
CS 161 Lecture 8 - Binary Search Trees Jessica Su (some parts copied from CLRS)

1 Binary search trees

A binary search tree is a data structure composed of nodes. Each node has a key, which
determines the node’s position in the tree. (The node may also have a “value” field, where
additional data is stored.)

The top of the tree is the “root,” and the nodes contain pointers to other nodes. Specifically,
each node has a left child, a right child, and a parent (some of which may be NIL). In Figure
12.1(b), the left child of 7 is 6 and the left child of 5 is NIL. Also, the parent of 5 is 2, and
since 2 is the root of the tree, the parent of 2 is NIL.

All nodes in a binary search tree must satisfy the binary search tree property:

Binary-search-tree property: Let x be a node in a binary search tree. If y is a node
in the left subtree of x, then y.key ≤ x.key. If y is a node in the right subtree of x, then
y.key ≥ x.key.

This means, for example, that the following tree is not a binary search tree:

1



CS 161 Lecture 8 - Binary Search Trees Jessica Su (some parts copied from CLRS)

Even though 2 ≤ 7 ≤ 9 and 3 ≤ 5 ≤ 7, this tree does not satisfy the binary search tree
property, because 2 is in the right subtree of 5, despite being smaller than 5.

1.0.1 Runtime

Binary search trees support several operations, including Search, Minimum, Maximum, Pre-
decessor, Successor, Insert, and Delete. These operations run in time proportional to the
height of the tree. In the best case scenario, the tree is a complete binary tree, and the
height of the tree is Θ(log n). In the worst case scenario, the tree is a linear chain, so the
height of the tree is Θ(n).

Later we will talk about red black trees, which are a type of balanced binary search tree.
In red black trees, the height of the tree is guaranteed to be logarithmic, and we modify the
Insert and Delete operations so the logarithmic height is maintained at all times.

1.0.2 Inorder tree walk

Example: Given a binary search tree, write a program that prints the keys in the binary
search tree in sorted order.

Answer: To run the program, execute Inorder-Tree-Walk(T.root).

Runtime: This program runs in Θ(n) time. InorderTreeWalk visits all n nodes of the
subtree, so T (n) = Ω(n). To prove T (n) = O(n), we use the substitution method.

InorderTreeWalk takes constant time on an empty subtree, so T (0) = c.

2



CS 161 Lecture 8 - Binary Search Trees Jessica Su (some parts copied from CLRS)

Suppose that InorderTreeWalk is called on a node x whose left subtree has k nodes and
whose right subtree has n− k− 1 nodes. Then the time to perform InorderTreeWalk(x) is
bounded by T (n) ≤ T (k) + T (n− k − 1) + d.

Our “guess” will be T (n) ≤ (c+ d)n+ c. (We make the guess a bit more complicated than
normal to make the math work out.) Plugging in the base case, n = 0, we get T (0) ≤ c, as
required. For n > 0, we have

T (n) ≤ T (k) + T (n− k − 1) + d

= ((c+ d)k + c) + ((c+ d)(n− k − 1) + c) + d

= (c+ d)n+ c− (c+ d) + c+ d

= (c+ d)n+ c

which completes the proof that T (n) = O(n).

1.1 Querying a binary search tree

1.1.1 Search

The Search routine searches for a node in the tree with a given key. First it compares the
node to the root. If the keys are the same, it just returns that node. If the node’s key is
smaller, then the result (if it exists) will be in the left subtree, by the binary search tree
property. If the node’s key is larger, then the result (if it exists) will be in the right subtree.

3



CS 161 Lecture 8 - Binary Search Trees Jessica Su (some parts copied from CLRS)

Eventually, we either find the node, or we reach NIL, which tells us that the node can’t be
found in the tree.

Exercise: Trace the execution of the program when we search for the key 13 in Figure 12.2.

The Search routine can also be written iteratively, if we “unroll” the recursion and replace
it with a while loop. Here we are literally moving down the tree, instead of calling Search

on smaller and smaller subproblems.

The Search routine runs in time O(h), where h is the height of the tree, because the loop is
executed at most O(h) times.

1.1.2 Minimum/maximum

To find the minimum element in a tree, we start at the root, and take its left child. Then
we look at the left child of that left child, etc. We keep going until we reach NIL, and then
we return the last non-NIL node in the sequence.

This pseudocode generalizes this procedure to find the minimum element in a subtree rooted
at a given non-NIL node x.

This is correct because on any iteration of the loop:

1. If x has no left subtree, then x has the smallest key in the subtree rooted at x.

2. If x has a left subtree, then the smallest key in the subtree rooted at x must be in the
left subtree of x, by the binary search tree property.

The Minimum and Maximum functions also run in O(h) time.

1.1.3 Successor/predecessor

The successor of a node is the smallest node greater than that node (when ordered by key).
To find the successor s of x, we look at the InorderTreeWalk routine, which prints s right
after printing x.

4



CS 161 Lecture 8 - Binary Search Trees Jessica Su (some parts copied from CLRS)

From the code you can see there are two cases.

x has a right subtree: If x has a right subtree, we call InorderTreeWalk on the right
child immediately after printing x. The first element it will print is the minimum element
in the right subtree of x, so we just return TreeMinimum(x.right).

x has no right subtree: If x has no right subtree, we exit the recursive call and go back
to the parent node’s recursive call. If x was the left child of its parent, InorderTreeWalk
immediately prints the parent’s key, so the parent is the successor. If x was the right child
of its parent, then the parent’s recursive call is done, and we proceed to the grandparent’s
recursive call. In fact we proceed all the way up the tree until we find a node that is the left
child of its parent, and then we return that parent. (If we don’t find any such nodes, then
x had no successor.)

This code once again runs in O(h) time, because TreeMinimum runs in O(h) time, and it
also takes O(h) time to follow all of the parent pointers.

1.2 Insertion

To insert a node into the tree, we start at the root, and progress downwards until we find a
blank space to put the node into. When we find an appropriate space, we replace the NIL

with the node, and update pointers.

Note that in addition to the node we are considering (x), we also keep track of x’s parent
node (y) at all times. This is because once x = NIL we must update y’s pointers. Ordinarily
we would be able to make a call to x.parent, but in this case, NIL.parent does not point
to a unique parent node.

5



CS 161 Lecture 8 - Binary Search Trees Jessica Su (some parts copied from CLRS)

1.3 Deletion

To delete a node z from the tree, we consider several cases. (Note that in the figure, the
successor s is labeled y.)

1. z has no children. In this case, we just remove z, by having its parent point to NIL.

2. z has one child. Here we switch things so the parent points to z’s child, instead of
pointing to z.

3. z has two children. Here we want to replace z with its successor s (which must be
somewhere in the right subtree) because s is smaller than all the other nodes in z’s
right subtree, so the ordering of nodes would be preserved. However, doing so might

6



CS 161 Lecture 8 - Binary Search Trees Jessica Su (some parts copied from CLRS)

mess with the connections of s.

Fortunately, s cannot have a left child, because then that child would be greater than
z (since it’s in the right subtree of z) but less than s (since it’s in the left subtree of
s). This means that if we mess around with s, we only have one child to worry about,
and not two. To deal with the child, we consider two cases:

• If s is the direct right child of z, then we lose nothing by moving s and s’s right
child “up by one”. Here s takes z’s place in the tree, and s’s left subtree becomes
z’s left subtree, while s’s right subtree stays the same.

• Otherwise, we pretend we’re deleting s (replacing s with s’s right child). And
then we allow s to take z’s place in the tree.

The deletion routine takes O(h) time, because everything takes constant time, except for
the part where we find the successor of z.

7



CS 161 Lecture 8 - Binary Search Trees Jessica Su (some parts copied from CLRS)

To write the pseudocode for this routine, we consider the routine Transplant which replaces
the subtree rooted at node u with the subtree rooted at node v.

8



CS 161 Lecture 8 - Binary Search Trees Jessica Su (some parts copied from CLRS)

2 Red black trees

So far all these operations have run in O(h) time, where h is the height of the tree. This
could potentially take O(n) time, if the tree is a linear chain. We attempt to mitigate this by
using red black trees. A red-black tree is a balanced binary search tree, which ensures that
its height is logarithmic in n, and all of these operations run in O(log n) time. Red-black
trees guarantee that no simple path from the root to a leaf is more than twice as long as any
other, which is how the tree becomes balanced.

The query operations (Search, Minimum, Maximum, Successor, and Predecessor) work the
same on red-black trees as they do on regular binary search trees. However, the Insert and
Delete operations have to be modified to preserve the “red-blackness” of the tree. (These
modifications don’t add anything to the asymptotic runtime.)

2.1 Red black tree properties

A red-black tree is a binary search tree that satisfies the following properties:

1. Every node has a color, which is either red or black.

2. The root is black.

3. Every leaf is black. (Note that we connect the original leaves of the tree to NIL nodes
to avoid boundary condition issues, so we are really just saying all of the NILs are
black.)

4. If a node is red, then both its children are black.

5. For each node, all simple paths from the node to descendant leaves contain the same
number of black nodes.

The following figure is a red black tree.

9



CS 161 Lecture 8 - Binary Search Trees Jessica Su (some parts copied from CLRS)

Note that we will generally avoid drawing NIL nodes (to save space), but we should remember
that they exist. It becomes very important when we are trying to count the number of nodes
on each path from the root to a leaf. The following figure is not a red-black tree. It looks
like there is only one path from the root to a leaf, but in reality, the leaves are the hidden NIL

nodes shown on the right, and not all paths from the root to a leaf have the same number
of black nodes.

10



CS 161 Lecture 8 - Binary Search Trees Jessica Su (some parts copied from CLRS)

Recall that all simple paths from a node to descendant leaves must contain the same number
of black nodes. We call the number of black nodes on any simple path from, but not including,
a node x down to a leaf the black-height of the node, denoted bh(x). The black-height of
the tree is just the black height of the root.

All NILs have black-height 0, and the black-height of the tree in Figure 13.1 is 3.

Because each red node must have all black children, the fact that all paths from the root
to a leaf have the same number of black nodes also places a constraint on the total length
of each path. Specifically, the lengths of each path have to be within a factor of 2 of each
other. This gives rise to the logarithmic bound on the height of the tree:

Lemma: A red-black tree with n internal nodes has height at most 2 log(n+ 1).

Proof: We claim that the subtree rooted at any node x has at least 2bh(x)−1 internal nodes.
We show this by induction. If the height of x is 0, then x is a leaf (i.e. x is a NIL), and the
subtree rooted at x contains at least 2bh(x) − 1 = 0 internal nodes.

For the inductive step, consider a node x that has positive height, and assume that the
statement is true for all nodes with height less than x (strong induction!). Note that x must
have two children because we use NILs to “fill the gaps” in the tree. Then each child has
a black height of either bh(x) (if x is red) or bh(x) − 1 (if x is black). By the inductive
hypothesis, each child has at least 2bh(x)−1 − 1 internal nodes. Thus, the subtree rooted at
x contains at least (2bh(x)−1 − 1) + (2bh(x)−1 − 1) + 1 = 2bh(x) − 1 internal nodes, proving the
claim.

Finally, since all red nodes must have two black children, at least half the nodes on any simple
path from the root to a leaf (not including the root) must be black. Therefore, bh(x) ≥ h/2,
and n ≥ 2h/2 − 1. Simplifying this, we get h ≤ 2 log(n+ 1).

2.2 Rotations

These proofs only help if the tree always satisfies the red-black properties. If you insert
nodes in the normal way, it will mess up the tree. So we need to find a way to fix the tree
up after inserting a node in order to preserve the red-blackness of the red-black tree.

11



CS 161 Lecture 8 - Binary Search Trees Jessica Su (some parts copied from CLRS)

The key is an operation called rotation, which preserves the ordering of nodes in the tree
while correcting an imbalance in height.

We have left rotations, which rotate a subtree “counterclockwise,” and right rotations, which
rotate the subtree “clockwise.” Here we discuss left rotations on a node x, and in order to
do a left rotation we assume that x’s right child is not NIL.

To understand left rotation, look at the right half of the figure. We know that

1. x is less than y.

2. Anything in x’s left subtree α is less than both x and y.

3. Anything in y’s left subtree β is greater than x, but less than y.

4. Anything in y’s right subtree γ is greater than both x and y.

The left-rotation operation, depicted in the figure, preserves all these properties (and pre-
serves the ordering of all the nodes in the tree). Specifically, since x is now y’s left child, the
tree still says x is less than y. And since β is now the right subtree of x, but is part of the
left subtree of y, the tree still says everything in β is greater than x, and less than y.

The pseudocode for LeftRotate just hooks things up as depicted in the figure:

12


