
Lecture 16

Min Cut and Karger’s Algorithm

1

Announcements

• HW 7 due Friday

• HW 8 released Friday

• Psych! There is no HW8.

• Question from last time:

• Does Prim’s algorithm work with negative edge weights?

• After all, it looks a lot like Dijkstra…

• Answer is yes! Prim works fine with negative edge weights.

• To convince yourself, go through the proof and make sure it still

works.

• (Where did we use the fact that the weights were non-negative for

Dijkstra?)
2

More announcements: Final exam!

• Thursday 3/21, 8:30-11:30am
• Last name A-LIA: Cubberley Auditorium
• Last name LIB-Z: Hewlett 200

• Similar format to the midterm
• (Maybe a bit shorter per time allotted)
• You are allowed TWO pages of cheat sheet.

• Cumulative, but with focus on the second half of the course.
• Today’s material is fair game but will not be heavily emphasized.
• Wednesday’s lecture will not have any new material that will be on

the final.

• Resources available:
• Practice Final (up soon)
• Section this week will be final review
• Office Hours
• Slides, CLRS, lecture videos, IPython Notebooks, last year’s lecture

notes, …
3

How should I study for the final
exam?

1. Do practice problems!

• Practice Exam

• Sections

• CLRS/Kleinberg and Tardos/…

• Google “Practice problems about ____”

2. Do practice problems!

3. Spend some time making your cheat sheet

4. Review the HW – at least one exam question will
be very similar to an HW problem.

4

Piazza Heroes!
Plus everyone who contributes in the

comments! (Piazza doesn’t give me a

“top” list for that…)

One last announcement

• Course feedback is now open!

• Go to Axess > Student > Course and select
“Evaluations.”

• Please fill this out!

• Your feedback is extremely helpful in making this
class better going forward!

6

Last time

• Minimum Spanning Trees!

• Prim’s Algorithm

• Kruskal’s Algorithm

7

Today

• Minimum Cuts!

• Karger’s algorithm

• Karger-Stein algorithm

• Back to randomized algorithms!

8

Recall: cuts in graphs

• A cut is a partition of the vertices into two nonempty
parts.

*For today, all graphs

are undirected and

unweighted.

9

Recall: cuts in graphs

• A cut is a partition of the vertices into two nonempty
parts.

Part 1 Part 2

*For today, all graphs

are undirected and

unweighted.

10

This is not a cut

11

This is a cut

12

This is a cut
These edges cross the cut.

• They go from one part to the other.

13

A (global) minimum cut
is a cut that has the fewest edges possible crossing it.

14

A (global) minimum cut
is a cut that has the fewest edges possible crossing it.

15

Why might we care about global
minimum cuts?

• Clustering:

• Image Segmentation

big edge

weights*

between similar

pixels.

*For the rest of today edges aren’t weighted; but the algorithm can be adapted to deal with edge weights.
16

Karger’s algorithm

• Finds global minimum cuts in undirected graphs

• Randomized algorithm

• Karger’s algorithm might be wrong.

• Compare to QuickSort, which just might be slow.

• Why would we want an algorithm that might be

wrong?

• With high probability it won’t be wrong.

• Maybe the stakes are low and the cost of a
deterministic algorithm is high.

17

Different sorts of gambling

• QuickSort is a Las Vegas randomized algorithm

• It is always correct.

• It might be slow.

Yes, this is a

technical term.

18

Different sorts of gambling

• Karger’s Algorithm is a Monte Carlo randomized algorithm

• It is always fast.

• It might be wrong.

19

Karger’s algorithm

• Pick a random edge.

• Contract it.

• Repeat until you only have two vertices left.

Why is this a good idea? We’ll see shortly.

b

a

b
a

New node!

20

h

g

e

f

b

d

a

c

Karger’s algorithm

21

h

g

e

f

b

d

a

c

Karger’s algorithm

random

edge!

22

h

g

e

f

b

d

a

c

Karger’s algorithm

Create a

supernode!

Create a

superedge!

Create a

superedge!

23

h

g

e

f

d

a,b

c

Karger’s algorithm

Create a

supernode!

Create a

superedge!

Create a

superedge! {c,a}{c,b}
{d

,a}

{d
,b

}

{e,b}

24

h

g

e

f

d

a,b

c

Karger’s algorithm

{c,a}{c,b}
{d

,a}

{d
,b

}

random

edge!

{e,b}

25

h

g

e

f

d

a,b

c

Karger’s algorithm

Create a

supernode!

{c,a}{c,b}
{d

,a}

{d
,b

}

Create a

superedge!

Create a

superedge!

{e,b}

26

g

e,h

f

d

a,b

c

Karger’s algorithm

Create a

supernode!

{c,a}{c,b}
{d

,a}

{d
,b

}

Create a

superedge!

Create a

superedge!

{f,e}
{f,h}

{g,e}

{g,h
}

{e,b}

{e,d}

27

g

e,h

f

d

a,b

c

Karger’s algorithm

{c,a}{c,b}
{d

,a}

{d
,b

}

{f,e}
{f,h}

{g,e}

{g,h
}

random

edge!

{e,b}

{e,d}

28

g

e,h

f

a,b

Karger’s algorithm

{c,a}

{c,b}

{d,a}

{d,b}

{f,e}
{f,h}

{g,e}

{g,h
}

c,d

{e,b}

{e,d}

29

g

e,h

f

a,b

Karger’s algorithm

{c,a}

{c,b}

{d,a}

{d,b}

{f,e}
{f,h}

{g,e}

{g,h
}

c,d

{e,b}

{e,d}

random edge!

30

g

e,h

f

a,b,c,d

Karger’s algorithm

{f,e}
{f,h}

{g,e}

{g,h
}

{e,b} {e,d}

31

g

e,h

f

a,b,c,d

Karger’s algorithm

{f,e}
{f,h}

{g,e}

{g,h
}

{e,b} {e,d} random

edge!

32

e,h,g

f

a,b,c,d

Karger’s algorithm

{f,e}
{f,h}

{f,g}

{e,b} {e,d}

33

e,h,g

f

a,b,c,d

Karger’s algorithm

{f,e}
{f,h}

{f,g}

{e,b} {e,d} random

edge!

34

e,h,g,f

a,b,c,d

Karger’s algorithm

{e,b} {e,d}

Now stop!
• There are only two nodes left.

The minimum cut is given by

the remaining super-nodes:
• {a,b,c,d} and {e,h,f,g}

35

h

g

e

f

b

d

a

c

Karger’s algorithm

The minimum cut is given by

the remaining super-nodes:
• {a,b,c,d} and {e,h,f,g}

36

Karger’s algorithm

• Does it work?

• Is it fast?

37

How do we implement this?

• See Lecture 16 IPython Notebook for one way

• This maintains a secondary “superGraph” which keeps

track of superNodes and superEdges

• There’s a skipped slide with pseudocode

• Running time?

• We contract n-2 edges

• Each time we contract an edge we get rid of a vertex, and we

get rid of n – 2 vertices total.

• Naively each contraction takes time O(n)

• Maybe there are Ω " nodes in the superNodes that we are
merging. (We can do better with fancy data structures).

• So total running time O(n2).

• We can do #(% ⋅ ' ") with a union-find data structure, but
#(")) is good enough for today. 38

Pseudocode

• Karger(G=(V,E)):
• Γ = { SuperNode(v) : v in V } // one supernode for each vertex

• #$%,$' = {(u,v)} for (u,v) in E // one superedge for each edge

• #$%,$' = {} for (u,v) not in E.

• F = copy of E // we’ll choose randomly from F

• while |Γ| > 2:
• (u,v) ← uniformly random edge in F

• merge(u, v)

// merge the SuperNode containing u with the SuperNode containing v.

•) ←) ∖ #$%,$'
// remove all the edges in the SuperEdge between those SuperNodes.

• return the cut given by the remaining two superNodes.

• merge(u, v): // merge also knows about Γ and the #%,' ‘s

• $+ = SuperNode($% ∪ $') // create a new supernode

• for each w in Γ ∖ {$%, $'}:

• #$+,$/ = #$%,$/ ∪ #$',$/
• Remove $% and $' from Γ and add $+.

merge takes time O(n) naively

The while loop runs n-2 times

total runtime O(n2)

We can do a bit better with

fancy data structures, but

let’s go with this for now.

Let $% denote the SuperNode in Γ containing u

Say #$%,$' is the SuperEdge between $%, $'.

This slide skipped in class

39

Karger’s algorithm

• Does it work?

• Is it fast?

• O(n2)

Think-pair-share!

h

g

e

f

b

d

a

c

Create a

supernode!

Create a

superedge!

Create a

superedge!

Algorithm:

• Randomly contract edges until there are only

two supernodes left.
40

Karger’s algorithm

• Does it work?

• Is it fast?

• O(n2)

h

g

e

f

b

d

a

c

Create a

supernode!

Create a

superedge!

Create a

superedge!

Algorithm:

• Randomly contract edges until there are only

two supernodes left.

No?

41

Why did that work?

•We got really lucky!

• This could have gone wrong in so many ways.

42

h

g

e

f

b

d

a

c

Karger’s algorithm

random

edge!

Say we had chosen this edge

43

h

g

f
b,e

d

a

c

Karger’s algorithm Say we had chosen this edge

Now there is no way we could return a cut

that separates b and e.

44

h

g

e

f

b

d

a

c

Even worse

If the algorithm EVER chooses either of these edges,

it will be wrong.

45

How likely is that?

• For this particular graph, I did it 10,000 times:

h

g

e

f
b

d

a

c

The algorithm is

only correct about

20% of the time!

46

That doesn’t sound good

• Too see why it’s good after all, we’ll do a case study
of this graph.

• To see the first point, let’s compare Karger’s
algorithm to the algorithm:

The plan:

• See that 20% chance of correctness is

actually nontrivial.

• Use repetition to boost an algorithm

that’s correct 20% of the time to an

algorithm that’s correct 99% of the time.

h

g

e

f
b

d

a

c

Choose a completely random cut

and hope that it’s a minimum cut. 47

Uniformly random cut

• Pick a random way to split the vertices into two parts:

etc48

Uniformly random cut

• Pick a random way to split the vertices into two parts:

• The probability of choosing the minimum cut is*…

number ofmin cuts in that graph

number of ways to split 8 vertices in 2 parts
=

2

28 − 2
≈ 0.008

• Aka, we get a minimum cut 0.8% of the time.

*For this example in particular
49

Karger is better than completely random!

Karger’s alg. is correct

about 20% of the time

Completely random is

correct about 0.8% of

the time

h

g

e

fb

d

a

c

50

What’s going on?

• Which is more likely?

• Neither A nor B are very likely, but A is more likely than B.

h

g

e

f
b

d

a

c

h

g

e

f
b

d

a

c

A: The algorithm never

chooses either of the

edges in the minimum cut.

B: The algorithm never

chooses any of the edges

in this big cut.

Lucky the

lackadaisical lemur

Thing 1: It’s unlikely that

Karger will hit the min cut

since it’s so small!

51

What’s going on?

h

g

e

f
b

d

a

c

h

g

e

f
b

d

a

c

A: This cut can be returned

by Karger’s algorithm.

B: This cut can’t be returned by

Karger’s algorithm!

(Because how would a and g end up

in the same super-node?)

Lucky the

lackadaisical lemur

Thing 2: By only contracting

edges we are ignoring certain

really-not-minimal cuts.

This cut actually separates the graph into three pieces, so it’s

not minimal – either half of it is a smaller cut.52

Why does that help?

• Okay, so it’s better than completely random…

• We’re still wrong about 80% of the time.

• The main idea: repeat!

• If I’m wrong 20% of the time, then if I repeat it a few

times I’ll eventually get it right.

The plan:

• See that 20% chance of

correctness is actually nontrivial.

• Use repetition to boost an

algorithm that’s correct 20% of the

time to an algorithm that’s correct

99% of the time. 53

Thought experiment
from pre-lecture exercise

• Suppose you have a magic button that produces one of 5
numbers, {a,b,c,d,e}, uniformly at random when you push it.

• You don’t know what {a,b,c,d,e} are.

• Q: What is the minimum of a,b,c,d,e?

6
3

3
2 2

5 5

How many times do you have to push the button, in

expectation, before you see the minimum value?

What is the probability that you have to push it

more than 5 times? 10 times?

54

[This was done on the board]

• E[] = 1/(0.20) = 5

• Pr[] = (1 − 0.2)(

• Pr[] = (1 − 0.2)) ≈ 0.33

• Pr[] = (1 − 0.2),- ≈ 0.1

Slide skipped in class
Number of times

we push the button

until we get the

minimum value

This is the same calculation

we’ve done a bunch of times:

We push the button

t times and don’t

ever get the min

We push the button

5 times and don’t

ever get the min

We push the button

10 times and don’t

ever get the min

This one we’ve done less frequently:

55

In this context

• Run Karger’s! The cut size is 6!

• Run Karger’s! The cut size is 3!

• Run Karger’s! The cut size is 3!

• Run Karger’s! The cut size is 2!

• Run Karger’s! The cut size is 5!

If the success probability is about 20%, then if you run Karger’s

algorithm 5 times and take the best answer you get, that will likely

be correct! (with probability about 0.66)

Correct!

56

For this particular graph

• Repeat Karger’s algorithm about 5 times, and we
will get a min cut with decent probability.

• In contrast, we’d have to choose a random cut about
1/0.008 = 125 times!

The plan:

• See that 20% chance of

correctness is actually nontrivial.

• Use repetition to boost an

algorithm that’s correct 20% of the

time to an algorithm that’s correct

most of the time.

h

g

e

fb

d

a

c

Hang on! This “20%” figure just came

from running experiments on this

particular graph. What about general

graphs? Can we prove something?

Plucky the pedantic penguin

Also, we should be a bit more

precise about this “about 5

times” statement.

57

Questions
To generalize this approach to all graphs

1. What is the probability that Karger’s algorithm
returns a minimum cut?

2. How many times should we run Karger’s
algorithm to “probably” succeed?

• Say, with probability 0.99?

• Or more generally, probability 1 − # ?

58

Answer to Question 1

The probability that Karger’s algorithm returns a
minimum cut is

at least !" #
$

In this case, !" %
$
= 0.036, so we are

guaranteed to win at least 3.6% of the time.

h

g

e

f

b

d

a

c

Claim:

59

Questions

1. What is the probability that Karger’s algorithm
returns a minimum cut?

2. How many times should we run Karger’s
algorithm to “probably” succeed?

• Say, with probability 0.99?

• Or more generally, probability 1 − # ?

According to the claim, at least
%

&

'

60

Before we prove the Claim

2. How many times should we run Karger’s
algorithm to succeed with probability 1 − # ?

h

g

e

f
b

d

a

c

61

A computation

• Suppose :

• the probability of successfully returning a minimum cut is ! ∈ #, % ,

• we want failure probability at most & ∈ 0,1 .

• Pr[don′t return amin cut in T trials] = 1 − > ?

• So p = 1/
@
A

by the Claim. Let’s choose T =
@
A

ln(1/&) .

• Pr[don′t return a min cut in T trials]
• = 1 − > ?

• ≤ EFG ?

• = EFG?

• = E
F HI

J

K

• = &

1 − p ≤ EFG

Punchline: If we repeat T =
M
N

ln(%/O) times,

we win with probability at least % − O.

1 − p

EFG

62

Answers

1. What is the probability that Karger’s algorithm
returns a minimum cut?

2. How many times should we run Karger’s
algorithm to “probably” succeed?

• Say, with probability 0.99?

• Or more generally, probability 1 − # ?

According to the claim, at least
%

&

'

(

)
ln

%

,
times.

63

Theorem
Assuming the claim about 1/

!
"
…

• Suppose G has n vertices.

• Consider the following algorithm:
• bestCut = None

• for t = 1,… , !
"
ln

*

+
:

• candidateCut ← Karger(G)

• if candidateCut is smaller than bestCut:

• bestCut ← candidateCut

• return bestCut

• Then Pr[this doesn6t return a min cut] ≤ =.

How many repetitions

would you need if

instead of Karger we

just chose a uniformly

random cut?

64

What’s the running time?

•
!

"
ln

%

&
repetitions, and O(n2) per repetition.

• So, ' (
"
⋅

!

"
ln

%

&
= O n

,

Again we can do better with a union-find

data structure. Write pseudocode for—or

better yet, implement—a fast version of

Karger’s algorithm! How fast can you

make the asymptotic running time?

Ollie the over-achieving ostrich

Treating - as

constant.

65

Theorem
Assuming the claim about 1/

!

"
…

Suppose G has n vertices. Then [repeating Karger’s
algorithm] finds a min cut in G with probability at

least 0.99 in time O(n4).

Now let’s prove the claim…
66

Claim

The probability that Karger’s algorithm returns a
minimum cut is

at least !" #
$

67

Now let’s prove that claim
Say that S* is a minimum cut.

• Suppose the edges that we choose are e1, e2, …, en-2

• PR[return S*] = PR[none of the ei cross S*]

= PR[e1 doesn’t cross S*]

× PR[e2 doesn’t cross S* | e1 doesn’t cross S*]

…

× PR[en-2 doesn’t cross S* | e1,…,en-3 don’t cross S*]

h

g

e

f
b

d

a

c

S*
68

Focus in on:

PR[ej doesn’t cross S* | e1,…,ej-1 don’t cross S*]

• Suppose: After j-1 iterations, we haven’t messed up yet!

• What’s the probability of messing up now?

g

e,h

f

d

a,b

c

{c,a}{c,b}
{d

,a}

{d
,b

}

{f,e}
{f,h}

{g,e
}

{g,h
}

{e,b}

{e,d}

These two edges

haven’t been chosen

for contraction!

69

Focus in on:

PR[ej doesn’t cross S* | e1,…,ej-1 don’t cross S*]

• Suppose: After j-1 iterations, we haven’t messed up yet!

• What’s the probability of messing up now?

g

f

d
c

a,b

e,h

• Say there are k edges that cross S*

• Every supernode has at least k (original) edges coming out.
• Otherwise we’d have a smaller cut.

• Thus, there are at least (n-j+1)k/2 edges total.
• b/c there are n - j + 1 supernodes left, each with k edges.

So the probability that we

choose one of the k edges

crossing S* at step j is at most:

!

"#$%& !

'

=
'

")$*&
70

Focus in on:

PR[ej doesn’t cross S* | e1,…,ej-1 don’t cross S*]

• So the probability that we choose one of the k edges
crossing S* at step j is at most:

!

"#$%& '

(

=
*

+,-./

• The probability we don’t choose one of the k edges is at
least:

1 −
*

+,-./
=

+,-,/

+,-./

g

f

d
c

a,b

e,h

71

Now let’s prove that claim
Say that S* is a minimum cut.

• Suppose the edges that we choose are e1, e2, …, en-2

• PR[return S*] = PR[none of the ei cross S*]

= PR[e1 doesn’t cross S*]

× PR[e2 doesn’t cross S* | e1 doesn’t cross S*]

…

× PR[en-2 doesn’t cross S* | e1,…,en-3 don’t cross S*]

h

g

e

f
b

d

a

c

S*
72

Now let’s prove that claim
Say that S* is a minimum cut.

• Suppose the edges that we choose are e1, e2, …, en-2

• PR[return S*] = PR[none of the ei cross S*]

=
!"#

!

!"$

!"%

!"&

!"#

!"'

!"$

!"(

!"&
⋯

&

(

$

'

#

&

%

$

h

g

e

f
b

d

a

c

S*
73

Now let’s prove that claim
Say that S* is a minimum cut.

• Suppose the edges that we choose are e1, e2, …, en-2

• PR[return S*] = PR[none of the ei cross S*]

=
!"#

!

!"$

!"%

!"&

!"#

!"'

!"$

!"(

!"&
⋯

&

(

$

'

#

&

%

$

=
#

! !"%

=	
%

,

-

h

g

e

f
b

d

a

c

S*

CLAIM PROVED

74

Theorem
Assuming the claim about 1/

!

"
…

Suppose G has n vertices. Then [repeating Karger’s
algorithm] finds a min cut in G with probability at

least 0.99 in time O(n4).

That proves this

Theorem!

75

What have we learned?

• If we randomly contract edges:

• It’s unlikely that we’ll end up with a min cut.

• But it’s not TOO unlikely

• By repeating, we likely will find a min cut.

• Repeating this process:

• Finds a global min cut in time O(n4), with probability 0.99.

• We can run a bit faster if we use a union-find data structure.

Here I chose ! = 0.01

just for concreteness.

76

More generally

• If we have a Monte-Carlo algorithm with a small
success probability,

• and we can check how good a solution is,

• Then we can boost the success probability by
repeating it a bunch and taking the best solution.

77

Can we do better?

• Repeating O(n2) times is pretty expensive.
• O(n4) total runtime to get success probability 0.99.

• The Karger-Stein Algorithm will do better!
• The trick is that we’ll do the repetitions in a clever way.

• O(n2log2(n)) runtime for the same success probability.

• Warning! This is a tricky algorithm! We’ll sketch the
approach here: the important part is the high-level idea,
not the details of the computations.

To see how we might save on repetitions,

let’s run through Karger’s algorithm again.
78

h

g

e

f

b

d

a

c

Karger’s algorithm

79

h

g

e

f

b

d

a

c

Karger’s algorithm

random

edge!

Probability that we didn’t mess up:

12/14

There are 14 edges, 12 of

which are good to contract.

80

h

g

e

f

b

d

a

c

Karger’s algorithm

Create a

supernode!

Create a

superedge!

Create a

superedge!

81

h

g

e

f

d

a,b

c

Karger’s algorithm

Create a

supernode!

Create a

superedge!

Create a

superedge! {c,a}{c,b}
{d

,a}

{d
,b

}

{e,b}

82

h

g

e

f

d

a,b

c

Karger’s algorithm

{c,a}{c,b}
{d

,a}

{d
,b}

random

edge!

{e,b}

Probability that we didn’t mess up:

11/13

Now there are only 13 edges,

since the edge between a and b

disappeared.

83

h

g

e

f

d

a,b

c

Karger’s algorithm

Create a

supernode!

{c,a}{c,b}
{d

,a}

{d
,b

}

Create a

superedge!

Create a

superedge!

{e,b}

84

g

e,h

f

d

a,b

c

Karger’s algorithm

Create a

supernode!

{c,a}{c,b}
{d

,a}

{d
,b

}

Create a

superedge!

Create a

superedge!

{f,e}
{f,h}

{g,e}

{g,h
}

{e,b}

{e,d}

85

g

e,h

f

d

a,b

c

Karger’s algorithm

{c,a}{c,b}
{d

,a}

{d
,b}

{f,e}
{f,h}

{g,e}

{g,h
}

random

edge!

{e,b}

{e,d}

Probability that we didn’t mess up:

10/12

Now there are only 12 edges,

since the edge between e and h

disappeared.

86

g

e,h

f

a,b

Karger’s algorithm

{c,a}

{c,b}

{d,a}

{d,b}

{f,e}
{f,h}

{g,e}

{g,h
}

c,d

{e,b}

{e,d}

87

g

e,h

f

a,b

Karger’s algorithm

{c,a}

{c,b}

{d,a}

{d,b}

{f,e}
{f,h}

{g,e}

{g,h
}

c,d

{e,b}

{e,d}

random edge!

(We pick at

random from

the original

edges).

Probability that we didn’t mess up:

9/11

88

g

e,h

f

a,b,c,d

Karger’s algorithm

{f,e}
{f,h}

{g,e}

{g,h
}

{e,b} {e,d}

89

g

e,h

f

a,b,c,d

Karger’s algorithm

{f,e}
{f,h}

{g,e}

{g,h
}

{e,b} {e,d} random

edge!

Probability that we didn’t mess up:

5/7

90

e,h,g

f

a,b,c,d

Karger’s algorithm

{f,e}
{f,h}

{f,g}

{e,b} {e,d}

91

e,h,g

f

a,b,c,d

Karger’s algorithm

{f,e}
{f,h}

{f,g}

{e,b} {e,d} random

edge!

Probability that we didn’t mess up:

3/5

92

e,h,g,f

a,b,c,d

Karger’s algorithm

{e,b} {e,d}

93

e,h,g,f

a,b,c,d

Karger’s algorithm

{e,b} {e,d}

Now stop!
• There are only two nodes left.

94

Probability of not messing up

• At the beginning, it’s pretty likely we’ll be fine.

• The probability that we mess up gets worse and
worse over time.

12/14 11/13 10/12 9/11

5/7

3/5
Moral:

Repeating the stuff from

the beginning of the

algorithm is wasteful!
iteration

p
ro

b
a

b
il

it
y

o
f

su
cc

e
ss

95

Instead…
h

g

e

f
b

d

a

c

h

g

e

f

d

a,b

c

h

e

d

a,b

c

f,g

h

e

d

a,b

c

f,g

h

e

d

a,b

c

f,g

e

d

a,b

c

f,g,h

h
d

a,b,e

c

f,g

Contract!

Contract!

Contract!

Contract!

FORK!

etc
etc

This branch

made a bad

choice.

But it’s okay since

this branch made

a good choice.

96

In words

• Run Karger’s algorithm on G for a bit.

• Until there are
!

"
supernodes left.

• Then split into two independent copies, G1 and G2

• Run Karger’s algorithm on each of those for a bit.

• Until there are

#

$

"
=
%

"
supernodes left in each.

• Then split each of those into two independent copies…

Why
!

"

? We’ll s
ee later.

97

In pseudocode

• KargerStein(G = (V,E)):

• n ← |V|

• if n < 4:

• find a min-cut by brute force \\ time O(1)

• Run Karger’s algorithm on G with independent

repetitions until
"

#
nodes remain.

• G1, G2 ← copies of what’s left of G

• S1 = KargerStein(G1)

• S2 = KargerStein(G2)

• return whichever of S1, S2 is the smaller cut.

98

Recursion

tree

n nodes

!

"
nodes

Contract a

bunch of edges

!

"
nodes

!

"
nodes

Make 2

copies

!

#
nodes

Contract a

bunch of edges

!

#

nodes

Make 2

copies

!

#

nodes

!

#
nodes

Contract a

bunch of edges

!

#

nodes

Make 2

copies

!

#

nodes

!

$

nodes

!

$

nodes

!

$

nodes

!

$

nodes
%

8

nodes
99

Recursion tree

• depth is log $ % =
'() *

'()($)
= 2log(%)

• number of leaves is 22log(n) = n2

n nodes

*

$

nodes

Contract a

bunch of edges

*

$

nodes

*

$

nodes

Make 2

copies

*

.

nodes

*

.

nodes

Contract a

bunch of

edges

Contract a

bunch of

edges

This counts as one level

for this analysis

This counts as one level

for this analysis

100

Two questions

• Does this work?

• Is it fast?

101

At the jth level

!

"#/%

nodes

Contract a

bunch of edges

Make 2

copies

!

"(#'()/%

nodes

!

"(#'()/%

nodes

!

"(#'()/%

nodes

• The amount of work per level is

the amount of work needed to

reduce the number of nodes by

a factor of 2.

• That’s at most O(n2).
• since that’s the time it takes to

run Karger’s algorithm once,

cutting down the number of

supernodes to two.

• Our recurrence relation is…

T(n) = 2T(n/ 2) + O(n2)

• The Master Theorem says…

T(n) = O(n2log(n))

Jedi Master Yoda
102

Two questions

• Does this work?

• Is it fast?

• Yes, O(n2log(n)).

103

Why n/ 2 ?

• Suppose the first n-t edges that we choose are

e1, e2, …, en-t

• PR[none of e1, e2, …, en-t cross S*]

= PR[e1 doesn’t cross S*]

× PR[e2 doesn’t cross S* | e1 doesn’t cross S*]

…

× PR[en-t doesn’t cross S* | e1,…,en-t-1 don’t cross S*]

Suppose we contract n – t edges, until

there are t supernodes remaining.

104

Why n/ 2 ?

• Suppose the first n-t edges that we choose are

e1, e2, …, en-t

• PR[none of e1, e2, …, en-t cross S*]

=
$%&

$

$%'

$%(

$%)

$%&

$%*

$%'

$%+

$%)
⋯

-.(

-.'

-

-.&

-%(

-.(

=
-⋅(-%()

$⋅($%()

=

2

3
⋅
2

3
%(

$⋅($%()
≈

5

6

Choose 7 = 9/ 6

when n is large

Suppose we contract n – t edges, until

there are t supernodes remaining.

105

Recursion

tree

n nodes

!

"
nodes

Contract a

bunch of edges

!

"
nodes

!

"
nodes

Make 2

copies

!

#
nodes

Contract a

bunch of edges

!

#

nodes

Make 2

copies

!

#

nodes

!

#
nodes

Contract a

bunch of edges

!

#

nodes

Make 2

copies

!

#

nodes

!

$

nodes

!

$

nodes

!

$

nodes

!

$

nodes

Pr[failure] = 1/2

Pr[failure] = 1/2Pr[failure] = 1/2

Pr[failure] = 1/2Pr[failure] = 1/2

etc.
106

Probability
of success

n nodes

!

"
nodes

!

"
nodes

!

"
nodes

Make 2

copies

!

#
nodes

!

#

nodes

Make 2

copies

!

#

nodes

!

#
nodes

!

#

nodes

Make 2

copies

!

#

nodes

!

$

nodes

!

$

nodes

!

$

nodes

!

$

nodes

Is the probability that there’s

a path from the root to a leaf

with no failures.

Each with

probability 1/2

or

107

The problem we need to analyze

• Let T be binary tree of depth 2log(n)

• Each node of T succeeds or fails independently with
probability 1/2

• What is the probability that there’s a path from the
root to any leaf that’s entirely successful?

108

Analysis
• Say the tree has height d.

• Let !" be the probability that
there’s a path from the root to a

leaf that doesn’t fail.

• #$ =
&

'
⋅ Pr

• =
&

'
⋅

Pr + Pr

−Pr

• =
&

'
⋅ #$-& + #$-& − #$-&

'

• = #$-& −
&

'
⋅ #$-&

'

2$/'

nodes

Contract a

bunch of

edges

Make 2

copies

2($-&)/'

nodes

2($-&)/'

nodes

2($-&)/'

nodes

at least one subtree

has a successful path

wins wins

both win

109

It’s a recurrence relation!

• !" = !"$% −
%

'
⋅ !"$%

'

• !) = 1

• We are real good at those.

• In this case, the answer is:

• Claim: for all d, !" ≥
%

",%

Prove this! (Or see

hidden slide for a proof).

Siggi the Studious Stork110

Recurrence relation

• Claim: for all d, !" ≥
$

"%$

• Proof: induction on d.

• !" = !"'$ −
$

)
⋅ !"'$

)

• !+ = 1

• Base case: 1 ≥ 1. YEP.

• Inductive step: say d > 0.

• Suppose that !"'$ ≥
$

"
.

• !" = !"'$ −
$

)
⋅ !"'$

)

• ≥
$

"
−
$

)
⋅
$

".

• ≥
$

"
−

$

" "%$

• =
$

"%$ This slide

skipped in class
111

What does that mean for Karger-Stein?

• For d = 2log(n)

• that is, d = the height of the tree:

!"#$%(') ≥
1

2log(/) + 1

• aka,

Pr[Karger-Stein is successful] = Ω
2

#$% '

Claim: for all d, !3 ≥
2

342

112

Altogether now

• We can do the same trick as before to amplify the
success probability.

• Run Karger-Stein ! log % ⋅ log
'

(
times to achieve

success probability 1 − +.

• Each iteration takes time ! %- log %
• That’s what we proved before.

• Choosing + = 0.01 as before, the total runtime is

! %- log % ⋅ log % = ! %- log- %

Much better than O(n4)!
113

What have we learned?

• Just repeating Karger’s algorithm isn’t the best use
of repetition.

• We’re probably going to be correct near the beginning.

• Instead, Karger-Stein repeats when it counts.

• If we wait until there are
!

"
nodes left, the probability

that we fail is close to ½.

• This lets us (probably) find a global minimum cut in

an undirected graph in time O(n2 log2(n)).

• Notice that we can’t do better than n2 in a dense graph

(we need to look at all the edges), so this is pretty good.

114

Recap

• Some algorithms:

• Karger’s algorithm for global min-cut

• Improvement: Karger-Stein

• Some concepts:

• Monte Carlo algorithms:

• Might be wrong, are always fast.

• We can boost their success probability with repetition.

• Sometimes we can do this repetition very cleverly.

115

Next time

• Recap of what we’ve done this quarter

• What’s next???

• Reminder: Please complete course evaluations!

116

