
CS 161 Lecture 14 – Amortized Analysis Jessica Su (some parts copied from CLRS)

1 Bellman-Ford Algorithm

The Bellman-Ford algorithm is a way to find single source shortest paths in a graph with
negative edge weights (but no negative cycles). The second for loop in this algorithm also
detects negative cycles.

The first for loop relaxes each of the edges in the graph n − 1 times. We claim that after
n− 1 iterations, the distances are guaranteed to be correct.

Overall, the algorithm takes O(mn) time.

1.1 Correctness

To prove correctness, we reformulate the algorithm in a dynamic-programming-like way
and prove the distances are correct by induction. The pseudocode below is equivalent to the
pseudocode above, except that the code above reuses the same distance array in all iterations
of the loop, whereas the code below uses a different one every time. We wouldn’t want to
actually use the code below (it wastes a lot of space), but for correctness-proof purposes, it
is convenient to have the output of each iteration labeled with the iteration number, instead
of having to keep saying “the distance estimate on iteration k”.

1



CS 161 Lecture 14 – Amortized Analysis Jessica Su (some parts copied from CLRS)

We prove two things about this new algorithm:

1. Bellman-Ford detects negative cycles, i.e. if there is a negative cycle reachable from
the source s, then for some edge (u, v), dn−1(v) > dn−1(u) + w(u, v).

2. If the graph has no negative cycles, then the distance estimates on the last iteration
are equal to the true shortest distances. That is, dn−1(v) = δ(s, v) for all vertices v.

1.1.1 Bellman-Ford detects negative cycles

Suppose v0 → v1 → · · · → vk is a negative cycle reachable from s, where v0 = vk. Formally,
this means we have

k∑
i=1

w(vi−1, vi) < 0

We proceed by contradiction. Suppose that we have dn−1(vi) ≤ dn−1(vi−1) + w(vi−1, vi) for
all i = 1, . . . , k. Then summing up the inequality for each vertex on the cycle, we get

k∑
i=1

dn−1(vi) ≤
k∑

i=1

dn−1(vi−1) +
k∑

i=1

w(vi−1, vi)

Observe that the first two terms are the same. That’s because v0 = vk, so

k∑
i=1

dn−1(vi−1) =
k−1∑
i=0

dn−1(vi) = dn−1(v0) +
k−1∑
i=1

dn−1(vi) =
k∑

i=1

dn−1(vi)

Because those two terms are the same, we can cancel them out to get

k∑
i=1

w(vi−1, vi) ≥ 0

contradicting the supposition that v0 → v1 → · · · → vk is a negative cycle.

2



CS 161 Lecture 14 – Amortized Analysis Jessica Su (some parts copied from CLRS)

1.1.2 Bellman-Ford correctly computes distances

We want to show that if the graph has no negative cycles, then dn−1(v) = δ(s, v) for all
vertices v. By induction on k, we will prove that dk(v) is the minimum weight of a path
from s to v that uses ≤ k edges.

This will show that dn−1(v) is the minimum weight of a path from s to v that uses ≤ n− 1
edges. This is just the weight of the shortest path, because the fact that the graph has no
negative cycles means there must always be a shortest path with no repeated vertices. (If
the shortest path had a repeated vertex, we could splice out the cycle from the path and get
a path that was equally short or shorter.)

Base case: If k = 0, then dk(v) = 0 for v = s, and ∞ otherwise. So the claim is satisfied
because there is a path of length 0 from s to itself, and no path of length 0 from s to any
other vertex.

Inductive step: Suppose that for all vertices u, dk−1(u) is the minimum weight of a path
from s to u that uses ≤ k − 1 edges.

If v 6= s, let P be a shortest simple path from s to v with ≤ k edges, and let u be the node
just before v on P . Let Q be the path from s to u. Then path Q has ≤ k − 1 nodes and
must be a shortest path from s to u on k−1 edges (or else we could replace Q with a shorter
path, contradicting the fact that P is a shortest simple path on ≤ k edges). By the inductive
hypothesis, w(Q) (i.e. the weight of path Q) is dk−1(u).

In iteration k, we update dk(v) = min(dk−1(v), dk−1(u) + w(u, v)). We know that dk−1(u) +
w(u, v) = w(Q) +w(u, v) = w(P ), which shows that dk(v) ≤ w(P ). Furthermore, dk−1(v) is
the length of a shortest simple path from s to v on at most k − 1 edges, which must be at
least as large as w(P ), since P has more edges to work with.

Therefore, dk(v) = w(P ) is the minimum weight of a path from s to v that uses ≤ k edges.

2 Amortized analysis

Amortized analysis is a way of analyzing data structures so that we get tighter bounds on
the runtime of data structure operations.

In amortized analysis, we average the time required to perform a sequence of data-structure
operations over all the operations performed. With amortized analysis, we can show that
if we average over a sequence of operations, the average cost of an operation is small, even
though a single operation within the sequence might be expensive.

Specifically, we assign an amortized cost to each operation, that must satisfy the property
that in any sequence of operations, the sum of the amortized costs must be at least as large
as the sum of the true costs. The notion of amortized cost allows us to do things like say
that some operations have zero amortized cost (and have those costs “covered” by other
operations that have larger amortized costs).

3



CS 161 Lecture 14 – Amortized Analysis Jessica Su (some parts copied from CLRS)

Note that amortized analysis is not the same as average-case analysis! There is no probability
here. Amortized analysis provides a guarantee on the average performance of each operation
in the worst case scenario.

2.1 Aggregate analysis

In aggregate analysis, we determine an upper bound T (n) on the total cost of a sequence of
n operations. Then the average cost per operation is T (n)/n, and we say the amortized cost
of any operation is this average cost.

2.1.1 Stack operations

We will first consider a contrived example. Consider a stack S. The stack has two funda-
mental operations

• Push(S, x) which pushes x onto S

• Pop(S) which pops the top of S and returns the popped object

Both of these operations take O(1) time, so let’s just say (for this example) that the cost of
each operation is 1. This means the total cost of any sequence of n Push and Pop operations
is n, and the actual running time for n operations is Θ(n).

Now we add a new operation, Multipop(S, k), which removes the top k > 0 objects of
stack S, and pops the entire stack if the stack contains fewer than k objects.

The total cost of Multipop is min(s, k), where s is the number of items on the stack.

Now suppose we have a sequence of n Push, Pop, and Multipop operations on an initially
empty stack. Naively, the total cost of these operations is O(n2), because each Multipop

operation costs O(n), and there may be O(n) Multipop operations. However, this is a gross
overestimate, because the number and size of the Multipop operations are limited by the
number of Push operations that were previously applied to the stack.

Each sequence of n operations on an initially empty stack can cost at most O(n). Why?
The total number of pops (including pops within Multipop) cannot be larger than the total
number of pushes. The number of Push operations is at most n, so the total number of
operations is at most O(n).

Therefore the average cost of an operation in a sequence is O(n)/n = O(1). We can assign
the amortized cost of each operation to be the average cost.

4



CS 161 Lecture 14 – Amortized Analysis Jessica Su (some parts copied from CLRS)

2.1.2 Incrementing a binary counter

We want to implement a binary counter that counts upwards from 0, i.e.

00000000 => 00000001 => 00000010 => 00000011 => 00000100 => ...

We can implement this as an array A[0..k− 1] of bits that can either be 0 or 1. We interpret
the elements of the array as the binary number x =

∑k−1
i=0 A[i] · 2i.

We define the Increment function on this counter, as follows:

The cost of the Increment operation depends on the number of bits flipped. In the worst
case scenario (applying Increment to 11111111), it flips all the bits, which takes time Θ(k).
Thus we can say that a sequence of n Increment operations on an initially zero counter
takes time O(nk).

However, this is once again a gross overestimate, because steps where all the bits are flipped
are few and far between, and it is much more likely that only a couple bits are flipped.

You will notice that A[0] is flipped every time Increment is called. A[1] is flipped every
other time Increment is called. A[2] is flipped every fourth time, etc. So a sequence of n
operations causes A[0] to flip n times, A[1] to flip bn/2c times, A[2] to flip bn/4c times, etc.

5



CS 161 Lecture 14 – Amortized Analysis Jessica Su (some parts copied from CLRS)

In general, bit A[i] flips bn/2ic times in a sequence of n Increment operations on an initially
zero counter. So the total number of flips is

k−1∑
i=0

⌊ n
2i

⌋
< n

∞∑
i=0

1

2i
= 2n

Therefore, the worst case time for n Increment operations is O(n), and the average cost of
each operation (which we can set the amortized cost to) is O(1).

2.2 The accounting method

In this method we may assign different amortized costs to different operations. The amortized
costs do not necessarily have to correspond to the actual costs of the operations. We just
need to make sure that for any sequence of operations, the sum of the amortized costs is at
least as large as the sum of the actual costs.

2.2.1 Stack operations

Recall that the actual costs of the operations were

6



CS 161 Lecture 14 – Amortized Analysis Jessica Su (some parts copied from CLRS)

Operation Cost
Push 1
Pop 1

Multipop min(k, s)

We may assign amortized costs as follows:

Operation Cost Amortized cost
Push 1 2
Pop 1 0

Multipop min(k, s) 0

Note that all of these amortized costs are constant, so all of the operations take amortized
O(1) time.

Suppose we use a dollar bill to represent each unit of cost. When we push an item onto the
stack, we are charged 2 dollars. One of the dollars is used to pay for the actual cost of the
push, and the other dollar is stored as “credit” on the item and can be used to pay other
costs later.

Now when we pop an item off the stack, we charge the operation nothing, and we pay for
its actual cost using the “credit” stored in the stack. Since each item has a dollar of credit
stored on it, we can use that dollar to pay for the cost of popping the item.

Multipop operations can also be charged nothing. Every time we pop an item during the
execution of Multipop, we use the dollar of credit stored on that item, and use it to pay the
cost of a Pop operation. Each item in the stack has a dollar of credit stored on it, so all Pop
and Multipop operations have already been paid for.

Since each item in the stack has 1 dollar of credit stored on it, and the stack always has a
nonnegative number of items on it, the amount of credit is always nonnegative. So for any
sequence of n operations, the total amortized cost is an upper bound on the total actual
cost. Since the total amortized cost is O(n), so is the total actual cost.

2.2.2 Incrementing a binary counter

Here let us say that setting a bit to 1 has an amortized cost of 2 dollars, and setting a bit
to 0 has an amortized cost of 0 dollars. When we set the bit to 1, we use 1 dollar to pay for
the cost of setting the bit, and the other dollar is stored as “credit” for when we flip the bit
back to 0 later. At any point in time, every 1 in the counter has a dollar of credit on it, so
we can always use the credit to pay for resetting the bit to 0.

In the Increment function, all of the A[i] = 0 commands in the while loop are paid for
with credit. (For ease of illustration, we are being kind of handwavy with regard to the costs
of operations here, but if we want we can also tweak the relative amortized costs a bit so
that the i = i + 1 lines are paid for with credit as well.) So we only really have to worry
about the A[i] = 1 command. There is only one of these commands, and it costs 2 dollars.
So the Increment function costs constant amortized time.

7



CS 161 Lecture 14 – Amortized Analysis Jessica Su (some parts copied from CLRS)

For n Increment operations, the total amortized cost is O(n). Since the number of 1s in the
counter never becomes negative, the amount of credit stays nonnegative at all times, so the
total actual cost must also be at most O(n).

2.3 The potential method

Instead of storing credits on specific objects in the data structure, we can represent “credit”
as “potential energy” that is associated with the data structure as a whole.

Let

• D0 be the initial data structure

• ci be the cost of the ith operation for i = 1, . . . , n

• Di be the data structure that results after applying the ith operation to Di−1.

• Φ be the potential function (which we invent ourselves), so that Φ(Di) is the potential
associated with data structure Di. Note that Φ(Di) is a real number.

We define the amortized cost ĉi to be

ĉi = ci + Φ(Di)− Φ(Di−1)

i.e. the amortized cost is the actual cost plus the change in potential that resulted from the
operation.

This means the total amortized cost of the n operations is

n∑
i=1

ĉi =
n∑

i=1

ci + Φ(Dn)− Φ(D0)

because the other potential terms cancel out.

As long as we define our potential function in such a way that Φ(Dn) ≥ Φ(D0), the total
amortized cost gives an upper bound on the total actual cost. One way to do this is by
defining Φ(D0) to be 0 and showing that Φ(Di) ≥ 0 for all i.

Intuitively, if the potential difference Φ(Di)−Φ(Di−1) of the ith operation is positive, then we
have “overcharged” the ith operation, which builds up extra “credit”, or “potential”, in the
data structure. Whereas if the potential difference is negative, then we have “undercharged”
the operation, and the decrease in the potential pays for the actual cost of the operation.

2.3.1 Stack operations

Define the potential function Φ on a stack to be the number of objects in the stack. (This
is equivalent to our credit scheme, where we had one credit for each item in the stack.)

8



CS 161 Lecture 14 – Amortized Analysis Jessica Su (some parts copied from CLRS)

D0 is the empty stack, and Φ(D0) = 0. Furthermore, since there are never negative items in
the stack, we always have Φ(Di) ≥ 0 = Φ(D0). Therefore, the total amortized cost is always
an upper bound on the total actual cost.

Suppose the ith operation is a Push operation (on a stack containing s objects). Then the
amortized cost is ĉi = ci + Φ(Di) − Φ(Di−1) = 1 + (s + 1) − s = 2 (which is equal to the
amortized cost we got previously).

The amortized cost of a Pop operation (on a stack containing s objects) is 1+(s−1)−s = 0.

If the ith operation is Multipop(S, k), where k′ = min(k, s) objects are popped off the
stack, the actual cost of the operation is k′ and the potential difference is −k′. So the
amortized cost is k′ − k′ = 0.

Thus, the amortized cost of each operation is O(1), and the total amortized cost of n oper-
ations is O(n). So the actual cost of n operations is O(n).

2.3.2 Incrementing a binary counter

Define the potential of the counter Φ(Di) to be the number of 1’s in the counter after the
ith operation.

Suppose the ith Increment operation resets ti bits. The actual cost of the operation is
≤ ti + 1 (because in addition to resetting ti bits, it sets at most one bit to 1).

If Φ(Di) = 0, then the ith operation resets all k bits, so Φ(Di−1) = ti = k. If Φ(Di) > 0,
then Φ(Di) = Φ(Di−1) − ti + 1. Either way, Φ(Di) ≤ Φ(Di−1) − ti + 1, so the potential
difference for the ith operation is ≤ 1− ti.

So the amortized cost is ĉi + Φ(Di)− Φ(Di−1 ≤ (ti + 1) + (1− ti) = 2.

Since Φ(D0) = 0 (when the counter starts at 0) and Φ(Di) ≥ 0 for all i, the total amortized
cost of n operations is an upper bound on the total actual cost, so the actual cost is O(n).

Note that if the counter does not start at 0, Φ(D0) 6= 0. But we can still say that

n∑
i=1

ĉi =
n∑

i=1

ci + Φ(Dn)− Φ(D0)

i.e.

n∑
i=1

ci =
n∑

i=1

ĉi − Φ(Dn) + Φ(D0)

≤ 2n− Φ(Dn) + Φ(D0)

Remember that Φ(D0) ≤ k, since there are only k bits in the counter total. So as long
as k = O(n), the total actual cost is O(n). Therefore, if we execute at least n = Ω(k)
Increment operations, the total actual cost is O(n), regardless of whether the counter starts
from 0.

9


