Lecture 11 Dijkstra’s Algorithm, Amortized Analysis, Bellman-Ford Algorithm
Scribes: Himanshu Bhandoh (2015), Virginia Williams, and Date: November 2, 2016
Anthony Kim (2016)

1 Implementation of Dijkstra’s Algorithm

In the last lecture, we studied Dijkstra’s algorithm that solves the single source shortest paths problem in
directed graphs with nonnegative edge weights and proved its correctness. In this lecture, we study different
implementations of Dijkstra’s algorithm and analyze corresponding runtimes.

Let G = (V,E) be a directed graph with n nodes and m edges with nonnegative weights. An edge
(z,y) € E has weight c¢(z,y). The key idea behind Dijkstra’s algorithm is to maintain an estimate of the
current shortest path ending at v for v € V' over the iterations. More specificially, the algorithm computes
an estimate of the distance of v from the source s, d[v], such that -

1. At any point in time, d[v] > d(s,v), and
2. When v is finished, d[v] = d(s,v).

Algorithm 1: Dijkstra(G = (V, E), s)
d[v] <~ c0,Yv € V' // set initial distance estimates
// to maintain paths: set 7w(v) <—nil for all v, m(v) represents the predecessor of v
d[s] «+ 0
F <« {v|VYveV} //F isthe set of nodes that are yet to achieve final distance estimates
D« 0 // D is the set of nodes that have achieved final distance estimates

while F # () do
T < element in F' with minimum distance estimate

for (z,y) € E do
d[y] + min{d[y], d[z] + ¢(x,y)} // “relax” the estimate of y
L // to maintain paths: if d[y] changes, then 7(y) + «
F « F\{z}
D+ Du{z}

Note that the for loop is over all edges incident on node z. 7(-) is used to store the shortest paths found
and m(v) represents the predecessor of v on the shortest path from s to v.

For an example run of Dijkstra’s algorithm, please refer to the lecture slides or CLRS.

We implement Dijkstra’s algorithm with a priority queue to store the set F', where the distance estimates
are the keys. The initialization step takes O(n) operations to set n distance estimate values to infinity and
0. In each iteration of the while loop, we make a call to find the node z in F with the minimum distance
estimate (via, say, FindMin operation). Then, we relax each edge leaving x (via DecreaseKey). We remove
node z (via DeleteMin) and add it to D. In total, there are n calls to FindMin and n calls to DeleteMin
since nodes are never re-inserted into F'. Similarly, there will be m calls to DecreaseKey to relax the edges
since each edge will be relaxed at most once.

Depending on how quickly our priority queue can support FindMin, DeleteMin, and DecreaseKey oper-
ations, the total runtime of Dijkstra’s algorithm is on the order of

n- (TFindMin(n) + TDeleteMin(n)) +m - TDecreaseKey(n)~

We consider the following implementations of the priority queue for storing F":



e Store F' as an array:
Each slot corresponds to a node and stores the distance d[j] if j € F, or NIL otherwise. DecreaseKey
runs in O(1) as nodes are indexed. FindMin and DeleteMin run in O(n) as the array is not sorted and
we have to go through the whole array. The total runtime is O(m + n?) = O(n?).

e Store I as a red-black tree:
All operations run in O(logn) time. We implement DecreaseKey by deleting and re-inserting with the
new key. The total runtime is O((m+n)logn). If graph G is sparse with few edges, then the red-black
tree implementation is faster than the array implementation. However, it can be slower when G is
dense with m = ©(n?).

e Store F' as a Fibonacci heap:
Fibonacci heaps are a complex data structure which is able to support the operations Insert in
O(1), FindMin in O(1), DecreaseKey in O(1) and DeleteMin in O(logn) “amortized” time, over a
sequence of calls to these operations. The meaning of amortized time in this case is as follows: starting
from an empty Fibonacci heap, any sequence of operations that includes a Insert’s, b FindMin’s, ¢
DecreaseKey’s and d DeleteMin’s take O(a+b+c+dlogn) time. The total runtime is O(m+nlogn).

2 Amortized Time

Note the runtimes listed for the operations of Fibonacci heaps are not worst-case runtimes. Instead, they
are, what we call amortized runtimes. We say an operation on a data structure takes amortized ¢(n) time
if starting from an empty data structure, performing the operation L times takes O(L X t(n)) time in total.
This means the runtime of the operation is O(#(n)) when averaged over the sequence of L instances of the
operation. Each individual operation call may take much more than ¢(n) time, but this is compensated by
many cheap operation calls (that take much less than t(n) time).

We analyze the amortized cost of incrementing a binary counter by one when the count is represented in
binary. Consider a b-bit counter which starts at 0 (i.e. b 0’s). In each increment operation, we update the
counter’s bits correspondingly by flipping some bits from 0 to 1, or vice versa.

Some of the increment operations may take 2(b) time. For example, an increment operation can require
carrying b bits:

11111111

+1
= 100000000

Other increment operations can take O(1) time:

10000000
+1
= 10000001

All this said, we can show the amortized cost of the increment operation on a binary counter is O(1).
Even though some increments take time linear in the number of bits, if we do n increment operations to the
counter starting from the all 0s, each operation takes O(1) time on average.

Claim 1. The total time to increment a binary counter n times is O(n).

We use what is known as the accounting method to prove this claim. Each nonzero bit in the binary
counter will get a “credit” obtained from earlier increment operations that will then be used to pay for
later expensive operations. More specifically, we will maintain the invariant that every 1 in the binary
representation has a “credit”, which we represent as @, associated with it.



Let = be the binary counter. If we start with an “empty” integer — that is 0 — then clearly all 1’s have a
credit as there are no 1’s. Assume that all the 1’s of x have a credit at the start of an increment operation.
In each increment operation, we know the first addition will require constant work for which the addition
operation will be charged with. We actually “charge” the addition operation two credits, represented as G,
to the new 1 to be added:

x=19190
+
1@@

Now we start adding. We will maintain the invariant that any “carry” bit will have two @ credits. For
completeness, we’ll call the original 1 to be added to x a “carry” as well.

Now, at each point we are adding a carry bit to a bit in x. If the carry bit is 0, we do nothing and stop.
If the carry bit to be added to the i-th bit is 1 and the é-th bit of 2 is 0 (Note ¢ starts at 0), then one of the
@ credits of the carry bit is used to store 1 in z[i] and the other remains on this new 1 as @:

191%0
+1@@
— 169 1€B 1@
At this point, the carry for the i 4+ 1-st slot is 0 and we can stop the addition.
When the carry bit to be added to the i-th bit is 1 and «[¢] is 1, however, we will get a non-zero carry
bit for the i + 1-st position. In this case, we will use one @ from the 1 stored in x[é] to pay for storing a 0
in z[¢] (doing the carry addition), and we’ll move the two @s of the carry bit to the new carry bit for the

i + 1-st position. This maintains the invariant that all 1s in z have a credit and all carries have two credits.
For example, consider an increment operation on the binary counter z = 0111:

0191919
A new carry bit is formed:
1€B€B
=0191%0
A new carry bit is formed:
1@@
= 01900
A new carry bit is formed:
16969
=0000
= 19000 ,
arriving at = 1000.
All carry propagations of additions are for free because they are paid for by the credits accumulated in
previous additions of 0’s and 1’s. There are O(n) credits overall, two for each increment operation. Thus,
the total runtime is O(n). The credit system allows you to pay for later long operations by depositing credits

from previous short operations. Some operations are long, but over all n increment operations, the total
work is O(n). It follows that the increment operation takes amortized O(1) time.



3 Negative Edge Weights

Note that Dijkstra’s algorithm solves the single source shortest paths problem when there are no edges with
negative weights. While Dijkstra’s algorithm may fail on certain graphs with negative edge weights, having
a negative cycle (i.e., a cycle in the graph for which the sum of edge weights is negative) is a bigger problem
for any shortest path algorithm. When computing a shortest path between two vertices, each additional
traversal along the cycle lowers the overall cost incurred and an arbitrarily small distance can be reached
after looping around the cycle multiple times. In this case, the shortest path to a node on the cycle is not
well defined since it is (negatively) infinite.

Figure 1: Assume there is a negative cycle along the s — ¢ path. The distance between s and ¢ is not
well-defined.

For example, consider the graph in Figure 1. The shortest path from s to ¢ would start from the node s,
loop around the negative cycle an infinite number of times and eventually reach destination ¢. The shortest
path would, hence, be of infinite length and is not well-defined.

Besides the negative cycles, there are no problems in computing the shortest paths in a graph with
negative edge weights. In fact, there are many applications where allowing negative edge weights is important.

4 Bellman-Ford Algorithm

In this section, we study the Bellman-Ford algorithm that solves the single source shortest paths problem on
graphs with edges with potentially negative weights. Given a directed graph G = (V, E) with edge weights
given by c(z,y) for (z,y) € E, we want to compute the shortest path distances d(s,v) from source s for all
v € V. More specifically, the Bellman-Ford algorithm:

e Detects a negative cycle if it exists and is reachable from s, or
e Computes the shortest path distances d(s,v) for all v € V.

Note 7(+) is used to store the shortest paths found and 7 (v) represents the predecessor of v on the shortest
path from s to v.

For an example run of the Bellman-Ford algorithm, please refer to the lecture slides or CLRS.

The total runtime of the Bellman-Ford algorithm is O(mn). In the first for loop, we repeatedly update
the distance estimates n — 1 times on all m edges in time O(mn). In the second for loop, we go through all
m edges to check for negative cycles in time of O(m).

We prove the correctness of the Bellman-Ford algorithm in two steps:

Claim 2. If there is a negative cycle reachable from s, then the Bellman-Ford algorithm detects and reports
“Negative Cycles”.

Proof. For the sake of contradiction, suppose there exists a negative cycle C reachable from the source s
and the Bellman-Ford algorithm does not report “Negative Cycles”. Assume C contains nodes v1,va, . .., Uy
with edges (v;,v;11) for i = 1,..., k such that Zle c(vi,vi41) < 0, where v 1 = v1. See Figure 2. Let d[]
be the distance estimates determined in the first for loop of the algorithm.



Algorithm 2: Bellman-Ford Algorithm

d[v] < 00,Yv € V' // set initial distance estimates
// to maintain paths: set 7(v) <—nil for all v, m(v) represents the predecessor of v
d[s] < 0 // set distance to start node trivially as 0
for i from1 —n—1do
for (u,v) € E do
d[v] + min{d[v],d[u] + w(u,v)} // update the distance estimate for v
L // to maintain paths - if d[v] changes, then 7(v) < u

// Negative Cycle Step
for (u,v) € E do
if d[v] > d[u] + w(u, v) then
| return “Negative Cycle”; // negative cycle detected

return dv] Vv e V

Z(J(Ui,l}i+1) <0

Figure 2: A negative cycle reachable from source s

Since C is reachable from s, there is a path from s to v; and to all nodes on C'. In particular, there exist
simple paths, i.e., paths without cycles, of at most n — 1 edges to the nodes of C. In the first for loop, the
edges on each such simply path get relaxed in order and consequently, d[v;] will be some finite number less
than oo for ¢ = 1,..., k. Since the Bellman-Ford algorithm does not report “Negative Cycles” in the second
for loop, it must be that d[v;11] < d[v;] + ¢(vs,vi41) for i =1,..., k. Adding the inequalities, we obtain

k k

k
Zd[viJrl] < Zd[’ljl] + ZC(Uian+1) .

i=1 i=1

As we are summing over the cycle C, the terms Zle d[v;41] and Zle d[v;] are equal and can be cancelled.

It follows that 0 < Zle ¢(vi, vi4+1). This contradicts that C' is a negative cycle.
O

In the next claim, we show that if the graph has no negative cycles reachable from the source, then the
Bellman-Ford algorithm returns the correct shortest path distances.

Claim 3. If G has no negative cycles reachable from s, then d[v] = d(s,v),Vv € V.

Proof. Let di(v) be the value of d[v] after k iterations of the first for loop. We prove by induction the
statement that dj(v) is equal to the minimum distance of a path from s to v with at most k edges. Then,
we will have d,,—1(v) = d[v] for all node v at termination. Since we can assume that shortest paths have at
most n — 1 edges without loss of generality, the claim follows.

We argue that if there is a path from s to v, then there exists a shortest path from s to v has at most
n — 1 edges. If a shortest path has a cycle, the cycle cannot be negative and we can remove it and improve
its total distance. If the cycle has a positive weight, removing the cycle will strictly improve the shortest



path’s distance. If the cycle has zero weight, we can ignore the cycle. Hence, we can assume that shortest
paths are simple, that is, do not have cycles.

Base Case: When k = 0, the distance estimates have been just initialized. So, do(v) = oo if v # s.
Furthermore, do(s) = 0 = d(s,s), which is the minimum distance of length-0 paths from s to s. The
statement is satisfied for the base case.

Inductive Step: Assume that di_1(v) is equal to the minimum distance of a s — v path on at most k — 1
edges for all v.

Consider v # s. Let P be a shortest simple s — v path on at most k edges. Let u be the node just before
v on P, and let @Q be the sub-path of P from s to u. The path Q would have at most k£ — 1 edges and is a
shortest path from s to u with at most k — 1 edges, since sub-paths of shortest paths are also shortest paths.
By the inductive hypothesis, @ has distance dj_1(u).

In the k-th iteration, we update dy(v) such that di(v) < di—1(v) + w(u,v) = W(Q) + w(u,v) = w(P).
Since whenever di(v) is finite, it actually corresponds to the distance of some path from s to v on at most k
edges, in particular, it has to be at least as large as the distance of the shortest path from s to v on at most
k edges. Thus, di(v) > w(P). After the k-th iteration, di(v) = w(P), and the inductive step follows.

The induction is complete, and the claim is proved. (Il



