
Lecture 15 – Minimum Spanning Trees Jessica Su (some parts copied from CLRS)

Today we will be covering methods for finding minimum spanning trees.

Definition: A tree is a connected graph with no cycles.

Definition: Suppose we have a connected, undirected graph G. A spanning tree of G is a
subset of the edges that connects all the vertices and has no cycles.

Definition: A minimum spanning tree is a spanning tree that has the lowest possible weight.
That is, the sum of the weights of the edges must be as low as possible.

1 General approach for finding minimum spanning trees

Our two algorithms (Kruskal’s and Prim’s) both use a greedy strategy, where on each iter-
ation we add one of the graph’s edges to the minimum spanning tree. We do this until we
have n − 1 edges. (Note that there may be other ways of constructing minimum spanning
trees that do not take advantage of this approach.)

On each iteration, we claim that our current set of edges A is a subset of a minimum spanning
tree. The goal is to prove that the new edge is a safe edge, meaning we can add it to the
edge set and still have it be a subset of some minimum spanning tree.

Note that unless A already has n− 1 edges, we can always find a safe edge for A, because A
is a subset of a minimum spanning tree, and we can theoretically use one of the other edges
in the tree as a safe edge (we just might not know what those edges are yet).

1.1 Definitions

Definition: A cut (S, V −S) of an undirected graph is a partition of the set of vertices into
the sets S and V − S.

1



Lecture 15 – Minimum Spanning Trees Jessica Su (some parts copied from CLRS)

Definition: A cut respects a set of edges A if no edge in A crosses the cut. That is, none
of the edges have one vertex in S and the other vertex in V − S.

Definition: An edge is a light edge satisfying a property if it has the smallest weight out
of all edges that satisfy that property.

Specifically, an edge is a light edge crossing a cut if it has the smallest weight out of all edges
that cross the cut.

1.2 Rule for recognizing safe edges

Theorem: Let G be a connected, undirected graph with a real valued weight function w
defined on its edges. Let A be a subset of the edges that is included in some minimum
spanning tree, and let (S, V − S) be any cut that respects A. Let (u, v) be a light edge
crossing the cut. Then (u, v) is a safe edge for A.

Corollary: Consider the connected components in the forest formed by the vertex set and
the edges A. Any light edge connecting two components in the forest is a safe edge for A.

The corollary follows because we can create a cut (S, V −S), where S is just one component,
and V −S is the rest of the graph. This cut respects A, and (u, v) is a light edge for the cut.

2



Lecture 15 – Minimum Spanning Trees Jessica Su (some parts copied from CLRS)

You may visualize our minimum spanning tree algorithms as follows. We slowly build up
our spanning tree one edge at a time. At the start of our algorithm, our set A has no edges,
and the connected components in the graph GA = (V,A) are just disconnected vertices. At
any point in the algorithm, all of the components in this graph are trees (since if they had
cycles, they could not be subsets of a spanning tree). Any safe edge for A must merge two
trees in GA (because otherwise it would create a cycle).

Our algorithms must iterate n−1 times, since there must be exactly n−1 edges in a spanning
tree.

1.2.1 Proof of theorem

We will use a cut-and-paste argument (pay attention since this sort of argument is used a
lot).

Let T be a minimum spanning tree that includes A, and suppose (u, v) is a light edge crossing
the cut (S, V − S). If T contains the edge (u, v), we are done, so let’s assume T does not
contain (u, v). Then we construct another minimum spanning tree T ′ as follows:

Recall that the minimum spanning tree T must connect all the vertices in the graph, so there
must be a path p from u to v that lies entirely in T , and does not include (u, v). We can
combine this path with the edge (u, v) to form a cycle.

3



Lecture 15 – Minimum Spanning Trees Jessica Su (some parts copied from CLRS)

Since u and v are on opposite sides of the cut, at least one of the edges on the path p must
cross the cut. We call this edge (x, y). (Observe that (x, y) is not in A, since the cut respects
A.)

Now we can replace (x, y) with (u, v) to form a new tree, T ′ = T − {(x, y)} ∪ {(u, v)}. We
show that T ′ is a minimum spanning tree.

Observe that T ′ is a spanning tree, since there are still n−1 edges, and all of the vertices are
still connected to each other, since any path that would have used the edge (x, y) can use
the path through (u, v) instead. Furthermore, T ′ has smaller total weight than T , because
(u, v) is a light edge crossing the cut, and (x, y) also crosses the cut. So w(u, v) ≤ w(x, y),
and w(T ′) = w(T ) − w(x, y) + w(u, v) ≤ w(T ). Since T is a minimum spanning tree, T ′

must also be a minimum spanning tree.

Finally, we show that (u, v) is a safe edge for A. Since A ⊆ T and (x, y) /∈ A, we have
A ⊆ T ′. So A ∪ {(u, v)} ⊆ T ′, and since T ′ is a minimum spanning tree, (u, v) is safe for A.

2 Prim’s algorithm

2.0.1 Idea

At any point, the graph GA is composed of a single tree and a bunch of isolated vertices.
Every step adds the smallest possible edge that connects A to an isolated vertex. (Note that
this is always a safe edge for A.)

To get the smallest possible edge, we can use a min-priority queue, like in Dijkstra’s algo-
rithm. The queue contains all the vertices that aren’t in the tree, and each vertex’s key is
the minimum weight of any edge connecting that vertex to a vertex in the tree. (If there is
no such edge, the key is ∞.)

Then to grow the tree, we extract the minimum vertex u from the queue (adding the edge
between u and its parent, to be defined later). Then after putting that edge in the tree, we
must decrease the keys of u’s neighbors, because now there are additional edges connecting
those neighbors to vertices in the tree. If we decrease the key of a neighbor, then the best
way to get to that neighbor is through u, so we set the neighbor’s parent to u.

4



Lecture 15 – Minimum Spanning Trees Jessica Su (some parts copied from CLRS)

2.0.2 Algorithm

5



Lecture 15 – Minimum Spanning Trees Jessica Su (some parts copied from CLRS)

2.0.3 Runtime

The runtime depends on how we implement the priority queue. If we use an ordinary heap
(like the one described in class), we use one call to BuildMinHeap, which takes O(n) time.
There are n calls to ExtractMin, each of which takes O(log n) time, so those calls take
O(n log n) time total. Furthermore, there are m calls to DecreaseKey (across all iterations
of the for loop, so those calls take O(m log n). Because the original graph is connected,
m ≥ n− 1, so the runtime is O(n log n+m log n) = O(m log n).

If we use Fibonacci heaps, Insert takes O(1) time, ExtractMin takes O(log n) amortized
time and DecreaseKey takes O(1) amortized time. So in total this takes O(m+ n log n).

3 Disjoint set data structures

Another minimum spanning tree algorithm, Kruskal’s algorithm, uses disjoint-set data struc-
tures. A disjoint-set data structure maintains a collection {S1, . . . , Sk} of disjoint sets. Each
set is identified by a “representative,” which is some member of the set.

Disjoint-set data structures must support the following operations:

• MakeSet(x): Create a new set containing x and only x. (x should not be in any other
set, since the sets are disjoint.)

• Union(x, y): Create a new set that is the union of the sets containing x and y.
Destroy the old sets.

• FindSet(x): Return a pointer to the representative of the set containing x.

3.1 Example

One application of disjoint-set data structures is finding the connected components of an
undirected graph.

6



Lecture 15 – Minimum Spanning Trees Jessica Su (some parts copied from CLRS)

3.2 Simple implementation

Represent each set by its own linked list. Each object in a linked list contains a set member, a
pointer to the next object in the list, and a pointer back to the set object. The representative
of the set is the object that “head” points to.

MakeSet(x) creates a new linked list whose only object is x, which runs in O(1) time.
FindSet(x) also takes O(1) time, since you just have to follow the pointer from x back to
the set object and then return the member in the object that “head” points to.

Union(x, y) may take considerably longer. We perform Union(x, y) by appending y’s list
onto the end of x’s list, and the representative of x’s list becomes the representative of the
resulting set. We use the “tail” pointer for x’s list to quickly find where to append y’s list.
The slow step is that for each of the objects originally in y’s list, we have to update their set
pointers to point to x’s set object. This takes time linear in the length of y’s list.

We can’t amortize away the slowness either – consider the sequence of 2n − 1 operations
where we create n sets and then unionize all of them in the “wrong order”:

7



Lecture 15 – Minimum Spanning Trees Jessica Su (some parts copied from CLRS)

This sequence takes Θ(n2) time, or Θ(n) time per operation.

Note that we can shorten the runtime by always appending the shorter list onto the longer
list. Then you can show that a sequence of m MakeSet, Union, and FindSet operations, n
of which are MakeSet operations, takes O(m+ n log n) time. We won’t cover this right now
but the proof is in the textbook.

The best known runtime for the union-find operations is amortized O(α(n)), where α(n) is
the inverse Ackermann function. Note that α(n) ≤ 4 for all n less than the number of atoms
in the universe.

4 Kruskal’s algorithm

4.0.1 Algorithm

At any point, the connected component forest is composed of several trees. Choose the
lightest edge that connects two of the trees, and add it to the tree.

It is easiest to do this if we sort all of the edges by weight in advance and consider them
in order. Then use a disjoint-set data structure to test whether an edge connects two
components, and join the components if so.

8



Lecture 15 – Minimum Spanning Trees Jessica Su (some parts copied from CLRS)

You should convince yourself that one pass through Kruskal’s algorithm suffices to add
exactly n− 1 edges to the graph. First of all, every time we add an edge, it must be a safe
edge, so the for loop must only add edges belonging to the spanning tree. However, if we
went back through the for loop again, we would not be able to add any more edges, because
every edge was either added already, or we already decided that adding it would form a
cycle. So the for loop must add exactly n− 1 edges.

9



Lecture 15 – Minimum Spanning Trees Jessica Su (some parts copied from CLRS)

10



Lecture 15 – Minimum Spanning Trees Jessica Su (some parts copied from CLRS)

4.0.2 Runtime

The runtime of Kruskal’s algorithm depends on how we implement the disjoint set data
structure. Observe that we make n calls to MakeSet, 2m calls to FindSet, and n − 1 calls
to Union. With the linked list implementation, these would take O(n2), since Union takes
O(n) time and the other operations take O(1) time. In addition, sorting the list takes
O(m logm) = O(m log n) time.

With the fastest implementation, the union-find operations take O((n+m)α(n)), and sorting
the list still takes O(m log n) time. Since α(n) = O(log n) (and is actually far less than
O(log n)), we can represent the runtime of the algorithm by O(n log n+m log n). Since G is
connected, m ≥ n− 1, so the runtime can be represented as O(m log n).

11


