
Lecture 16

Min Cut and Karger’s Algorithm
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Announcements

• HW 7 due Friday

• HW 8 released Friday

• Psych!  There is no HW8.

• Question from last time: 

• Does Prim’s algorithm work with negative edge weights?

• After all, it looks a lot like Dijkstra…

• Answer is yes! Prim works fine with negative edge weights. 

• To convince yourself, go through the proof and make sure it still 

works.

• (Where did we use the fact that the weights were non-negative for 

Dijkstra?)
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More announcements: Final exam!

• Thursday 3/21, 8:30-11:30am
• Last name A-LIA: Cubberley Auditorium
• Last name LIB-Z: Hewlett 200

• Similar format to the midterm
• (Maybe a bit shorter per time allotted)
• You are allowed TWO pages of cheat sheet.

• Cumulative, but with focus on the second half of the course.
• Today’s material is fair game but will not be heavily emphasized.
• Wednesday’s lecture will not have any new material that will be on 

the final.

• Resources available:
• Practice Final (up soon)
• Section this week will be final review
• Office Hours 
• Slides, CLRS, lecture videos, IPython Notebooks, last year’s lecture 

notes, …
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How should I study for the final 
exam?

1. Do practice problems!

• Practice Exam

• Sections

• CLRS/Kleinberg and Tardos/…

• Google “Practice problems about ____”

2. Do practice problems!

3. Spend some time making your cheat sheet

4. Review the HW – at least one exam question will 
be very similar to an HW problem.
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Piazza Heroes!
Plus everyone who contributes in the 

comments!  (Piazza doesn’t give me a 

“top” list for that…)



One last announcement

• Course feedback is now open!

• Go to Axess > Student > Course and select 
“Evaluations.”

• Please fill this out!

• Your feedback is extremely helpful in making this 
class better going forward!
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Last time

• Minimum Spanning Trees!

• Prim’s Algorithm

• Kruskal’s Algorithm
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Today

• Minimum Cuts!

• Karger’s algorithm

• Karger-Stein algorithm

• Back to randomized algorithms!
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Recall: cuts in graphs

• A cut is a partition of the vertices into two nonempty
parts.

*For today, all graphs 

are undirected and  

unweighted.
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Recall: cuts in graphs

• A cut is a partition of the vertices into two nonempty
parts.

Part 1 Part 2

*For today, all graphs 

are undirected and  

unweighted.
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This is not a cut
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This is a cut
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This is a cut
These edges cross the cut.

• They go from one part to the other.
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A (global) minimum cut
is a cut that has the fewest edges possible crossing it.

14



A (global) minimum cut
is a cut that has the fewest edges possible crossing it.
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Why might we care about global 
minimum cuts?

• Clustering:

• Image Segmentation

big edge 

weights* 

between similar 

pixels.  

*For the rest of today edges aren’t weighted; but the algorithm can be adapted to deal with edge weights.
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Karger’s algorithm

• Finds global minimum cuts in undirected graphs

• Randomized algorithm

• Karger’s algorithm might be wrong.

• Compare to QuickSort, which just might be slow.

• Why would we want an algorithm that might be 

wrong?

• With high probability it won’t be wrong.

• Maybe the stakes are low and the cost of a 
deterministic algorithm is high.
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Different sorts of gambling

• QuickSort is a Las Vegas randomized algorithm

• It is always correct.

• It might be slow.  

Yes, this is a 

technical term.
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Different sorts of gambling

• Karger’s Algorithm is a Monte Carlo randomized algorithm

• It is always fast.

• It might be wrong.   
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Karger’s algorithm

• Pick a random edge.

• Contract it.

• Repeat until you only have two vertices left.

Why is this a good idea?  We’ll see shortly.

b

a

b
a

New node!
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Karger’s algorithm
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c

Karger’s algorithm

random 

edge!
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e
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d

a

c

Karger’s algorithm

Create a 

supernode!

Create a 

superedge!

Create a 

superedge!
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Karger’s algorithm

Create a 

supernode!

Create a 

superedge!

Create a 

superedge! {c,a}{c,b}
{d

,a}

{d
,b

}

{e,b}
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Karger’s algorithm

{c,a}{c,b}
{d

,a}

{d
,b

}

random 

edge!

{e,b}
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Karger’s algorithm

Create a 

supernode!

{c,a}{c,b}
{d

,a}

{d
,b

}

Create a 

superedge!

Create a 

superedge!

{e,b}
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g

e,h

f

d

a,b

c

Karger’s algorithm

Create a 

supernode!

{c,a}{c,b}
{d

,a}

{d
,b

}

Create a 

superedge!

Create a 

superedge!

{f,e}
{f,h}

{g,e}

{g,h
}

{e,b}

{e,d}
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e,h
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Karger’s algorithm

{c,a}{c,b}
{d

,a}

{d
,b

}

{f,e}
{f,h}

{g,e}

{g,h
}

random 

edge!

{e,b}

{e,d}
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e,h

f

a,b

Karger’s algorithm

{c,a}

{c,b}

{d,a}

{d,b}

{f,e}
{f,h}

{g,e}

{g,h
}

c,d

{e,b}

{e,d}
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g

e,h

f

a,b

Karger’s algorithm

{c,a}

{c,b}

{d,a}

{d,b}

{f,e}
{f,h}

{g,e}

{g,h
}

c,d

{e,b}

{e,d}

random edge!
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g

e,h

f

a,b,c,d

Karger’s algorithm

{f,e}
{f,h}

{g,e}

{g,h
}

{e,b} {e,d}
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g

e,h

f

a,b,c,d

Karger’s algorithm

{f,e}
{f,h}

{g,e}

{g,h
}

{e,b} {e,d} random 

edge!
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e,h,g

f

a,b,c,d

Karger’s algorithm

{f,e}
{f,h}

{f,g}

{e,b} {e,d}
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e,h,g

f

a,b,c,d

Karger’s algorithm

{f,e}
{f,h}

{f,g}

{e,b} {e,d} random 

edge!
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e,h,g,f

a,b,c,d

Karger’s algorithm

{e,b} {e,d}

Now stop!
• There are only two nodes left.

The minimum cut is given by 

the remaining super-nodes:
• {a,b,c,d} and {e,h,f,g}
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h
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e
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d

a

c

Karger’s algorithm

The minimum cut is given by 

the remaining super-nodes:
• {a,b,c,d} and {e,h,f,g}

36



Karger’s algorithm

• Does it work?

• Is it fast?
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How do we implement this?

• See Lecture 16 IPython Notebook for one way 

• This maintains a secondary “superGraph” which keeps 

track of superNodes and superEdges

• There’s a skipped slide with pseudocode

• Running time?

• We contract n-2 edges

• Each time we contract an edge we get rid of a vertex, and we 

get rid of n – 2 vertices total.

• Naively each contraction takes time O(n)

• Maybe there are Ω " nodes in the superNodes that we are 
merging.  (We can do better with fancy data structures).

• So total running time O(n2).

• We can do #(% ⋅ ' " ) with a union-find data structure, but 
#(")) is good enough for today. 38



Pseudocode

• Karger( G=(V,E) ):
• Γ = { SuperNode(v) : v in V }    // one supernode for each vertex

• #$%,$' = {(u,v)} for (u,v) in E   // one superedge for each edge

• #$%,$' = {} for (u,v) not in E.

• F = copy of E                                                                 // we’ll choose randomly from F

• while |Γ| > 2:
• (u,v) ← uniformly random edge in F

• merge( u, v )      

// merge the SuperNode containing u with the SuperNode containing v.

• ) ← ) ∖ #$%,$'
// remove all the edges in the SuperEdge between those SuperNodes.

• return the cut given by the remaining two superNodes.

• merge( u, v ):                                  // merge also knows about Γ and the #%,' ‘s

• $+ = SuperNode( $% ∪ $' )   // create a new supernode

• for each w in Γ ∖ {$%, $'}:

• #$+,$/ = #$%,$/ ∪ #$',$/
• Remove $% and $' from Γ and add $+.

merge takes time O(n) naively 

The while loop runs n-2 times

total runtime O(n2)

We can do a bit better with 

fancy data structures, but 

let’s go with this for now.

Let $% denote the SuperNode in Γ containing u

Say #$%,$' is the SuperEdge between $%, $'. 

This slide skipped in class
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Karger’s algorithm

• Does it work?

• Is it fast?

• O(n2)

Think-pair-share!

h

g

e

f

b

d

a

c

Create a 

supernode!

Create a 

superedge!

Create a 

superedge!

Algorithm:

• Randomly contract edges until there are only 

two supernodes left.
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Karger’s algorithm

• Does it work?

• Is it fast?

• O(n2)

h

g

e

f

b

d

a

c

Create a 

supernode!

Create a 

superedge!

Create a 

superedge!

Algorithm:

• Randomly contract edges until there are only 

two supernodes left.

No?
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Why did that work?

•We got really lucky!

• This could have gone wrong in so many ways.
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Karger’s algorithm

random 

edge!

Say we had chosen this edge
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h

g

f
b,e

d

a

c

Karger’s algorithm Say we had chosen this edge

Now there is no way we could return a cut 

that separates b and e.
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h

g

e

f

b

d

a

c

Even worse

If the algorithm EVER chooses either of these edges, 

it will be wrong.
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How likely is that?

• For this particular graph, I did it 10,000 times:

h

g

e

f
b

d

a

c

The algorithm is 

only correct about 

20% of the time!
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That doesn’t sound good

• Too see why it’s good after all, we’ll do a case study 
of this graph.

• To see the first point, let’s compare Karger’s 
algorithm to the algorithm:

The plan:

• See that 20% chance of correctness is 

actually nontrivial.

• Use repetition to boost an algorithm 

that’s correct 20% of the time to an 

algorithm that’s correct 99% of the time.

h

g

e

f
b

d

a

c

Choose a completely random cut 

and hope that it’s a minimum cut. 47



Uniformly random cut

• Pick a random way to split the vertices into two parts:

etc48



Uniformly random cut

• Pick a random way to split the vertices into two parts:

• The probability of choosing the minimum cut is*…

number ofmin cuts in that graph

number of ways to split 8 vertices in 2 parts
=

2

28 − 2
≈ 0.008

• Aka, we get a minimum cut 0.8% of the time.

*For this example in particular
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Karger is better than completely random!

Karger’s alg. is correct 

about 20% of the time

Completely random is 

correct about 0.8% of 

the time

h

g

e

fb

d

a

c
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What’s going on?

• Which is more likely?

• Neither A nor B are very likely, but A is more likely than B.

h

g

e

f
b

d

a

c

h

g

e

f
b

d

a

c

A: The algorithm never 

chooses either of the 

edges in the minimum cut.

B: The algorithm never 

chooses any of the edges 

in this big cut.

Lucky the 

lackadaisical lemur

Thing 1: It’s unlikely that 

Karger will hit the min cut 

since it’s so small!
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What’s going on?

h

g

e

f
b

d

a

c

h

g

e

f
b

d

a

c

A: This cut can be returned 

by Karger’s algorithm.

B: This cut can’t be returned by 

Karger’s algorithm!  

(Because how would a and g end up 

in the same super-node?)

Lucky the 

lackadaisical lemur

Thing 2: By only contracting 

edges we are ignoring certain 

really-not-minimal cuts.

This cut actually separates the graph into three pieces, so it’s 

not minimal – either half of it is a smaller cut.52



Why does that help?

• Okay, so it’s better than completely random…

• We’re still wrong about 80% of the time.

• The main idea: repeat!

• If I’m wrong 20% of the time, then if I repeat it a few 

times I’ll eventually get it right.

The plan:

• See that 20% chance of 

correctness is actually nontrivial.

• Use repetition to boost an 

algorithm that’s correct 20% of the 

time to an algorithm that’s correct 

99% of the time. 53



Thought experiment
from pre-lecture exercise

• Suppose you have a magic button that produces one of 5 
numbers, {a,b,c,d,e}, uniformly at random when you push it.

• You don’t know what {a,b,c,d,e} are.

• Q: What is the minimum of a,b,c,d,e?

6
3

3
2 2

5 5

How many times do you have to push the button, in 

expectation, before you see the minimum value? 

What is the probability that you have to push it 

more than 5 times?  10 times?
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[This was done on the board]

• E[                         ] = 1/(0.20) = 5

• Pr[                        ] = (1 − 0.2)(

• Pr[                          ] = (1 − 0.2)) ≈ 0.33

• Pr[                          ] = (1 − 0.2),- ≈ 0.1

Slide skipped in class
Number of times 

we push the button 

until we get the 

minimum value

This is the same calculation 

we’ve done a bunch of times:

We push the button 

t times and don’t 

ever get the min

We push the button 

5 times and don’t 

ever get the min

We push the button 

10 times and don’t 

ever get the min

This one we’ve done less frequently:
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In this context

• Run Karger’s!  The cut size is 6!

• Run Karger’s!  The cut size is 3!

• Run Karger’s!  The cut size is 3!

• Run Karger’s!  The cut size is 2!

• Run Karger’s!  The cut size is 5!

If the success probability is about 20%, then if you run Karger’s

algorithm 5 times and take the best answer you get, that will likely 

be correct! (with probability about 0.66) 

Correct!
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For this particular graph

• Repeat Karger’s algorithm about 5 times, and we 
will get a min cut with decent probability.

• In contrast, we’d have to choose a random cut about 
1/0.008 = 125 times!

The plan:

• See that 20% chance of 

correctness is actually nontrivial.

• Use repetition to boost an 

algorithm that’s correct 20% of the 

time to an algorithm that’s correct 

most of the time.

h

g

e

fb

d

a

c

Hang on!  This “20%” figure just came 

from running experiments on this 

particular graph.  What about general 

graphs?  Can we prove something?

Plucky the pedantic penguin

Also, we should be a bit more 

precise about this “about 5 

times” statement.
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Questions
To generalize this approach to all graphs

1. What is the probability that Karger’s algorithm 
returns a minimum cut?

2. How many times should we run Karger’s
algorithm to “probably” succeed?

• Say, with probability 0.99?

• Or more generally, probability 1 − # ?
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Answer to Question 1

The probability that Karger’s algorithm returns a 
minimum cut is 

at least !" #
$

In this case, !" %
$
= 0.036, so we are 

guaranteed to win at least 3.6% of the time.

h

g

e

f

b

d

a

c

Claim:
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Questions

1. What is the probability that Karger’s algorithm 
returns a minimum cut?

2. How many times should we run Karger’s
algorithm to “probably” succeed?

• Say, with probability 0.99?

• Or more generally, probability 1 − # ?

According to the claim, at least  
%

&

'

60



Before we prove the Claim

2. How many times should we run Karger’s
algorithm to succeed with probability 1 − # ?

h

g

e

f
b

d

a

c
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A computation

• Suppose :

• the probability of successfully returning a minimum cut is ! ∈ #, % , 

• we want failure probability at most & ∈ 0,1 .

• Pr[ don′t return amin cut in T trials ] = 1 − > ?

• So p = 1/
@
A

by the Claim.  Let’s choose T = 
@
A

ln(1/&) .

• Pr[ don′t return a min cut in T trials ]
• = 1 − > ?

• ≤ EFG ?

• = EFG?

• = E
F HI

J

K

• = &

1 − p ≤ EFG

Punchline: If we repeat T = 
M
N

ln(%/O) times, 

we win with probability at least % − O.

1 − p

EFG
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Answers

1. What is the probability that Karger’s algorithm 
returns a minimum cut?

2. How many times should we run Karger’s
algorithm to “probably” succeed?

• Say, with probability 0.99?

• Or more generally, probability 1 − # ?

According to the claim, at least  
%

&

'

(

)
ln

%

,
times. 
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Theorem
Assuming the claim about 1/

!
"
…

• Suppose G has n vertices.

• Consider the following algorithm:
• bestCut = None

• for t = 1,… , !
"
ln

*

+
:

• candidateCut ← Karger(G)

• if candidateCut is smaller than bestCut:

• bestCut ← candidateCut

• return bestCut

• Then Pr[ this doesn6t return a min cut ] ≤ =.

How many repetitions 

would you need if 

instead of Karger we 

just chose a uniformly 

random cut?
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What’s the running time?

•
!

"
ln

%

&
repetitions, and O(n2) per repetition.

• So, ' (
"
⋅

!

"
ln

%

&
= O n

,

Again we can do better with a union-find 

data structure. Write pseudocode for—or 

better yet, implement—a fast version of 

Karger’s algorithm!  How fast can you 

make the asymptotic running time?

Ollie the over-achieving ostrich

Treating - as 

constant.
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Theorem
Assuming the claim about 1/

!

"
…

Suppose G has n vertices.  Then [repeating Karger’s
algorithm] finds a min cut in G with probability at 

least 0.99 in time O(n4).

Now let’s prove the claim…
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Claim

The probability that Karger’s algorithm returns a 
minimum cut is 

at least !" #
$
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Now let’s prove that claim
Say that S* is a minimum cut.

• Suppose the edges that we choose are e1, e2, …, en-2

• PR[ return S* ] = PR[ none of the ei cross S* ]

= PR[ e1 doesn’t cross S* ]

× PR[ e2 doesn’t cross S* | e1 doesn’t cross S* ] 

…

× PR[ en-2 doesn’t cross S* | e1,…,en-3 don’t cross S* ]

h

g

e

f
b

d

a

c

S*
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Focus in on:

PR[ ej doesn’t cross S* | e1,…,ej-1 don’t cross S* ]

• Suppose: After j-1 iterations, we haven’t messed up yet!

• What’s the probability of messing up now?

g

e,h

f

d

a,b

c

{c,a}{c,b}
{d

,a}

{d
,b

}

{f,e}
{f,h}

{g,e
}

{g,h
}

{e,b}

{e,d}

These two edges 

haven’t been chosen 

for contraction!
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Focus in on:

PR[ ej doesn’t cross S* | e1,…,ej-1 don’t cross S* ]

• Suppose: After j-1 iterations, we haven’t messed up yet!

• What’s the probability of messing up now?

g

f

d
c

a,b

e,h

• Say there are k edges that cross S*

• Every supernode has at least k (original) edges coming out.
• Otherwise we’d have a smaller cut.

• Thus, there are at least (n-j+1)k/2 edges total.
• b/c there are n - j + 1 supernodes left, each with k edges.

So the probability that we 

choose one of the k edges 

crossing S* at step j is at most:

!

"#$%& !

'

=
'

")$*&
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Focus in on:

PR[ ej doesn’t cross S* | e1,…,ej-1 don’t cross S* ]

• So the probability that we choose one of the k edges 
crossing S* at step j is at most:

!

"#$%& '

(

=
*

+,-./

• The probability we don’t choose one of the k edges is at 
least:

1 −
*

+,-./
=

+,-,/

+,-./

g

f

d
c

a,b

e,h
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Now let’s prove that claim
Say that S* is a minimum cut.

• Suppose the edges that we choose are e1, e2, …, en-2

• PR[ return S* ] = PR[ none of the ei cross S* ]

= PR[ e1 doesn’t cross S* ]

× PR[ e2 doesn’t cross S* | e1 doesn’t cross S* ] 

…

× PR[ en-2 doesn’t cross S* | e1,…,en-3 don’t cross S* ]

h

g

e

f
b

d

a

c

S*
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Now let’s prove that claim
Say that S* is a minimum cut.

• Suppose the edges that we choose are e1, e2, …, en-2

• PR[ return S* ] = PR[ none of the ei cross S* ]

=
!"#

!

!"$

!"%

!"&

!"#

!"'

!"$

!"(

!"&
⋯

&

(

$

'

#

&

%

$

h

g

e

f
b

d

a

c

S*
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Now let’s prove that claim
Say that S* is a minimum cut.

• Suppose the edges that we choose are e1, e2, …, en-2

• PR[ return S* ] = PR[ none of the ei cross S* ]

=
!"#

!

!"$

!"%

!"&

!"#

!"'

!"$

!"(

!"&
⋯

&

(

$

'

#

&

%

$

= 
#

! !"%

=	
%

,

-

h

g

e

f
b

d

a

c

S*

CLAIM PROVED
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Theorem
Assuming the claim about 1/

!

"
…

Suppose G has n vertices.  Then [repeating Karger’s
algorithm] finds a min cut in G with probability at 

least 0.99 in time O(n4).

That proves this 

Theorem!
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What have we learned?

• If we randomly contract edges:

• It’s unlikely that we’ll end up with a min cut.

• But it’s not TOO unlikely

• By repeating, we likely will find a min cut.

• Repeating this process:

• Finds a global min cut in time O(n4), with probability 0.99.

• We can run a bit faster if we use a union-find data structure.

Here I chose ! = 0.01

just for concreteness.

76



More generally

• If we have a Monte-Carlo algorithm with a small 
success probability,

• and we can check how good a solution is, 

• Then we can boost the success probability by 
repeating it a bunch and taking the best solution.
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Can we do better?

• Repeating O(n2) times is pretty expensive.
• O(n4) total runtime to get success probability 0.99.

• The Karger-Stein Algorithm will do better!
• The trick is that we’ll do the repetitions in a clever way.

• O( n2log2(n) ) runtime for the same success probability.

• Warning!  This is a tricky algorithm!  We’ll sketch the 
approach here: the important part is the high-level idea, 
not the details of the computations.

To see how we might save on repetitions, 

let’s run through Karger’s algorithm again.
78



h

g

e

f

b

d

a

c

Karger’s algorithm
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h

g

e

f

b

d

a

c

Karger’s algorithm

random 

edge!

Probability that we didn’t mess up:

12/14

There are 14 edges, 12 of 

which are good to contract.

80



h

g

e

f

b

d

a

c

Karger’s algorithm

Create a 

supernode!

Create a 

superedge!

Create a 

superedge!
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h

g

e

f

d

a,b

c

Karger’s algorithm

Create a 

supernode!

Create a 

superedge!

Create a 

superedge! {c,a}{c,b}
{d

,a}

{d
,b

}

{e,b}
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h

g

e

f

d

a,b

c

Karger’s algorithm

{c,a}{c,b}
{d

,a}

{d
,b}

random 

edge!

{e,b}

Probability that we didn’t mess up:

11/13

Now there are only 13 edges, 

since the edge between a and b 

disappeared.
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h

g

e

f

d

a,b

c

Karger’s algorithm

Create a 

supernode!

{c,a}{c,b}
{d

,a}

{d
,b

}

Create a 

superedge!

Create a 

superedge!

{e,b}
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g

e,h

f

d

a,b

c

Karger’s algorithm

Create a 

supernode!

{c,a}{c,b}
{d

,a}

{d
,b

}

Create a 

superedge!

Create a 

superedge!

{f,e}
{f,h}

{g,e}

{g,h
}

{e,b}

{e,d}
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g

e,h

f

d

a,b

c

Karger’s algorithm

{c,a}{c,b}
{d

,a}

{d
,b}

{f,e}
{f,h}

{g,e}

{g,h
}

random 

edge!

{e,b}

{e,d}

Probability that we didn’t mess up:

10/12

Now there are only 12 edges, 

since the edge between e and h 

disappeared.
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g

e,h

f

a,b

Karger’s algorithm

{c,a}

{c,b}

{d,a}

{d,b}

{f,e}
{f,h}

{g,e}

{g,h
}

c,d

{e,b}

{e,d}
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g

e,h

f

a,b

Karger’s algorithm

{c,a}

{c,b}

{d,a}

{d,b}

{f,e}
{f,h}

{g,e}

{g,h
}

c,d

{e,b}

{e,d}

random edge!

(We pick at 

random from 

the original 

edges).

Probability that we didn’t mess up:

9/11

88



g

e,h

f

a,b,c,d

Karger’s algorithm

{f,e}
{f,h}

{g,e}

{g,h
}

{e,b} {e,d}
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g

e,h

f

a,b,c,d

Karger’s algorithm

{f,e}
{f,h}

{g,e}

{g,h
}

{e,b} {e,d} random 

edge!

Probability that we didn’t mess up:

5/7
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e,h,g

f

a,b,c,d

Karger’s algorithm

{f,e}
{f,h}

{f,g}

{e,b} {e,d}
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e,h,g

f

a,b,c,d

Karger’s algorithm

{f,e}
{f,h}

{f,g}

{e,b} {e,d} random 

edge!

Probability that we didn’t mess up:

3/5
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e,h,g,f

a,b,c,d

Karger’s algorithm

{e,b} {e,d}
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e,h,g,f

a,b,c,d

Karger’s algorithm

{e,b} {e,d}

Now stop!
• There are only two nodes left.
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Probability of not messing up

• At the beginning, it’s pretty likely we’ll be fine.

• The probability that we mess up gets worse and 
worse over time.

12/14 11/13 10/12 9/11

5/7

3/5
Moral:

Repeating the stuff from 

the beginning of the 

algorithm is wasteful!  
iteration

p
ro

b
a

b
il

it
y
 

o
f 

su
cc

e
ss
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Instead…
h

g

e

f
b

d

a

c

h

g

e

f

d

a,b

c

h

e

d

a,b

c

f,g

h

e

d

a,b

c

f,g

h

e

d

a,b

c

f,g

e

d

a,b

c

f,g,h

h
d

a,b,e

c

f,g

Contract!

Contract!

Contract!

Contract!

FORK!

etc
etc

This branch 

made a bad 

choice.

But it’s okay since 

this branch made 

a good choice.
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In words

• Run Karger’s algorithm on G for a bit.

• Until there are 
!

"
supernodes left.

• Then split into two independent copies, G1 and G2

• Run Karger’s algorithm on each of those for a bit.

• Until there are 

#

$

"
= 
%

"
supernodes left in each.

• Then split each of those into two independent copies…

Why 
!

"

? We’ll s
ee later.
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In pseudocode

• KargerStein(G = (V,E)):

• n ← |V|

• if n < 4:

• find a min-cut by brute force                    \\ time O(1)

• Run Karger’s algorithm on G with independent 

repetitions until 
"

#
nodes remain.

• G1, G2 ← copies of what’s left of G

• S1 = KargerStein(G1)

• S2 = KargerStein(G2)

• return whichever of S1, S2 is the smaller cut.
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Recursion 

tree

n nodes

!

"
nodes

Contract a 

bunch of edges

!

"
nodes

!

"
nodes

Make 2 

copies

!

#
nodes

Contract a 

bunch of edges

!

#

nodes

Make 2 

copies

!

#

nodes

!

#
nodes

Contract a 

bunch of edges

!

#

nodes

Make 2 

copies

!

#

nodes

!

$

nodes

!

$

nodes

!

$

nodes

!

$

nodes
%

8

nodes
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Recursion tree

• depth is log $ % =
'() *

'()( $)
= 2log(%)

• number of leaves is 22log(n) = n2

n nodes

*

$

nodes

Contract a 

bunch of edges

*

$

nodes

*

$

nodes

Make 2 

copies

*

.

nodes

*

.

nodes

Contract a 

bunch of 

edges

Contract a 

bunch of 

edges

This counts as one level

for this analysis

This counts as one level

for this analysis

100



Two questions

• Does this work?

• Is it fast?
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At the jth level

!

"#/%

nodes

Contract a 

bunch of edges

Make 2 

copies

!

"(#'()/%

nodes

!

"(#'()/%

nodes

!

"(#'()/%

nodes

• The amount of work per level is 

the amount of work needed to 

reduce the number of nodes by 

a factor of 2.

• That’s at most O(n2). 
• since that’s the time it takes to 

run Karger’s algorithm once, 

cutting down the number of 

supernodes to two.

• Our recurrence relation is…

T(n) = 2T(n/ 2) + O(n2)

• The Master Theorem says…

T(n) = O(n2log(n))

Jedi Master Yoda
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Two questions

• Does this work?

• Is it fast?

• Yes, O(n2log(n)).
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Why n/ 2 ?

• Suppose the first n-t edges that we choose are

e1, e2, …, en-t

• PR[ none of e1, e2, …, en-t cross S*]

= PR[ e1 doesn’t cross S* ]

× PR[ e2 doesn’t cross S* | e1 doesn’t cross S* ] 

…

× PR[ en-t doesn’t cross S* | e1,…,en-t-1 don’t cross S* ]

Suppose we contract n – t  edges, until 

there are t supernodes remaining.
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Why n/ 2 ?

• Suppose the first n-t edges that we choose are 

e1, e2, …, en-t

• PR[ none of e1, e2, …, en-t cross S*]

= 
$%&

$

$%'

$%(

$%)

$%&

$%*

$%'

$%+

$%)
⋯

-.(

-.'

-

-.&

-%(

-.(

= 
-⋅(-%()

$⋅($%()

= 

2

3
⋅
2

3
%(

$⋅($%()
≈

5

6

Choose 7 = 9/ 6

when n is large

Suppose we contract n – t  edges, until 

there are t supernodes remaining.
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Recursion 

tree

n nodes

!

"
nodes

Contract a 

bunch of edges

!

"
nodes

!

"
nodes

Make 2 

copies

!

#
nodes

Contract a 

bunch of edges

!

#

nodes

Make 2 

copies

!

#

nodes

!

#
nodes

Contract a 

bunch of edges

!

#

nodes

Make 2 

copies

!

#

nodes

!

$

nodes

!

$

nodes

!

$

nodes

!

$

nodes

Pr[ failure ] = 1/2

Pr[ failure ] = 1/2Pr[ failure ] = 1/2

Pr[ failure ] = 1/2Pr[ failure ] = 1/2

etc.
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Probability 
of success

n nodes

!

"
nodes

!

"
nodes

!

"
nodes

Make 2 

copies

!

#
nodes

!

#

nodes

Make 2 

copies

!

#

nodes

!

#
nodes

!

#

nodes

Make 2 

copies

!

#

nodes

!

$

nodes

!

$

nodes

!

$

nodes

!

$

nodes

Is the probability that there’s 

a path from the root to a leaf 

with no failures.

Each with 

probability 1/2

or
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The problem we need to analyze

• Let T be binary tree of depth 2log(n)

• Each node of T succeeds or fails independently with 
probability 1/2

• What is the probability that there’s a path from the 
root to any leaf that’s entirely successful?
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Analysis
• Say the tree has height d.

• Let !" be the probability that 
there’s a path from the root to a 

leaf that doesn’t fail.

• #$ =
&

'
⋅ Pr

• = 
&

'
⋅

Pr + Pr

−Pr

• = 
&

'
⋅ #$-& + #$-& − #$-&

'

• = #$-& −
&

'
⋅ #$-&

'

2$/'

nodes

Contract a 

bunch of 

edges

Make 2 

copies

2($-&)/'

nodes

2($-&)/'

nodes

2($-&)/'

nodes

at least one subtree 

has a successful path

wins wins

both win
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It’s a recurrence relation!

• !" = !"$% −
%

'
⋅ !"$%

'

• !) = 1

• We are real good at those.  

• In this case, the answer is:

• Claim: for all d, !" ≥
%

",%

Prove this! (Or see 

hidden slide for a proof).

Siggi the Studious Stork110



Recurrence relation

• Claim: for all d, !" ≥
$

"%$

• Proof: induction on d.

• !" = !"'$ −
$

)
⋅ !"'$

)

• !+ = 1

• Base case: 1 ≥ 1. YEP.

• Inductive step:  say d > 0.

• Suppose that !"'$ ≥
$

"
.

• !" = !"'$ −
$

)
⋅ !"'$

)

• ≥
$

"
−
$

)
⋅
$

".

• ≥
$

"
−

$

" "%$

• =
$

"%$ This slide 

skipped in class
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What does that mean for Karger-Stein?

• For d = 2log(n) 

• that is, d = the height of the tree:

!"#$%(') ≥
1

2log(/) + 1

• aka, 

Pr[ Karger-Stein is successful ] = Ω
2

#$% '

Claim: for all d, !3 ≥
2

342
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Altogether now

• We can do the same trick as before to amplify the 
success probability.

• Run Karger-Stein ! log % ⋅ log
'

(
times to achieve 

success probability 1 − +.

• Each iteration takes time ! %- log %
• That’s what we proved before.

• Choosing + = 0.01 as before, the total runtime is

! %- log % ⋅ log % = ! %- log- %

Much better than O(n4)!
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What have we learned?

• Just repeating Karger’s algorithm isn’t the best use 
of repetition.

• We’re probably going to be correct near the beginning.

• Instead, Karger-Stein repeats when it counts.

• If we wait until there are 
!

"
nodes left, the probability 

that we fail is close to ½.

• This lets us (probably) find a global minimum cut in 

an undirected graph in time O(n2 log2(n) ).

• Notice that we can’t do better than n2 in a dense graph 

(we need to look at all the edges), so this is pretty good.
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Recap

• Some algorithms:

• Karger’s algorithm for global min-cut

• Improvement: Karger-Stein

• Some concepts:

• Monte Carlo algorithms:

• Might be wrong, are always fast.

• We can boost their success probability with repetition.

• Sometimes we can do this repetition very cleverly.
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Next time

• Recap of what we’ve done this quarter

• What’s next???

• Reminder: Please complete course evaluations!
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