
  

Intractable Problems
Part One



  

Announcements

● Problem Set Five due right now.
● Solutions will be released at end of lecture.

● Correction posted for “Guide to Dynamic 
Programming,” sorry about that!



  

Please evaluate this course on Axess.

Your feedback really makes a difference.



  

Outline for Today

● Intractable Problems
● What are the limits of efficient computation?

● Exponential-Time Algorithms
● How do you design better (i.e. less atrocious) 

algorithms for hard problems?



  

What is an efficient algorithm?



  

Defining Efficiency

● Classical definition of efficiency:

An algorithm is efficient iff it runs in   
polynomial time on a serial computer.  

● Runtimes of “efficient” algorithms:

O(n)  O(n log n)  O(n3 log2 n)  

O(n10,000,000,000)   
● Runtimes of “inefficient” algorithms:

O(2n)  O(n!)    

O(1.00000001n)   



  

Some Caveats

● Parallelism: Some problems can be solved in time 
O(logk n) time on machines with a polynomial number 
of processors.  

● Are all efficient algorithms parallelizable?

● Randomization: Some algorithms can be solved in 
expected polynomial time, or have poly-time Monte 
Carlo algorithms that work with high probability.

● Are randomized efficient algorithms efficient solutions?

● Quantum computation: Some algorithms can be 
solved in polynomial time on a quantum computer.

● Are quantum efficient algorithms efficient solutions?

These are all open problems!   



  

Tractability and Intractability

● A problem is called tractable iff there is 
an efficient (i.e. polynomial-time) 
algorithm that solves it.

● A problem is called intractable iff there 
is no efficient algorithm that solves it.

● Intractable problems are common.  
We need to discuss how to approach 
them when you come across them in 
practice.



  

NP-Completeness and NP-Hardness



  

The Complexity Class NP

● A decision problem is a problem with a 
yes/no answer.

● The class NP consists of all decision problems 
where “yes” answers can be verified efficiently.

● Examples:
● Is the kth order statistic of A equal to x?
● Is there a cut in G of size at least k?
● Is there a dominating set in G of size at most k?

● All tractable decision problems are in NP, plus a 
lot of problems whose difficulty is unknown.



  

NP-Completeness

● The NP-complete problems are 
(intuitively) the hardest problems in NP.

● Either every NP-complete problem is 
tractable or no NP-complete problem is 
tractable.
● This is an open problem: the P  ≟ NP question 

has a $1,000,000 bounty!

● As of now, there are no known 
polynomial-time algorithms for any 
NP-complete problem.



  

NP-Hardness

● A problem (which may or may not be a 
decision problem) is called NP-hard if 
(intuitively) it is at least as hard as every 
problem in NP.

● As before: no polynomial-time algorithms 
are known for any NP-hard problem.

● Vary wildly in difficulty: 3SAT and the 
halting problem are both NP-hard.



  

Combating NP-Hardness

● Under the (commonly-held) assumption 
that P ≠ NP, all NP-hard problems are 
intractable.

● However:
● This does not mean that brute-force 

algorithms are the only option.
● This does not mean that all instances of the 

problem are equally hard.
● This does not mean that it is hard to get 

approximate answers.



  

Beating Brute Force:
Traveling Salesperson Problem



  

A Hamiltonian cycle in an undirected graph G is
a simple cycle that visits every node in G.
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Given a complete, undirected, weighted graph G, 
the traveling salesperson problem (TSP) is to 
find a Hamiltonian cycle in G of least total cost.

Cost: 39
(This is the optimal 

solution)



  

TSP, Formally

● Given as input
● A complete, undirected graph G, and
● a set of edge weights, which are positive 

integers,

the TSP is to find a Hamiltonian cycle in G 
with least total weight.

● Note that since G is complete, there has to 
be at least one Hamiltonian cycle.  The 
challenge is finding the least-cost cycle.

● This problem is known to be NP-hard.



  

A Naïve Solution

● Option One: Try all possible Hamiltonian 
cycles in the graph.

● How many Hamiltonian cycles are there?
● Answer: (n – 1)! / 2

● Spend O(n) time processing each cycle.
● Total time: Θ(n!).
● This is completely impractical!



  

A Useful Observation



  

A Recurrence Relation

● Let OPT(v, S) be the minimum cost of an s – v 
path that visits exactly the nodes in S.  We 
assume v ∈ S.  Let w(u, v) be the weight of the 
edge (u, v).

● Claim: OPT(v, S) satisfies the following 
recurrence:

OPT (v ,S)={
0 if v=sandS={s }

∞ if s∉S
min

u∈S−{v }

{OPT (u,S−{v })+w(u,v)} otherwise 



  

Evaluating the Recurrence

● Evaluating this recurrence when |S|= k 
involves evaluating the recurrence on 
subproblems whose sets are of size k – 1.

● Idea: Evaluate the recurrence on sets of 
size 1, size 2, size 3, …, size n.

● Note: There are 2n possible choices of a set 
S, of which 2n-1 contain s.

OPT (v ,S)={
0 if v=sandS={s }

∞ if s∉S
min

u∈S−{v }

{OPT (u,S−{v })+w(u,v)} otherwise 



  

Evaluating the Recurrence

Let DP be an n × 2n-1 table.

Set DP[s][{s}] = 0

For k = 2 to n:

For all sets S ⊆ V where |S| = k and s ∈ S:

For all v ∈ S – {s}:

Set DP[v][S] = minu ∈ S – {v}{DP[u][S – {v}] + w(u, v)}

Return minv ≠ s{ DP[v][V] + w(v, s) }

Let DP be an n × 2n-1 table.

Set DP[s][{s}] = 0

For k = 2 to n:

For all sets S ⊆ V where |S| = k and s ∈ S:

For all v ∈ S – {s}:

Set DP[v][S] = minu ∈ S – {v}{DP[u][S – {v}] + w(u, v)}

Return minv ≠ s{ DP[v][V] + w(v, s) }

OPT (v ,S)={
0 if v=sandS={s }

∞ if s∉S
min

u∈S−{v }

{OPT (u,S−{v })+w(u,v)} otherwise 



  

Analyzing the Runtime

Let DP be an n × 2n-1 table.

Set DP[s][{s}] = 0

For k = 2 to n:

For all sets S ⊆ V where |S| = k and s ∈ S:

For all v ∈ S – {s}:

Set DP[v][S] = minu ∈ S – {v}{DP[u][S – {v}] + w(u, v)}

Return minv ≠ s{ DP[v][V] + w(v, s) }

Let DP be an n × 2n-1 table.

Set DP[s][{s}] = 0

For k = 2 to n:

For all sets S ⊆ V where |S| = k and s ∈ S:

For all v ∈ S – {s}:

Set DP[v][S] = minu ∈ S – {v}{DP[u][S – {v}] + w(u, v)}

Return minv ≠ s{ DP[v][V] + w(v, s) }



  

Storing Sets

● Each subset of V containing s can be mapped 
to a unique integer in 0, 1, 2, …, 2n-1 – 1.
● Idea: Treat the number as a bitvector where 

present elements are 1s and absent elements 
are 0s.  Exclude s from the bitvector.

● Notice: each subproblem depends on many 
subproblems, but each subproblem references 
the same set.

● In time O(n), compute the above number and 
use it to quickly index into the table.  This 
requires only O(n) overhead per subproblem.



  

To Summarize

● O(2nn) total subproblems.

● Can generate all subsets in ascending order of 
size, producing each subset in time O(n).

● Solving each subproblem requires us to look at 
O(n) different subproblems, doing O(1) work for 
each.

● Tricky part: need to be able to index subproblems 
with a set.  Can map all subsets of V to numbers in 
the range 0, 1, 2, …, 2n – 1 spending O(n) time per 
mapping.  

● Thus O(n) time per subproblem and O(2nn) 
subproblems, so total time is O(2nn2).



  

http://xkcd.com/399/

http://xkcd.com/399/


  

Why This Matters

● Compare 15! and 215 · 152:

15! ≈ 1.31 × 1012

215 · 152 ≈ 7.4 × 106                 

● Compare 25! and 225 · 252:

       25! ≈ 1.65 × 1025

225 · 252 ≈ 2.1 × 1010   

● Compare 30! and 230 · 302:

   30! ≈ 2.7 × 1032

   230 · 302 ≈ 9.7 × 1011            



  

Why This Matters

● Improving upon brute-force increases the 
sizes of the problems for which we can 
get exact answers.

● Problems exist for which we can get exact 
answers for decently large inputs using 
optimized exponential-time algorithms.

● You can use the techniques from this 
course to design exponential-time 
algorithms!



  

Next Time

● Parameterized Complexity
● Pseudopolynomial-Time Algorithms
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