CS161 Lecture 12 Shortest Path and Dynamic Programming Algorithms
Scribe by: Eric Huang (2015), Anthony Kim (2016) Date: November 7, 2016

1 More on the Bellman-Ford Algorithm

The Bellman-Ford algorithm is a dynamic programming algorithm. Dynamic programming is a basic
paradigm in algorithm design used to solve problems by relying on intermediate solutions to smaller sub-
problems. The main step for solving a dynamic programming problem is to analyze the problem’s optimal
substructure and overlapping subproblems.

For instance, in the Bellman-Ford algorithm, we found that the shortest paths of length at most k can
be computed by leveraging the shortest paths of length at most £ — 1. More specifically, we relied on the
following recurrence relation between the intermediate solutions:

di[v] = Iurél%/l {di—1[u] + c(u,v)} ,

where dj.[v] is the length of the shortest path from source s to node v using at most k edges, and c(u,v) is
the weight of edge (u,v).

This idea of using the intermediate solutions is similar to the divide-and-conquer paradigm. However, a
divide-and-conquer algorithm recursively computes intermediate solutions once for each subproblem, but a
dynamic programming algorithm solves the subproblems exactly once and uses these results multiple times.

2 Dynamic Programming

The idea of dynamic programming is to have a table of solutions of subproblems and fill it out in a particular
order (e.g. left to right and top to bottom) so that the contents of any particular table cell only depends on
the contents of cells before it. In this lecture, we will see two examples: the Floyd-Warshall algorithm and
the longest common subsequence problem.

2.1 Dynamic Programming Algorithm Recipe

Here, we give a general recipe for solving problems by dynamic programming. Dynamic programming is a
good candidate paradigm to use for problems with the following properties:

e Optimal substructure gives a recursive formulation; and
e Overlapping subproblems give a small table, that is, we can store the precomputed answers such that
it doesn’t actually take too long when evaluating a recursive function multiple times.
2.1.1 Optimal Substructure

By this property, we mean that the optimal solution to the problem is composed of optimal solutions to
smaller independent subproblems.

For example, the shortest path from s to ¢ consists of a shortest path P from s to k (for node k on P)
and a shortest path from k to t. This allows us to write down an expression for the distance between s and
t with respect to the lengths of sub-paths:

d(s,t) =d(s, k) + d(k,t), for all k on a shortest s — ¢ path



2.1.2 Overlapping subproblems

The goal of dynamic programming is to construct a table of entries, where early entries in the table can be
used to compute later entries. Ideally, the optimal solutions of subproblems can be reused multiple times to
compute the optimal solutions of larger problems.

For our shortest paths example, d(s, k) can used to compute d(s, t) for any ¢ where the shortest s —¢ path
contains k. To save time, we can compute d(s, k) once and just look it up each time, instead of recomputing
it.

2.1.3 Implementations

The above two properties lead to two different ways to implement dynamic programming algorithms. In
each, we will store a table T" with optimal solutions to subproblems; the two variants differ in how we decide
to fill up the table:

1. Bottom-up: Here, we will fill in the table starting with the smallest subproblems. Then, assuming that
we have computed the optimal solution to small subproblems, we can compute the answers for larger
subproblems using our recursive optimal substructure.

2. Top-down: In this approach, we will compute the optimal solution to the entire problem recursively.
At each recursive call, we will end up looking up the answer or filling in the table if the entry has not
been computed yet.

In fact, these two methods are completely equivalent. Any dynamic programming algorithm can be
formulated as an iterative table-filling algorithm or a recursive algorithm with look-ups.

3 Floyd-Warshall Algorithm

The Floyd-Warshall Algorithm solves the All Pairs Shortest Path (APSP) problem: given a graph G, find
the shortest path distances d(s,t) for all s,t € V, and, for the purpose of storing the shortest paths, the
predecessor 7(s,t) which is the node right before ¢ on the s-t shortest path.

Let’s speculate about APSP for a moment. Consider the case when the edge weights are nonnegative.
We know we can compute APSP by running Dijkstra’s algorithm on each node v € V' and obtain a total
runtime of O(mn + n?logn). The runtime of the Floyd-Warshall algorithm, on the other hand, is O(n?).
We know that in the worst case m = O(n?), and thus, the Floyd-Warshall algorithm can be at least as bad
as running Dijkstra’s algorithm n times! Then why do we care to explore this algorithm? The reason is that
the Floyd-Warshall algorithm is very easy to implement compared to Dijkstra’s algorithm. The benefit of
using simple algorithms is that they can often be extended and in practice can run relatively faster compared
to algorithms that may have a huge overhead.

An added benefit of the Floyd-Warshall algorithm is that it also supports negative edge weights, whereas
Dijkstra’s algorithm does not. !

As mentioned, the optimum substructure with overlapping subproblems for shortest paths is that for all
node k on an s-t shortest path, d(s,t) = d(s, k) + d(k,t). We refine this observation as follows. Suppose that
the nodes of the graph are identified with the integers from 1 to n. Then, if k is the maximum node on an
s-t shortest path, then d(s,t) = d(s, k) + d(k,t) and moreover, the subpaths from s to k and from k to ¢ only
use nodes up to k — 1 internally.

We hence get independent subproblems in which we compute di(s,t) for all s,¢ that are the smallest
weight of an s-t path that only uses nodes 1, ...,k internally. This motivates the Floyd-Warshall algorithm,
Algorithm 1 below (please note that we will refer to the nodes of G by the names 1,...,n).

1 Although, one can still use Dijkstra’s algorithm n times, if one preprocesses the edge weights initially via something called
the Johnson’s trick.



Algorithm 1: Floyd-Warshall Algorithm (G)

dp(u,u) =0,Vu € V,k € {0,...,n}

di,(u,v) = 0o, Yu,v € Viu £ v,k € {1,...,n}

do(u,v) = c(u,v),¥(u,v) € £

do(u,v) = 00,V(u,v) € E

for k=1,...,ndo

L for (u,v) € V do
| di(u,v) = min{dy_1(u,v),dp—1(u, k) + di_1(k,v)} // update the estimate of d(u,v)

return d, (u,v),¥ u,v € V

Correctness when there are no negative cycles In the k-th iteration of the Floyd-Warshall algorithm,
di(u, v) is the minimum weight of a u — v path that uses as intermediate nodes only nodes from {1,...,k}.
What does the recurrence relation represent? If P is a shortest path from u to v using 1, ..., k as intermediate
nodes, there are two cases. Assume that P is a simple path, since shortest paths are simple when there are
no negative cycles:

e (Case 1: P contains k : In this case, we know that neither the path from u to k nor the path from
k to v contains any nodes that are greater than k — 1. In this case, we can simply use di(u,v) =

dk_l(u, k‘) + dk_1(/€, U).
e Case 2: P does not contain k : We can say that di(u,v) = dg_1(u,v)

We initialize each do(u,v) as the edge weight ¢(u,v) if (u,v) € E, else we set it to oo in the bottom-
most row in our dynamic programming table. Now, as we increment k to 1, we effectively find the minimum
distance path between u, v € V' that go through node 1, and populate the table with the results. We continue
this process to find the shortest paths that go through nodes 1 and 2, then 1,2, and 3 and so on until we
find the shortest path through all n nodes.

Negative cycles. The Floyd-Warshall algorithm can be used to detect negative cycles: examine whether
dp(u,u) < 0 for any u € V. If there exists u such that d,(u,u) < 0, there is a negative cycle, and if not,
then there isn’t. The reason for this is that if there is a simple path P from u to u of negative weight (i.e., a
negative cycle containing u), then d,, (u, u) will be at most its weight, and hence, will be negative. Otherwise,
no path can cause d,,(u, u) to be negative.

Runtime. The runtime of the Floyd-Warshall algorithm is proportional to the size of the table {d;(u, v) }; u,v
since filling each entry of the table only depends on at most two other entries filled in before it. Thus, the
runtime is O(n?).

Space usage. Note that for both the algorithms we covered today, the Floyd-Warshall and Bellman-Ford
algorithms, we can choose to store only two rows of the table instead of the complete table in order to
save space. This is because the row being populated always depends only on the row right below it. This
space saving optimization is not a general property of tables formed as a result of the dynamic programming
method, and the slot dependencies in some dynamic programming problems may lie on arbitrary positions
on the table thereby forcing us to store the complete table.

A Note on the Longest Path Problem

We discussed the shortest path problem in detail and provided algorithms for a number of variants of the
problem. We might equally be interested in computing the longest simple path in a graph. A first approach
is to formulate a dynamic programming algorithm. Indeed, consider any path, even the longest, between two



nodes s and ¢. Its length £(s,t) equals the sum £(s, k)+£(k,t) for any node k on the path. However, this does
not yield an optimal substructure: in general, neither subpath s — k, k& — ¢ would be a longest path, and
even if one is a longest path, the other one cannot use any nodes that appear on the first since the longest
path is required to be simple. Hence the two subproblems ¢(s, k) and ¢(k,t) are not even independent! It
turns out that finding the longest path does not seem to have any optimal substructure, which makes it
difficult to avoid exhaustive search through dynamic programming. The longest path problem is actually a
very difficult problem to solve and is NP-hard. The best known algorithm for it runs in exponential time.

4 Longest Common Subsequence

We now consider the longest common subsequence problem which has applications in spell-checking, biology
(whether different DNA sequences correspond to the same protein), and more.

We say that a sequence Z is a subsequence of a sequence X if Z can be obtained from X by deleting
symbols. For example, abracadabra has baab as a subsequence, because we can obtain baab by deleting a,
r, cad, and ra. We say that a sequence Z is a longest common subsequence (LCS) of X and Y if Z is a
subsequence of both X and Y, and any sequence longer than Z is not a subsequence of at least one of X or
Y. For instance, the LCS of abracadabra and bxqrabry is brabr.

Using the definition of LCS, we define the LCS problem as follows: Given sequences X and Y, find the
length of their LCS, Z (and possibly output Z). In our algorithm and analysis, we let X = x1z2x3...24,, SO
|X| =m, and let Y = y1y2y3...Yn, so |Y| = n, which will allow us to provide the runtime of our algorithm
in terms of m and n.

4.1 Optimal substructure

To begin, we note that we can identify a way to break down the optimal solution to the LCS problem into
optimal subsolutions to LCS subproblems. In particular, consider the following two cases.

e Case 1: If x,, = y, = ¢, then any LCS Z has ¢ as its last symbol. It’s easy to see that in this case
any common subsequence Z’ that does not end in ¢ can be lengthened by appending £ to Z’ to obtain
another (longer) legal common subsequence.

Thus, if |Z] = k and z,, = y, = ¢, then we can express the first kK — 1 symbols of Z as
ZIl:k—=1=LCS(X[1:m—-1],Y[1l:n—1))
where Z = Z[1 : k — 1] @ ¢, where @ denotes the concatenation operation.

e Case 2: If x,, # yn, then the last letter of Z, which we call zj is either not equal to x,, or not equal
to y, (or both). In this case, we can express the LCS of X and Y as

Z =max{LCS(X[1:m—1),Y),LCS(X,Y[l:n—1])}.

Suppose we keep a table C, where C[i, j| maintains the length of of LC'S(X]1 :4],Y[1 : j]), the longest
common subsequence of X[1 : 4] and Y[l : j]. Then, we can fill in the values of C using the following
recurrence:

Cli j] = 1+Cli—1,5—1], if X[i] =Yj]
T\ max(Cli — 1,5],C[i,j — 1]), otherwise

4.2 Overlapping Subproblems

Note that there are only n X m entries in our table C'. We only need to compute each one once. We can also
see that C[i, j] only depends on three possible prior values: C[i — 1, 3], C[i,j — 1], and C[i — 1,5 — 1].



Thus, we can start to see how to obtain an algorithm for filling in the table and obtaining the LCS.
First, we know that any string of length 0 will have an LCS of length 0. Thus, we can start by filling out
C0, 4] = 0 for all j and similarly, C[i,0] = 0 for all ¢. Then, we can fill out the rest of the table, filling the
rows from bottom up (¢ from 1 to m) and filling each row from left to right (j from 1 to n).

In order to fill each entry, we only need to perform a constant number of lookups and additions. Thus,
we need to do a constant amount of work for each of the m x n entries, giving a running time of O(mn).

4.3 Recovering the actual LCS

The algorithm that we’ve described computes the length of LCS. What if we want to recover the actual
longest common subsequence? In Algorithm 2, we show how we can construct the actual LCS, given the
dynamic programming table that we’ve filled out.

Algorithm 2: LCS(X,Y,C)
// C is filled out already
L+ o
14 m
j&n
while ¢ >0 and j >0 do

if X[i]] =Y[j] then
append X[i] to the beginning of L
14—1—1
Je—i—1
else if CJi,j] = C[i,j — 1] then
Ly<i—-1
else
L i4+1—1

In each step, we decrement 4 or j or both, eliminating one character from X or Y from consideration (and
possibly discovering a letter in the common subsequence). ¢ and j start at m and n and are decremented
until one of them is equal to 0. One can think of this as follows: in each step, the sum i + j is decremented
by at least 1, and the algorithm stops before i 4+ j goes below 0. Thus, the runtime for reconstructing the
LCS is O(m 4+ n), which can be subsumed by the runtime of O(mn) for filling the table.

Interestingly, this simple dynamic programming algorithm is the best known algorithm for solving the
LCS problem. It is conjectured that this algorithm may be essentially optimal. It turns out that giving an
algorithm that (polynomially) improves the dependence on m and n over the O(mn) strategy outlined above
would imply a major breakthrough in algorithms for the boolean satisfiability problem — a problem widely
believed to be computationally hard to solve.



