
Solved Exercises 411

perfect matching M and house prices P are in equilibrium if, for all edges
(x, y) ∈M and all other houses y′, we have

v(x, y)− P(y)≥ v(x, y′)− P(y′).

But can we find a perfect matching and a set of prices so as to achieve this
state of affairs, with every buyer ending up happy? In fact, the minimum-cost
perfect matching and an associated set of compatible prices provide exactly
what we’re looking for.

(7.67) Let M be a perfect matching of minimum cost, where ce =−v(x, y) for
each edge e = (x, y), and let p be a compatible set of prices. Then the matching
M and the set of prices {P(y)=−p(y) : y ∈ Y} are in equilibrium.

Proof. Consider an edge e = (x, y) ∈M, and let e′ = (x, y′). Since M and p are
compatible, we have p(x)+ ce = p(y) and p(x)+ ce′ ≥ p(y′). Subtracting these
two inequalities to cancel p(x), and substituting the values of p and c, we get
the desired inequality in the definition of equilibrium.

Solved Exercises

Solved Exercise 1
Suppose you are given a directed graph G = (V , E), with a positive integer
capacity ce on each edge e, a designated source s ∈ V, and a designated sink
t ∈ V. You are also given an integer maximum s-t flow in G, defined by a flow
value fe on each edge e.

Now suppose we pick a specific edge e ∈ E and increase its capacity by
one unit. Show how to find a maximum flow in the resulting capacitated graph
in time O(m + n), where m is the number of edges in G and n is the number
of nodes.

Solution The point here is that O(m + n) is not enough time to compute a
new maximum flow from scratch, so we need to figure out how to use the flow
f that we are given. Intuitively, even after we add 1 to the capacity of edge e,
the flow f can’t be that far from maximum; after all, we haven’t changed the
network very much.

In fact, it’s not hard to show that the maximum flow value can go up by
at most 1.

(7.68) Consider the flow network G′ obtained by adding 1 to the capacity of
e. The value of the maximum flow in G′ is either ν(f ) or ν(f )+ 1.



412 Chapter 7 Network Flow

Proof. The value of the maximum flow in G′ is at least ν(f ), since f is still a
feasible flow in this network. It is also integer-valued. So it is enough to show
that the maximum-flow value in G′ is at most ν(f )+ 1.

By the Max-Flow Min-Cut Theorem, there is some s-t cut (A, B) in the
original flow network G of capacity ν(f ). Now we ask: What is the capacity of
(A, B) in the new flow network G′? All the edges crossing (A, B) have the same
capacity in G′ that they did in G, with the possible exception of e (in case e
crosses (A, B)). But ce only increased by 1, and so the capacity of (A, B) in the
new flow network G′ is at most ν(f )+ 1.

Statement (7.68) suggests a natural algorithm. Starting with the feasible
flow f in G′, we try to find a single augmenting path from s to t in the residual
graph G′f . This takes time O(m+ n). Now one of two things will happen. Either
we will fail to find an augmenting path, and in this case we know that f is
a maximum flow. Otherwise the augmentation succeeds, producing a flow f ′
of value at least ν(f )+ 1. In this case, we know by (7.68) that f ′ must be a
maximum flow. So either way, we produce a maximum flow after a single
augmenting path computation.

Solved Exercise 2
You are helping the medical consulting firm Doctors Without Weekends set up
the work schedules of doctors in a large hospital. They’ve got the regular daily
schedules mainly worked out. Now, however, they need to deal with all the
special cases and, in particular, make sure that they have at least one doctor
covering each vacation day.

Here’s how this works. There are k vacation periods (e.g., the week of
Christmas, the July 4th weekend, the Thanksgiving weekend, . . . ), each
spanning several contiguous days. Let Dj be the set of days included in the
jth vacation period; we will refer to the union of all these days, ∪jDj, as the set
of all vacation days.

There are n doctors at the hospital, and doctor i has a set of vacation days
Si when he or she is available to work. (This may include certain days from a
given vacation period but not others; so, for example, a doctor may be able to
work the Friday, Saturday, or Sunday of Thanksgiving weekend, but not the
Thursday.)

Give a polynomial-time algorithm that takes this information and deter-
mines whether it is possible to select a single doctor to work on each vacation
day, subject to the following constraints.



Solved Exercises 413

. For a given parameter c, each doctor should be assigned to work at most
c vacation days total, and only days when he or she is available.

. For each vacation period j, each doctor should be assigned to work at
most one of the days in the set Dj. (In other words, although a particular
doctor may work on several vacation days over the course of a year, he or
she should not be assigned to work two or more days of the Thanksgiving
weekend, or two or more days of the July 4th weekend, etc.)

The algorithm should either return an assignment of doctors satisfying these
constraints or report (correctly) that no such assignment exists.

Solution This is a very natural setting in which to apply network flow, since
at a high level we’re trying to match one set (the doctors) with another set
(the vacation days). The complication comes from the requirement that each
doctor can work at most one day in each vacation period.

So to begin, let’s see how we’d solve the problem without that require-
ment, in the simpler case where each doctor i has a set Si of days when he or
she can work, and each doctor should be scheduled for at most c days total.
The construction is pictured in Figure 7.23(a). We have a node ui representing
each doctor attached to a node v� representing each day when he or she can

Doctors

Holidays

Sink SinkSource

Doctors
Gadgets

Holidays

(a) (b)

Source

Figure 7.23 (a) Doctors are assigned to holiday days without restricting how many
days in one holiday a doctor can work. (b) The flow network is expanded with “gadgets”
that prevent a doctor from working more than one day from each vacation period. The
shaded sets correspond to the different vacation periods.



414 Chapter 7 Network Flow

work; this edge has a capacity of 1. We attach a super-source s to each doctor
node ui by an edge of capacity c, and we attach each day node v� to a super-
sink t by an edge with upper and lower bounds of 1. This way, assigned days
can “flow” through doctors to days when they can work, and the lower bounds
on the edges from the days to the sink guarantee that each day is covered. Fi-
nally, suppose there are d vacation days total; we put a demand of +d on the
sink and −d on the source, and we look for a feasible circulation. (Recall that
once we’ve introduced lower bounds on some edges, the algorithms in the text
are phrased in terms of circulations with demands, not maximum flow.)

But now we have to handle the extra requirement, that each doctor can
work at most one day from each vacation period. To do this, we take each pair
(i, j) consisting of a doctor i and a vacation period j, and we add a “vacation
gadget” as follows. We include a new node wij with an incoming edge of
capacity 1 from the doctor node ui, and with outgoing edges of capacity 1 to
each day in vacation period j when doctor i is available to work. This gadget
serves to “choke off” the flow from ui into the days associated with vacation
period j, so that at most one unit of flow can go to them collectively. The
construction is pictured in Figure 7.23(b). As before, we put a demand of +d
on the sink and −d on the source, and we look for a feasible circulation. The
total running time is the time to construct the graph, which is O(nd), plus the
time to check for a single feasible circulation in this graph.

The correctness of the algorithm is a consequence of the following claim.

(7.69) There is a way to assign doctors to vacation days in a way that respects
all constraints if and only if there is a feasible circulation in the flow network
we have constructed.

Proof. First, if there is a way to assign doctors to vacation days in a way
that respects all constraints, then we can construct the following circulation.
If doctor i works on day � of vacation period j, then we send one unit of
flow along the path s, ui, wij, v�, t; we do this for all such (i, �) pairs. Since
the assignment of doctors satisfied all the constraints, the resulting circulation
respects all capacities; and it sends d units of flow out of s and into t, so it
meets the demands.

Conversely, suppose there is a feasible circulation. For this direction of
the proof, we will show how to use the circulation to construct a schedule
for all the doctors. First, by (7.52), there is a feasible circulation in which all
flow values are integers. We now construct the following schedule: If the edge
(wij , v�) carries a unit of flow, then we have doctor i work on day �. Because
of the capacities, the resulting schedule has each doctor work at most c days,
at most one in each vacation period, and each day is covered by one doctor.


