
  

Dynamic Programming
Part One



  

Announcements

● Problem Set Four due right now if you're 
using a late period.
● Solutions will be released at end of lecture.

● Problem Set Five due Monday, August 5.
● Feel free to email the staff list

(cs161-sum1213-staff@lists.stanford.edu) 
with questions!

● Final project information will be 
announced early next week.

● A quick reminder about the Honor Code...

mailto:cs161-sum1213-staff@lists.stanford.edu


  

Outline for Today

● Buying Cell Towers
● A surprisingly nuanced problem.

● Dynamic Programming
● A completely different approach to 

recursion.

● Weighted Activity Selection
● Breaking greedy algorithms, then fixing 

them.



  

Example: Cell Tower Purchasing



  

Buying Cell Towers

137 42 95 272 52



  

The Cell Tower Problem

● You are given a list of town populations.
● You can build cell towers in any town as 

long as you don't build towers in adjacent 
cities.

● Two questions:
● What is the largest number of people you 

can cover?
● How do you cover them?



  

14 22 13 25 30 11 9

14 22 13 25 30 11 9

Maximize what's left in here.

Maximize what's left in here.



  

Some Notation

● Let vₖ be the value of the kth cell tower, 
1-indexed.

● Let OPT(k) be the maximum number of people 
we can cover using the first k cell towers.

● If C is a set of cell towers, let C(k) denote the 
number of people covered by the towers in C 
numbered at most k.

● Claim: OPT(k) satisfies

OPT (k)={
0 if k=0
vk if k=1
max {OPT (k−1),vk+OPT (k−2)} otherwise



  

Theorem: OPT(k) satisfies the previous recurrence.

Proof: If k = 0, no people can be covered, so OPT(0) = 0.  If
k = 1, we can choose tower 1 (value v₁) or no towers
(value 0), so OPT(1) = v₁.  So consider k > 1.

If k ∈ C, then k – 1 ∉ C. Then all towers in C besides k are 
within the first k – 2 towers, so C(k – 2) ≤ OPT(k – 2). Also, 
C(k – 2) ≥ OPT(k – 2); otherwise we could replace all 
towers in C except k with an optimal set of the first k – 2 
towers to improve C.  Thus OPT(k) = vₖ + OPT(k – 2).

If k ∉ C, all towers in C are in the first k – 1 towers.  Thus 
C(k – 1) ≤ OPT(k – 1).  Also, C(k – 1) ≥ OPT(k – 1); if not, 
we could improve C by replacing it with an optimal set of 
the first k – 1 towers.  Therefore, OPT(k) = OPT(k – 1).

Since the optimal solution for k towers must be the better 
of these, OPT(k) = max{OPT(k – 1), vₖ + OPT(k – 2)}. ■



  

A Simple Recursive Algorithm

● Here is a simple recursive algorithm for 
computing OPT(k):
● If k = 0, return 0.
● If k = 1, return vₖ.
● Return max{OPT(k – 1), OPT(k – 2) + vₖ}

● This follows directly from the recursive 
definition of OPT.

● Question: How efficient is this 
algorithm?
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A Problem

● The number of function calls made is given by 
this recurrence:

● Can show that T(n) = 2Fₙ₊₁  – 1, where Fₙ₊₁ is 
the (n + 1)st Fibonacci number.

● Fₙ = Θ(φn), where φ ≈ 1.618... is the golden 
ratio.

● Runtime is exponential!

T(0) = 1
T(1) = 1
T(n) = T(n – 1) + T(n – 2) + 1

T(0) = 1
T(1) = 1
T(n) = T(n – 1) + T(n – 2) + 1



  

Redundantly Redoing Completed 
Work That's Already Been Done

● This algorithm is inefficient because 
different branches of the recursion 
recompute the same work.

● Total number of unique recursive calls is 
low, though the total number of recursive 
calls is large.

● Idea: Avoid redundant work!
● How can we do this?



  

A Better Approach

● Key Idea: Compute answers bottom-up rather 
than top-down.

● Specifically:
● Compute OPT(0) and OPT(1) directly.
● Compute OPT(2) from OPT(0) and OPT(1).
● Compute OPT(3) from OPT(1) and OPT(2).
● Compute OPT(4) from OPT(2) and OPT(3).
● …
● Compute OPT(n) from OPT(n–1) and OPT(n–2)



  

14 22 13 25 30 8 11
0 14 22 27 47 57 57 68

Computing Bottom-Up

OPT(0) OPT(1) OPT(2) OPT(3) OPT(4) OPT(5) OPT(6) OPT(7)

OPT(k)={
0 if k=0
vk if k=1
max {OPT (k−1) ,vk+OPT (k−2)} otherwise



  

procedure maxCoverage(list A):
    let dp be a list of size length(A) + 1,
        zero-indexed.

    dp[0] = 0
    dp[1] = A[1]
    
    for i = 2 to length(A):
        dp[i] = max(dp[i – 1], A[i] + dp[i – 2])

    return dp[length(A)]    

procedure maxCoverage(list A):
    let dp be a list of size length(A) + 1,
        zero-indexed.

    dp[0] = 0
    dp[1] = A[1]
    
    for i = 2 to length(A):
        dp[i] = max(dp[i – 1], A[i] + dp[i – 2])

    return dp[length(A)]    



  

A Great Solution

● This new algorithm runs in time O(n) and 
works in O(n) space.

● Still evaluates the same subproblems, 
but does so only once and in a different 
order.

● This style of problem solving is called 
dynamic programming.



  

Dynamic Programming

● This algorithm works correctly because of the 
following three properties:
● Overlapping subproblems: Different branches of the 

recursion will reuse each other's work.
● Optimal substructure: The optimal solution for one 

problem instance is formed from optimal solutions for 
smaller problems.

● Polynomial subproblems: The number of subproblems 
is small enough to be evaluated in polynomial time.

● A dynamic programming algorithm is one that 
evaluates all subproblems in a particular order to 
ensure that all subproblems are evaluated only 
once.



  

Recovering the Solution
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An Initial Approach

● Our original algorithm uses O(n) time 
and O(n) space.

● This new approach might use Θ(n2) space 
just storing the incremental optimal 
solutions.

● It also might take Θ(n2) time copying 
answers down the line.

● Can we do better?



  

14 22 13 25 30 8 11
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Recovering the Solution

● Once you have filled in a DP table with 
values from the subproblems, you can 
often reconstruct the optimal solution by 
running the recurrence backwards.

● This is often done with a greedy algorithm, 
since the algorithm will never get stuck 
anywhere.
● Consequence of the fact that you know the 

true values of all subproblems.



  

Reducing Space Usage

● If you only need the value of the optimal answer, 
can save space by not storing the whole table.

● For cell towers, all DP values depend only on 
previous two elements.

procedure maxCellTowers(list A):
    let a = 0
    let b = A[1]

    for i = 2 to length(A):
        let newVal = max(a + A[i], b)
        a = b
        b = newVal

    return b

procedure maxCellTowers(list A):
    let a = 0
    let b = A[1]

    for i = 2 to length(A):
        let newVal = max(a + A[i], b)
        a = b
        b = newVal

    return b



  

A Second Example:
Weighted Activity Selection



  

Weighted Activity Scheduling

● Not all fun activities are equally fun!
● Given a set of activities, which have 

associated weights, choose the set of 
non-overlapping activities that will 
maximize the total weight.

● A more realistic generalization of the 
problem we saw earlier.



  

An Algorithmic Insight

● Sort the activities in ascending order of 
finish time, breaking ties arbitrarily.

● The optimal solution either
● Includes the very last event to finish, in 

which case it chooses an optimal set of 
activities from the activities that don't 
overlap it.

● Doesn't include it, in which case it can 
choose from all other activities.



  

Formalizing the Idea

● Number the activities a₁, a₂, …, aₙ in ascending order of 
finishing time, breaking ties arbitrarily.  Let wₖ denote the 
weight of aₖ.

● Let p(i) represent the predecessor of activity ai (the latest 
activity aₖ where aₖ ends before ai starts).  If there is no such 
activity, set p(i) = 0.

● Let OPT(k) be the maximum weight of activities you can 
schedule using the first k activities.

● For any schedule S, let S(k) denote the weight of all 
activities in S numbered at most k.

● Claim: OPT(k) satisfies the recurrence

OPT (k)={0 if k=0
max {OPT (k−1) ,wk+OPT (p (k))} otherwise



  

Theorem: OPT(k) satisfies the previous recurrence.

Proof: If k = 0, OPT(0) = 0 since there are no activities.  So
consider k > 0.

If aₖ ∉ S, then S consists purely of activities drawn from 
the first k – 1 activities.  Thus S(k – 1) ≤ OPT(k – 1).  
Moreover, S(k – 1) ≥ OPT(k – 1), since otherwise we could 
replace S with an optimal solution for the first k – 1 
activities to improve upon it.  Thus S(k) = OPT(k – 1).

If aₖ ∈ S, then no activity aₘ where p(k) < m < k can be in S, 
since these activities overlap aₖ.  Since all activities in S 
other than aₖ are chosen from the first p(k) activities, 
S(p(k)) ≤ OPT(p(k)). Also, S(p(k)) ≥ OPT(p(k)) (if not, we 
could improve S by replacing these activities with an 
optimal solution for the first p(k) activities.)  Therefore, 
S(k) = wₖ + OPT(p(k)).

Since OPT(k) must be the better of these two options, we 
have that OPT(k) = max{OPT(k – 1), wₖ + OPT(p(k))} ■



  

Cut-and-Paste Arguments

● The style of argument used in the previous proof 
is sometimes called a cut-and-paste argument.
● To show optimal substructure, assume that some 

piece of the optimal solution S* is not an optimal 
solution to a smaller subproblem.

● Show that replacing that piece with the optimal 
solution to the smaller subproblem improves the 
allegedly optimal solution S*.

● Conclude, therefore, that S* must include an optimal 
solution to a smaller subproblem.

● This style of argument will come up repeatedly 
when discussing dynamic programming.



  

Evaluating the Recurrence

● As before, evaluating this recurrence 
directly would be enormously inefficient.

● Why?
● Overlapping subproblems!

● Multiple different branches of the 
computation all will make the same calls.

● Instead, as before, we can evaluate 
everything bottom-up.



  

(4) Night Snorkeling(4) Llama Hugging

(5) Gardening

(3) Skydiving

(5) Navel Gazing

(3) Fancy Dinner

(2) Salsa Dancing

(3) Bar Crawling

(7) Bonfire

(1) Tree Climbing

(3) Jazz Concert

(9) Evening Hike

#1

#2

#3

#4

#5

#6

#7

#8

#9

#10

#11

#12

0 4 4 5 5 5 7 8 8 12 12 12 12
0 1 2 3 4 5 6 7 8 9 10 11 12



  

procedure weightedActivitySelection(list A):
    let dp be an array of size length(A) + 1,
        0-indexed.

    dp[0] = 0
    
    for i = 1 to length(A):
        dp[i] = max(A[i] + dp[p(i)], dp[i – 1])

    return dp[length(A)]

procedure weightedActivitySelection(list A):
    let dp be an array of size length(A) + 1,
        0-indexed.

    dp[0] = 0
    
    for i = 1 to length(A):
        dp[i] = max(A[i] + dp[p(i)], dp[i – 1])

    return dp[length(A)]



  

(5) Navel Gazing

(7) Bonfire

#5

#9

0 4 4 5 5 5 7 8 8 12 12 12 12
0 1 2 3 4 5 6 7 8 9 10 11 12



  

Why This Works

● As before, this problem exhibits three 
properties:
● Overlapping subproblems: Many different 

recursive branches have the same 
subproblems.

● Optimal substructure: The solution for size 
n depends on the optimal solutions for 
smaller sizes.

● Polynomial subproblems: There are only 
O(n) total subproblems.

● This is why the DP solution works.



  

Next Time

● Sequence Alignment
● The Needleman-Wunsch Algorithm
● Levenshtein Distance
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