

Dynamic Programming
Part One

Announcements

● Problem Set Four due right now if you're
using a late period.
● Solutions will be released at end of lecture.

● Problem Set Five due Monday, August 5.
● Feel free to email the staff list

(cs161-sum1213-staff@lists.stanford.edu)
with questions!

● Final project information will be
announced early next week.

● A quick reminder about the Honor Code...

mailto:cs161-sum1213-staff@lists.stanford.edu

Outline for Today

● Buying Cell Towers
● A surprisingly nuanced problem.

● Dynamic Programming
● A completely different approach to

recursion.

● Weighted Activity Selection
● Breaking greedy algorithms, then fixing

them.

Example: Cell Tower Purchasing

Buying Cell Towers

137 42 95 272 52

The Cell Tower Problem

● You are given a list of town populations.
● You can build cell towers in any town as

long as you don't build towers in adjacent
cities.

● Two questions:
● What is the largest number of people you

can cover?
● How do you cover them?

14 22 13 25 30 11 9

14 22 13 25 30 11 9

Maximize what's left in here.

Maximize what's left in here.

Some Notation

● Let vₖ be the value of the kth cell tower,
1-indexed.

● Let OPT(k) be the maximum number of people
we can cover using the first k cell towers.

● If C is a set of cell towers, let C(k) denote the
number of people covered by the towers in C
numbered at most k.

● Claim: OPT(k) satisfies

OPT (k)={
0 if k=0
vk if k=1
max {OPT (k−1),vk+OPT (k−2)} otherwise

Theorem: OPT(k) satisfies the previous recurrence.

Proof: If k = 0, no people can be covered, so OPT(0) = 0. If
k = 1, we can choose tower 1 (value v₁) or no towers
(value 0), so OPT(1) = v₁. So consider k > 1.

If k ∈ C, then k – 1 ∉ C. Then all towers in C besides k are
within the first k – 2 towers, so C(k – 2) ≤ OPT(k – 2). Also,
C(k – 2) ≥ OPT(k – 2); otherwise we could replace all
towers in C except k with an optimal set of the first k – 2
towers to improve C. Thus OPT(k) = vₖ + OPT(k – 2).

If k ∉ C, all towers in C are in the first k – 1 towers. Thus
C(k – 1) ≤ OPT(k – 1). Also, C(k – 1) ≥ OPT(k – 1); if not,
we could improve C by replacing it with an optimal set of
the first k – 1 towers. Therefore, OPT(k) = OPT(k – 1).

Since the optimal solution for k towers must be the better
of these, OPT(k) = max{OPT(k – 1), vₖ + OPT(k – 2)}. ■

A Simple Recursive Algorithm

● Here is a simple recursive algorithm for
computing OPT(k):
● If k = 0, return 0.
● If k = 1, return vₖ.
● Return max{OPT(k – 1), OPT(k – 2) + vₖ}

● This follows directly from the recursive
definition of OPT.

● Question: How efficient is this
algorithm?

OPT(1) OPT(0)

OPT(2) OPT(1)

OPT(3)

OPT(1) OPT(0)

OPT(2)

OPT(4)

OPT(1) OPT(0)

OPT(2) OPT(1)

OPT(3)

OPT(5)

A Problem

● The number of function calls made is given by
this recurrence:

● Can show that T(n) = 2Fₙ₊₁ – 1, where Fₙ₊₁ is
the (n + 1)st Fibonacci number.

● Fₙ = Θ(φn), where φ ≈ 1.618... is the golden
ratio.

● Runtime is exponential!

T(0) = 1
T(1) = 1
T(n) = T(n – 1) + T(n – 2) + 1

T(0) = 1
T(1) = 1
T(n) = T(n – 1) + T(n – 2) + 1

Redundantly Redoing Completed
Work That's Already Been Done

● This algorithm is inefficient because
different branches of the recursion
recompute the same work.

● Total number of unique recursive calls is
low, though the total number of recursive
calls is large.

● Idea: Avoid redundant work!
● How can we do this?

A Better Approach

● Key Idea: Compute answers bottom-up rather
than top-down.

● Specifically:
● Compute OPT(0) and OPT(1) directly.
● Compute OPT(2) from OPT(0) and OPT(1).
● Compute OPT(3) from OPT(1) and OPT(2).
● Compute OPT(4) from OPT(2) and OPT(3).
● …
● Compute OPT(n) from OPT(n–1) and OPT(n–2)

14 22 13 25 30 8 11
0 14 22 27 47 57 57 68

Computing Bottom-Up

OPT(0) OPT(1) OPT(2) OPT(3) OPT(4) OPT(5) OPT(6) OPT(7)

OPT(k)={
0 if k=0
vk if k=1
max {OPT (k−1) ,vk+OPT (k−2)} otherwise

procedure maxCoverage(list A):
 let dp be a list of size length(A) + 1,
 zero-indexed.

 dp[0] = 0
 dp[1] = A[1]

 for i = 2 to length(A):
 dp[i] = max(dp[i – 1], A[i] + dp[i – 2])

 return dp[length(A)]

procedure maxCoverage(list A):
 let dp be a list of size length(A) + 1,
 zero-indexed.

 dp[0] = 0
 dp[1] = A[1]

 for i = 2 to length(A):
 dp[i] = max(dp[i – 1], A[i] + dp[i – 2])

 return dp[length(A)]

A Great Solution

● This new algorithm runs in time O(n) and
works in O(n) space.

● Still evaluates the same subproblems,
but does so only once and in a different
order.

● This style of problem solving is called
dynamic programming.

Dynamic Programming

● This algorithm works correctly because of the
following three properties:
● Overlapping subproblems: Different branches of the

recursion will reuse each other's work.
● Optimal substructure: The optimal solution for one

problem instance is formed from optimal solutions for
smaller problems.

● Polynomial subproblems: The number of subproblems
is small enough to be evaluated in polynomial time.

● A dynamic programming algorithm is one that
evaluates all subproblems in a particular order to
ensure that all subproblems are evaluated only
once.

Recovering the Solution

14 22 13 25 30 8 11
14 22 27 47 57 57 68

1 2 3 4 5 6 7

1 2 1
3

2
4

1
3
5

1
3
5
7

1
3
5

An Initial Approach

● Our original algorithm uses O(n) time
and O(n) space.

● This new approach might use Θ(n2) space
just storing the incremental optimal
solutions.

● It also might take Θ(n2) time copying
answers down the line.

● Can we do better?

14 22 13 25 30 8 11
14 22 27 47 57 57 68

Recovering the Solution

● Once you have filled in a DP table with
values from the subproblems, you can
often reconstruct the optimal solution by
running the recurrence backwards.

● This is often done with a greedy algorithm,
since the algorithm will never get stuck
anywhere.
● Consequence of the fact that you know the

true values of all subproblems.

Reducing Space Usage

● If you only need the value of the optimal answer,
can save space by not storing the whole table.

● For cell towers, all DP values depend only on
previous two elements.

procedure maxCellTowers(list A):
 let a = 0
 let b = A[1]

 for i = 2 to length(A):
 let newVal = max(a + A[i], b)
 a = b
 b = newVal

 return b

procedure maxCellTowers(list A):
 let a = 0
 let b = A[1]

 for i = 2 to length(A):
 let newVal = max(a + A[i], b)
 a = b
 b = newVal

 return b

A Second Example:
Weighted Activity Selection

Weighted Activity Scheduling

● Not all fun activities are equally fun!
● Given a set of activities, which have

associated weights, choose the set of
non-overlapping activities that will
maximize the total weight.

● A more realistic generalization of the
problem we saw earlier.

An Algorithmic Insight

● Sort the activities in ascending order of
finish time, breaking ties arbitrarily.

● The optimal solution either
● Includes the very last event to finish, in

which case it chooses an optimal set of
activities from the activities that don't
overlap it.

● Doesn't include it, in which case it can
choose from all other activities.

Formalizing the Idea

● Number the activities a₁, a₂, …, aₙ in ascending order of
finishing time, breaking ties arbitrarily. Let wₖ denote the
weight of aₖ.

● Let p(i) represent the predecessor of activity ai (the latest
activity aₖ where aₖ ends before ai starts). If there is no such
activity, set p(i) = 0.

● Let OPT(k) be the maximum weight of activities you can
schedule using the first k activities.

● For any schedule S, let S(k) denote the weight of all
activities in S numbered at most k.

● Claim: OPT(k) satisfies the recurrence

OPT (k)={0 if k=0
max {OPT (k−1) ,wk+OPT (p (k))} otherwise

Theorem: OPT(k) satisfies the previous recurrence.

Proof: If k = 0, OPT(0) = 0 since there are no activities. So
consider k > 0.

If aₖ ∉ S, then S consists purely of activities drawn from
the first k – 1 activities. Thus S(k – 1) ≤ OPT(k – 1).
Moreover, S(k – 1) ≥ OPT(k – 1), since otherwise we could
replace S with an optimal solution for the first k – 1
activities to improve upon it. Thus S(k) = OPT(k – 1).

If aₖ ∈ S, then no activity aₘ where p(k) < m < k can be in S,
since these activities overlap aₖ. Since all activities in S
other than aₖ are chosen from the first p(k) activities,
S(p(k)) ≤ OPT(p(k)). Also, S(p(k)) ≥ OPT(p(k)) (if not, we
could improve S by replacing these activities with an
optimal solution for the first p(k) activities.) Therefore,
S(k) = wₖ + OPT(p(k)).

Since OPT(k) must be the better of these two options, we
have that OPT(k) = max{OPT(k – 1), wₖ + OPT(p(k))} ■

Cut-and-Paste Arguments

● The style of argument used in the previous proof
is sometimes called a cut-and-paste argument.
● To show optimal substructure, assume that some

piece of the optimal solution S* is not an optimal
solution to a smaller subproblem.

● Show that replacing that piece with the optimal
solution to the smaller subproblem improves the
allegedly optimal solution S*.

● Conclude, therefore, that S* must include an optimal
solution to a smaller subproblem.

● This style of argument will come up repeatedly
when discussing dynamic programming.

Evaluating the Recurrence

● As before, evaluating this recurrence
directly would be enormously inefficient.

● Why?
● Overlapping subproblems!

● Multiple different branches of the
computation all will make the same calls.

● Instead, as before, we can evaluate
everything bottom-up.

(4) Night Snorkeling(4) Llama Hugging

(5) Gardening

(3) Skydiving

(5) Navel Gazing

(3) Fancy Dinner

(2) Salsa Dancing

(3) Bar Crawling

(7) Bonfire

(1) Tree Climbing

(3) Jazz Concert

(9) Evening Hike

#1

#2

#3

#4

#5

#6

#7

#8

#9

#10

#11

#12

0 4 4 5 5 5 7 8 8 12 12 12 12
0 1 2 3 4 5 6 7 8 9 10 11 12

procedure weightedActivitySelection(list A):
 let dp be an array of size length(A) + 1,
 0-indexed.

 dp[0] = 0

 for i = 1 to length(A):
 dp[i] = max(A[i] + dp[p(i)], dp[i – 1])

 return dp[length(A)]

procedure weightedActivitySelection(list A):
 let dp be an array of size length(A) + 1,
 0-indexed.

 dp[0] = 0

 for i = 1 to length(A):
 dp[i] = max(A[i] + dp[p(i)], dp[i – 1])

 return dp[length(A)]

(5) Navel Gazing

(7) Bonfire

#5

#9

0 4 4 5 5 5 7 8 8 12 12 12 12
0 1 2 3 4 5 6 7 8 9 10 11 12

Why This Works

● As before, this problem exhibits three
properties:
● Overlapping subproblems: Many different

recursive branches have the same
subproblems.

● Optimal substructure: The solution for size
n depends on the optimal solutions for
smaller sizes.

● Polynomial subproblems: There are only
O(n) total subproblems.

● This is why the DP solution works.

Next Time

● Sequence Alignment
● The Needleman-Wunsch Algorithm
● Levenshtein Distance

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

