Interval Scheduling