
  

Intractable Problems
Part One



  

Announcements

● Problem Set Five due right now.
● Solutions will be released at end of lecture.

● Correction posted for “Guide to Dynamic 
Programming,” sorry about that!



  

Please evaluate this course on Axess.

Your feedback really makes a difference.



  

Outline for Today

● Intractable Problems
● What are the limits of efficient computation?

● Exponential-Time Algorithms
● How do you design better (i.e. less atrocious) 

algorithms for hard problems?



  

What is an efficient algorithm?



  

Defining Efficiency

● Classical definition of efficiency:

An algorithm is efficient iff it runs in   
polynomial time on a serial computer.  

● Runtimes of “efficient” algorithms:

O(n)  O(n log n)  O(n3 log2 n)  

O(n10,000,000,000)   
● Runtimes of “inefficient” algorithms:

O(2n)  O(n!)    

O(1.00000001n)   



  

Some Caveats

● Parallelism: Some problems can be solved in time 
O(logk n) time on machines with a polynomial number 
of processors.  

● Are all efficient algorithms parallelizable?

● Randomization: Some algorithms can be solved in 
expected polynomial time, or have poly-time Monte 
Carlo algorithms that work with high probability.

● Are randomized efficient algorithms efficient solutions?

● Quantum computation: Some algorithms can be 
solved in polynomial time on a quantum computer.

● Are quantum efficient algorithms efficient solutions?

These are all open problems!   



  

Tractability and Intractability

● A problem is called tractable iff there is 
an efficient (i.e. polynomial-time) 
algorithm that solves it.

● A problem is called intractable iff there 
is no efficient algorithm that solves it.

● Intractable problems are common.  
We need to discuss how to approach 
them when you come across them in 
practice.



  

NP-Completeness and NP-Hardness



  

The Complexity Class NP

● A decision problem is a problem with a 
yes/no answer.

● The class NP consists of all decision problems 
where “yes” answers can be verified efficiently.

● Examples:
● Is the kth order statistic of A equal to x?
● Is there a cut in G of size at least k?
● Is there a dominating set in G of size at most k?

● All tractable decision problems are in NP, plus a 
lot of problems whose difficulty is unknown.



  

NP-Completeness

● The NP-complete problems are 
(intuitively) the hardest problems in NP.

● Either every NP-complete problem is 
tractable or no NP-complete problem is 
tractable.
● This is an open problem: the P  ≟ NP question 

has a $1,000,000 bounty!

● As of now, there are no known 
polynomial-time algorithms for any 
NP-complete problem.



  

NP-Hardness

● A problem (which may or may not be a 
decision problem) is called NP-hard if 
(intuitively) it is at least as hard as every 
problem in NP.

● As before: no polynomial-time algorithms 
are known for any NP-hard problem.

● Vary wildly in difficulty: 3SAT and the 
halting problem are both NP-hard.



  

Combating NP-Hardness

● Under the (commonly-held) assumption 
that P ≠ NP, all NP-hard problems are 
intractable.

● However:
● This does not mean that brute-force 

algorithms are the only option.
● This does not mean that all instances of the 

problem are equally hard.
● This does not mean that it is hard to get 

approximate answers.



  

Beating Brute Force:
Traveling Salesperson Problem



  

A Hamiltonian cycle in an undirected graph G is
a simple cycle that visits every node in G.



  

10

11      

15

     6

8                          14

Given a complete, undirected, weighted graph G, 
the traveling salesperson problem (TSP) is to 
find a Hamiltonian cycle in G of least total cost.

Cost: 39
(This is the optimal 

solution)



  

TSP, Formally

● Given as input
● A complete, undirected graph G, and
● a set of edge weights, which are positive 

integers,

the TSP is to find a Hamiltonian cycle in G 
with least total weight.

● Note that since G is complete, there has to 
be at least one Hamiltonian cycle.  The 
challenge is finding the least-cost cycle.

● This problem is known to be NP-hard.



  

A Naïve Solution

● Option One: Try all possible Hamiltonian 
cycles in the graph.

● How many Hamiltonian cycles are there?
● Answer: (n – 1)! / 2

● Spend O(n) time processing each cycle.
● Total time: Θ(n!).
● This is completely impractical!



  

A Useful Observation



  

A Recurrence Relation

● Let OPT(v, S) be the minimum cost of an s – v 
path that visits exactly the nodes in S.  We 
assume v ∈ S.  Let w(u, v) be the weight of the 
edge (u, v).

● Claim: OPT(v, S) satisfies the following 
recurrence:

OPT (v ,S)={
0 if v=sandS={s }

∞ if s∉S
min

u∈S−{v }

{OPT (u,S−{v })+w(u,v)} otherwise 



  

Evaluating the Recurrence

● Evaluating this recurrence when |S|= k 
involves evaluating the recurrence on 
subproblems whose sets are of size k – 1.

● Idea: Evaluate the recurrence on sets of 
size 1, size 2, size 3, …, size n.

● Note: There are 2n possible choices of a set 
S, of which 2n-1 contain s.

OPT (v ,S)={
0 if v=sandS={s }

∞ if s∉S
min

u∈S−{v }

{OPT (u,S−{v })+w(u,v)} otherwise 



  

Evaluating the Recurrence

Let DP be an n × 2n-1 table.

Set DP[s][{s}] = 0

For k = 2 to n:

For all sets S ⊆ V where |S| = k and s ∈ S:

For all v ∈ S – {s}:

Set DP[v][S] = minu ∈ S – {v}{DP[u][S – {v}] + w(u, v)}

Return minv ≠ s{ DP[v][V] + w(v, s) }

Let DP be an n × 2n-1 table.

Set DP[s][{s}] = 0

For k = 2 to n:

For all sets S ⊆ V where |S| = k and s ∈ S:

For all v ∈ S – {s}:

Set DP[v][S] = minu ∈ S – {v}{DP[u][S – {v}] + w(u, v)}

Return minv ≠ s{ DP[v][V] + w(v, s) }

OPT (v ,S)={
0 if v=sandS={s }

∞ if s∉S
min

u∈S−{v }

{OPT (u,S−{v })+w(u,v)} otherwise 



  

Analyzing the Runtime

Let DP be an n × 2n-1 table.

Set DP[s][{s}] = 0

For k = 2 to n:

For all sets S ⊆ V where |S| = k and s ∈ S:

For all v ∈ S – {s}:

Set DP[v][S] = minu ∈ S – {v}{DP[u][S – {v}] + w(u, v)}

Return minv ≠ s{ DP[v][V] + w(v, s) }

Let DP be an n × 2n-1 table.

Set DP[s][{s}] = 0

For k = 2 to n:

For all sets S ⊆ V where |S| = k and s ∈ S:

For all v ∈ S – {s}:

Set DP[v][S] = minu ∈ S – {v}{DP[u][S – {v}] + w(u, v)}

Return minv ≠ s{ DP[v][V] + w(v, s) }



  

Storing Sets

● Each subset of V containing s can be mapped 
to a unique integer in 0, 1, 2, …, 2n-1 – 1.
● Idea: Treat the number as a bitvector where 

present elements are 1s and absent elements 
are 0s.  Exclude s from the bitvector.

● Notice: each subproblem depends on many 
subproblems, but each subproblem references 
the same set.

● In time O(n), compute the above number and 
use it to quickly index into the table.  This 
requires only O(n) overhead per subproblem.



  

To Summarize

● O(2nn) total subproblems.

● Can generate all subsets in ascending order of 
size, producing each subset in time O(n).

● Solving each subproblem requires us to look at 
O(n) different subproblems, doing O(1) work for 
each.

● Tricky part: need to be able to index subproblems 
with a set.  Can map all subsets of V to numbers in 
the range 0, 1, 2, …, 2n – 1 spending O(n) time per 
mapping.  

● Thus O(n) time per subproblem and O(2nn) 
subproblems, so total time is O(2nn2).



  

http://xkcd.com/399/

http://xkcd.com/399/


  

Why This Matters

● Compare 15! and 215 · 152:

15! ≈ 1.31 × 1012

215 · 152 ≈ 7.4 × 106                 

● Compare 25! and 225 · 252:

       25! ≈ 1.65 × 1025

225 · 252 ≈ 2.1 × 1010   

● Compare 30! and 230 · 302:

   30! ≈ 2.7 × 1032

   230 · 302 ≈ 9.7 × 1011            



  

Why This Matters

● Improving upon brute-force increases the 
sizes of the problems for which we can 
get exact answers.

● Problems exist for which we can get exact 
answers for decently large inputs using 
optimized exponential-time algorithms.

● You can use the techniques from this 
course to design exponential-time 
algorithms!



  

Next Time

● Parameterized Complexity
● Pseudopolynomial-Time Algorithms


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

