Intractable Problems Part One

Announcements

- Problem Set Five due right now.
- Solutions will be released at end of lecture.
- Correction posted for "Guide to Dynamic Programming," sorry about that!

Please evaluate this course on Axess.

Your feedback really makes a difference.

Outline for Today

- Intractable Problems
- What are the limits of efficient computation?
- Exponential-Time Algorithms
- How do you design better (i.e. less atrocious) algorithms for hard problems?

What is an efficient algorithm?

Defining Efficiency

- Classical definition of efficiency:

An algorithm is efficient iff it runs in polynomial time on a serial computer.

- Runtimes of "efficient" algorithms:

$$
\begin{gathered}
O(n) O(n \log n) O\left(n^{3} \log ^{2} n\right) \\
O\left(n^{10,000,000,000}\right)
\end{gathered}
$$

- Runtimes of "inefficient" algorithms:
$O\left(2^{n}\right) O(n!)$
$O\left(1.00000001^{n}\right)$

Some Caveats

- Parallelism: Some problems can be solved in time $\mathrm{O}\left(\log ^{k} n\right)$ time on machines with a polynomial number of processors.
- Are all efficient algorithms parallelizable?
- Randomization: Some algorithms can be solved in expected polynomial time, or have poly-time Monte Carlo algorithms that work with high probability.
- Are randomized efficient algorithms efficient solutions?
- Quantum computation: Some algorithms can be solved in polynomial time on a quantum computer.
- Are quantum efficient algorithms efficient solutions?

These are all open problems!

Tractability and Intractability

- A problem is called tractable iff there is an efficient (i.e. polynomial-time) algorithm that solves it.
- A problem is called intractable iff there is no efficient algorithm that solves it.
- Intractable problems are common. We need to discuss how to approach them when you come across them in practice.

NP-Completeness and NP-Hardness

The Complexity Class NP

- A decision problem is a problem with a yes/no answer.
- The class NP consists of all decision problems where "yes" answers can be verified efficiently.
- Examples:
- Is the k th order statistic of A equal to x ?
- Is there a cut in G of size at least k ?
- Is there a dominating set in G of size at most k ?
- All tractable decision problems are in NP, plus a lot of problems whose difficulty is unknown.

NP-Completeness

- The NP-complete problems are (intuitively) the hardest problems in NP.
- Either every NP-complete problem is tractable or no NP-complete problem is tractable.
- This is an open problem: the $\mathbf{P} \stackrel{?}{=} \mathbf{N P}$ question has a $\$ 1,000,000$ bounty!
- As of now, there are no known polynomial-time algorithms for any NP-complete problem.

NP-Hardness

- A problem (which may or may not be a decision problem) is called NP-hard if (intuitively) it is at least as hard as every problem in NP.
- As before: no polynomial-time algorithms are known for any NP-hard problem.
- Vary wildly in difficulty: 3SAT and the halting problem are both NP-hard.

Combating NP-Hardness

- Under the (commonly-held) assumption that $\mathbf{P} \neq \mathbf{N P}$, all NP-hard problems are intractable.
- However:
- This does not mean that brute-force algorithms are the only option.
- This does not mean that all instances of the problem are equally hard.
- This does not mean that it is hard to get approximate answers.

Beating Brute Force: Traveling Salesperson Problem

A Hamiltonian cycle in an undirected graph G is a simple cycle that visits every node in G .

Cost: 39
(This is the optimal solution)

Given a complete, undirected, weighted graph G, the traveling salesperson problem (TSP) is to find a Hamiltonian cycle in G of least total cost.

TSP, Formally

- Given as input
- A complete, undirected graph G, and
- a set of edge weights, which are positive integers,
the TSP is to find a Hamiltonian cycle in G with least total weight.
- Note that since G is complete, there has to be at least one Hamiltonian cycle. The challenge is finding the least-cost cycle.
- This problem is known to be NP-hard.

A Naïve Solution

- Option One: Try all possible Hamiltonian cycles in the graph.
- How many Hamiltonian cycles are there?
- Answer: ($\boldsymbol{n} \mathbf{- 1) !}$ / 2
- Spend $O(n)$ time processing each cycle.
- Total time: ©(n!).
- This is completely impractical!

A Useful Observation

A Recurrence Relation

- Let $\operatorname{OPT}(v, S)$ be the minimum cost of an $s-v$ path that visits exactly the nodes in S. We assume $v \in S$. Let $w(u, v)$ be the weight of the edge (u, v).
- Claim: $\operatorname{OPT}(v, S)$ satisfies the following recurrence:
$\operatorname{OPT}(v, S)=\left\{\begin{array}{cl}0 & \text { if } v=s \text { and } S=\{s\} \\ \min _{u \in S-\{v\}}\{\operatorname{OPT}(u, S-\{v\})+w(u, v)\} & \text { if } s \notin S \\ \text { otherwise }\end{array}\right.$

Evaluating the Recurrence

- Evaluating this recurrence when $|S|=k$ involves evaluating the recurrence on subproblems whose sets are of size $k-1$.
- Idea: Evaluate the recurrence on sets of size 1 , size 2 , size $3, \ldots$, size n.
- Note: There are 2^{n} possible choices of a set S, of which 2^{n-1} contain s.

Evaluating the Recurrence

$\operatorname{OPT}(v, S)=\left\{\begin{array}{cl}0 & \text { if } v=s \text { and } S=\{s\} \\ \infty & \text { if } s \notin S \\ \min _{u \in S-\{v\}}\{\operatorname{OPT}(u, S-\{v\})+w(u, v)\} & \text { otherwise }\end{array}\right.$

Let DP be an $n \times 2^{n-1}$ table.
Set DP[s][\{s\}] $=0$
For $k=2$ to n :
For all sets $S \subseteq V$ where $|S|=k$ and $s \in S$:
For all $v \in S-\{s\}$:

$$
\text { Set } \operatorname{DP}[v][S]=\min _{u \in S-\{v\}}\{\operatorname{DP}[u][S-\{v\}]+w(u, v)\}
$$

Return $\min _{v \neq s}\{\operatorname{DP}[v][V]+w(v, s)\}$

Analyzing the Runtime

Let DP be an $n \times 2^{n-1}$ table.
Set $\operatorname{DP}[s][\{s\}]=0$
For $k=2$ to n :
For all sets $S \subseteq V$ where $|S|=k$ and $s \in S$:
For all $v \in S-\{s\}$:
Set $\operatorname{DP}[v][S]=\min _{u \in S-\{v\}}\{\operatorname{DP}[u][S-\{v\}]+w(u, v)\}$
Return $\min _{v \neq s}\{\operatorname{DP}[v][V]+w(v, s)\}$

Storing Sets

- Each subset of V containing s can be mapped to a unique integer in $0,1,2, \ldots, 2^{n-1}-1$.
- Idea: Treat the number as a bitvector where present elements are 1s and absent elements are 0s. Exclude s from the bitvector.
- Notice: each subproblem depends on many subproblems, but each subproblem references the same set.
- In time $O(n)$, compute the above number and use it to quickly index into the table. This requires only $\mathrm{O}(n)$ overhead per subproblem.

To Summarize

- $O\left(2^{n} n\right)$ total subproblems.
- Can generate all subsets in ascending order of size, producing each subset in time $\mathrm{O}(n)$.
- Solving each subproblem requires us to look at $\mathrm{O}(n)$ different subproblems, doing $\mathrm{O}(1)$ work for each.
- Tricky part: need to be able to index subproblems with a set. Can map all subsets of V to numbers in the range $0,1,2, \ldots, 2^{n}-1$ spending $O(n)$ time per mapping.
- Thus $O(n)$ time per subproblem and $O\left(2^{n} n\right)$ subproblems, so total time is $\mathbf{O}\left(\mathbf{2}^{n} \boldsymbol{n}^{2}\right)$.

http://xkcd.com/399/

Why This Matters

- Compare 15 ! and $2^{15} \cdot 15^{2}$:

$$
\begin{aligned}
15! & \approx 1.31 \times 10^{12} \\
2^{15} \cdot 15^{2} & \approx 7.4 \times 10^{6}
\end{aligned}
$$

- Compare 25! and $2^{25} \cdot 25^{2}$:

$$
\begin{aligned}
25! & \approx 1.65 \times 10^{25} \\
2^{25} \cdot 25^{2} & \approx 2.1 \times 10^{10}
\end{aligned}
$$

- Compare 30! and $2^{30} \cdot 30^{2}$:

$$
\begin{aligned}
30! & \approx 2.7 \times 10^{32} \\
2^{30} \cdot 30^{2} & \approx 9.7 \times 10^{11}
\end{aligned}
$$

Why This Matters

- Improving upon brute-force increases the sizes of the problems for which we can get exact answers.
- Problems exist for which we can get exact answers for decently large inputs using optimized exponential-time algorithms.
- You can use the techniques from this course to design exponential-time algorithms!

Next Time

- Parameterized Complexity
- Pseudopolynomial-Time Algorithms

