
CS 161: Homework 7

Due by December 2, 2016 at noon

Instructions: Please answer the following questions to the best of your ability. Provide full and rigorous
proofs and include all relevant calculations. When writing proofs, please strive for clarity and brevity (in
that order). Please see the course website for submission instructions and collaboration policy. Cite any
sources that you use.

Remember that when you design an algorithm, in addition to an appropriate description of your algo-
rithm, you must provide sufficient explanation for its correctness and analyze its running time. See the
Homework Advice document on the course website for details.

In your submission, please start each question on a new page.

Question 1 (25 points)

In this problem we revisit the knapsack problem. Recall that while there exists a pseudo-polynomial time
solution to the knapsack problem, the problem is NP-hard. Due to its hardness it is worth studying algorithms
to efficiently find an approximation of the optimal solution. Here we will work through deriving a greedy
approximate solution to the knapsack problem and then prove an upper bound on its error.

We are given a knapsack of capacity 𝑊 (where 𝑊 is an integer) and 𝑛 items. Item 𝑖 has value 𝑣𝑖 and
weight 𝑤𝑖 ≤ 𝑊 . 𝑣𝑖 and 𝑤𝑖 are integers. We consider two variants of the knapsack problem: 0-1 knapsack
and fractional knapsack.

In 0-1 knapsack, we pick a subset 𝑆 of the items such that
∑︀

𝑖∈𝑆 𝑤𝑖 ≤ 𝑊 . Our goal is to maximize
the value of the items we picked:

∑︀
𝑖∈𝑆 𝑣𝑖. In fractional knapsack, for each item 𝑖, we can take a fraction

0 ≤ 𝛼𝑖 ≤ 1 of that item, as long as
∑︀𝑛

𝑖=1 𝛼𝑖𝑤𝑖 ≤ 𝑊 . Our goal is to maximize
∑︀𝑛

𝑖=1 𝛼𝑖𝑣𝑖. Note that 0-1
knapsack is the same as fractional knapsack when the fractions 𝛼𝑖 are either 0 or 1.

(a) (7 points) Design an efficient greedy algorithm for solving fractional knapsack optimally.

(b) (6 points) For 0-1 knapsack, consider the greedy algorithm that iterates through the items in the same
order as your algorithm from part (a), and adds to the knapsack any item that the knapsack has enough
free capacity for. Provide an example that shows that this algorithm is not optimal. In your example,
use no more than 3 items.

(c) (2 points) Show that the optimal solution to fractional knapsack has at least the same value as the
optimal solution to 0-1 knapsack.

(d) (10 points) Consider algorithms for 0-1 knapsack that return the better of (i) the output of the algorithm
from part (b), and (ii) one item. Show that there is an algorithm of that form that returns a solution
with value at least 1/2 of the optimal solution to 0-1 knapsack.

1

Question 2 (20 points)

Consider a distribution over 𝑛 possible outcomes, with probabilities 𝑝1, 𝑝2, . . . , 𝑝𝑛.

(a) (10 points) Just for this part of the problem, assume that each 𝑝𝑖 is a power of 2 (that is, 𝑝𝑖 = 2−𝑘).
Suppose a long sequence of 𝑚 samples is drawn from the distribution and that for all 1 ≤ 𝑖 ≤ 𝑛, the
𝑖th outcome occurs exactly 𝑚𝑝𝑖 times in the sequence. Show that if Huffman encoding is applied to this
sequence, the resulting encoding will have length

𝑛∑︁
𝑖=1

𝑚𝑝𝑖 log
1

𝑝𝑖

Hint: Prove by induction.

(b) (10 points) Now consider arbitrary distributions—that is, the probabilities 𝑝𝑖 are not restricted to powers
of 2. The most commonly used measure of the amount of randomness in the distribution is the entropy
which has the following form:

𝑛∑︁
𝑖=1

𝑝𝑖 log
1

𝑝𝑖

(If 𝑝𝑖 = 0, we replace the term 𝑝𝑖 log 1
𝑝𝑖

with 0.) For what distribution over 𝑛 outcomes (that is,

probabilities 𝑝1, . . . , 𝑝𝑛) is the expression the largest possible? The smallest possible?

Note that part (a) can be interpreted as follows: The length of the Huffman encoding of a random string
depends on its entropy (that is, on how predictable the string is).

Hint: For 𝑝, 𝑞 > 0, 𝑝 log 1
𝑝 + 𝑞 log 1

𝑞 ≤ (𝑝 + 𝑞) log 2
𝑝+𝑞 , and this inequality is tight if and only if 𝑝 = 𝑞.

Question 3 (25 points)

We have 𝑛 identical machines and 𝑚 factories. We would like to assign machines to factories in order to
maximize the output produced, however the amount of output produced at each factory is different and
depends on the number of machines at that factory. For example, if factory 𝑖 has 𝑗 machines, then the
output produced at factory 𝑖 is 𝑂𝑗

𝑖 . It is possible to have a factory with 0 machines, and 𝑂0
𝑖 = 0 for all 𝑖.

The output produced by factory 𝑖 is non-decreasing in the number of machines in the factory, namely, for
every 𝑖, 𝑗, 𝑂𝑗+1

𝑖 ≥ 𝑂𝑗
𝑖 .

(a) (10 points) Design an efficient algorithm for determining the number of machines we should place in
each factory.

(b) (15 points) Now we are also guaranteed that 𝑂𝑗+1
𝑖 − 𝑂𝑗

𝑖 ≤ 𝑂𝑗
𝑖 − 𝑂𝑗−1

𝑖 , or in other words, the added
value of each machine we add to a factory is no more than that of the previous machine. Given this
constraint, provide an efficient algorithm for determining how many machines we should place in each
factory. Note that you should be able to find a more efficient algorithm than in part (a).

Hint: The algorithm may use a priority queue.

Question 4 (10 points)

Given a connected, undirected graph 𝐺 = (𝑉,𝐸) in which each edge 𝑒 has positive edge weight 𝑤(𝑒), we
wish to compute a spanning tree 𝑇 = (𝑉,𝐸𝑇) such that the product of all its edge weights is maximized. In
other words, the spanning tree 𝑇 maximizing

∏︀
𝑒∈𝐸𝑇

𝑤(𝑒).
Suppose we have a black box algorithm 𝒜 that solves the MST problem. Use 𝒜 to solve this new problem,

using only 𝑂(|𝐸|) additional time (that is, not including the call to 𝒜).

2

Question 5 (20 points)

Imagine a set of 𝑛 points 𝑋 = {𝑥1, . . . , 𝑥𝑛} in some unknown space. The only thing we know about them is
the distance 𝑑(𝑥, 𝑦) between each pair of points 𝑥 and 𝑦.

We would like to compute a partition of 𝑋 into disjoint sets of points 𝐶1, . . . , 𝐶𝑘 so as to maximize the
minimum distance between any two points in different clusters. Each cluster must contain at least one point,
and their union is the set 𝑋. More formally, we want a partition {𝐶1, . . . , 𝐶𝑘} of 𝑋 that achieves

max
𝐶1,...,𝐶𝑘

min
𝑥∈𝐶𝑖
𝑦∈𝐶𝑗

𝑖 ̸=𝑗

𝑑(𝑥, 𝑦)

Give an efficient algorithm for this task.

Hint: Show that you can obtain such a partition from the MST.

3

