Lecture 16

Min Cut and Karger’s Algorithm

Announcements

* HW 7 due Friday

* HW 8 released Friday
* Psych! There is no HWS.

e Question from last time:

* Does Prim’s algorithm work with negative edge weights?
» After all, it looks a lot like Dijkstra...
* Answer is yes! Prim works fine with negative edge weights.

* To convince yourself, go through the proof and make sure it still
works.

* (Where did we use the fact that the weights were non-negative for
Dijkstra?)

2

More announcements: Final exam!

e Thursday 3/21, 8:30-11:30am

e Last name A-LIA: Cubberley Auditorium
e Last name LIB-Z: Hewlett 200

e Similar format to the midterm

e (Maybe a bit shorter per time allotted)
* You are allowed TWO pages of cheat sheet.

 Cumulative, but with focus on the second half of the course.
* Today’s material is fair game but will not be heavily emphasized.
 Wednesday’s lecture will not have any new material that will be on
the final.
* Resources available:
* Practice Final (up soon)
e Section this week will be final review

e Office Hours

e Slides, CLRS, lecture videos, IPython Notebooks, last year’s lecture

notes, ... 3

How should | study for the final
exam?

1. Do practice problems!
* Practice Exam
* Sections
* CLRS/Kleinberg and Tardos/...
* Google “Practice problems about

124

Do practice problems!
3. Spend some time making your cheat sheet

4. Review the HW — at least one exam question will
be very similar to an HW problem.

Piazza Heroes!

Plus everyone who contributes in the
comments! (Piazza doesn’t give me a

“top” list for that...)

Top Student Answerers

Name, Email number of answers

Jabari Hastings |- 110
Ashish Paliwal ap 83

Fatima Broom fbr 80

Adam Leon 47

Pranav Jain 39

Michael Cooper % 37

Jiao Li 32
|

Richard Lin 28
|

Trenton Chang el

Xinlan Emily Hu » 28

Top Student Askers
Name, Email questions asked
Logan Pearce 63
Lydia Stone = 56
Pranav Jain ¢ 50
Fahim Tajwar 33
Roshini Ravi 33

Lara Bagdasarian 1 32
Fatima Broom 26
Juliet Okwara 26
Michael Cooper coc 22
Hasna 20

Top Student Contributors

228 contributions; 60 days online Pranav Jain
210 contributions; 60 days online Fatima B m
157 contributions; 60 days online Ashish Paliwal

156 contributions; 54 days online Jabari Hastings
140 contributions; 46 days online | ogan Pearce

Top Student "Endorsed Answer" Answerers

Name, Email number of endorsed answers
Ashish Paliwal oy 40
Jabari Hastings | 40
Fatima Broom i 33

Michael Cooper 15

Adam Leon 13
| Sumer Sao : 11
Richard Lin 10 Class At A Glance
Logan Pearce |o% 10
Jiao Li 10 1461 total poste

5815 total contributions™

1 10 1413 instructors' responses

861 students' responses
30 min avg. response time

Xinlan Emily Hu

One last announcement

* Course feedback is now open!

* Go to Axess > Student > Course and select
“Evaluations.”

e Please fill this out!

* Your feedback is extremely helpful in making this
class better going forward!

Last time

* Minimum Spanning Trees!
* Prim’s Algorithm
* Kruskal’s Algorithm

Today

* Minimum Cuts!
e Karger’s algorithm
e Karger-Stein algorithm

* Back to randomized algorithms!

*For today, all graphs
are undirected and

Recall: cuts in graphs amweighted.

* A cut is a partition of the vertices into two nonempty
parts.

*For today, all graphs
are undirected and

Recall: cuts in graphs amweighted.

* A cut is a partition of the vertices into two nonempty
parts. g

10

This is not a cut

This is a cut

These edges cross the cut.
 They go from one part to the other.

This is a cut

13

A (global) minimum cut

is a cut that has the fewest edges possible crossing it.

14

A (global) minimum cut

is a cut that has the fewest edges possible crossing it.

15

Why might we care about global
minimum cuts?

* Clustering: /

big edge
weights*
between similar

! / pixels.

* Image Segmentation pWowowEd e
SOROVORL IS
> TR
AR LR
S OS S SEN®
S C2OOOEX 29

——————— o’

16
*For the rest of today edges aren’t weighted; but the algorithm can be adapted to deal with edge weights.

Karger’s algorithm

* Finds global minimum cuts in undirected graphs
* Randomized algorithm

e Karger’s algorithm might be wrong.
* Compare to QuickSort, which just might be slow.

* Why would we want an algorithm that might be
wrong?
e With high probability it won’t be wrong.

* Maybe the stakes are low and the cost of a
deterministic algorithm is high.

17

Different sorts of gambling

* QuickSort is a Las Vegas randomized algorithm

* It is always correct. :eshtf_"s liia
ecnnical term.

* It might be slow.

Different sorts of gambling

e Karger’s Algorithm is a Monte Carlo randomized algorithm
* It is always fast.
* It might be wrong.

19

Karger’s algorithm

* Pick a random edge.
* Contract it.
* Repeat until you only have two vertices left.

New node!

Why is this a good idea? WEe’ll see shortly.
20

Karger’s algorithm

Karger’s algorithm

Create a
supernode!

——— —,
-
-

Create a
superedge!

23

Karger’s algorithm

Create a
Loy supernode!

/7 A

[b)

1 d,

1 1

N / {e/b,?
Create a
superedge! {Qa 1 Create a

Co !
) \6:‘;\\ superedge!

(—"

24

Karger’s algorithm

-
-~ Ss

Karger’s algorithm

-
- So

U4
g: a,b Create a
\

. / 84 2 superedge! /e

Create a
superedge!

Create a
supernode!

26

Karger’s algorithm

-
- So

U4
[ab Create a
5 superedge!

- -~
~
= ~

N 4

-

Create a
supernode!

Create a
superedge!

27

Karger’s algorithm

-
- So

random
edge!

s

28

Karger’s algorithm

-
- So

‘\\ d ;b /l ’f@, b}
N
{c,a}
{c,b}
{d,a}
LLLL {_d)b.} \\\\\\ /
[cd ;{e/}

NNNNN

29

Karger’s algorithm

-
- So

g)

Karger’s algorithm

—————
i Ss

31

Karger’s algorithm

random
edge!

32

Karger’s algorithm

~~~~~~~~
4 N

\\\\\\
55555

fffff
~
= N

N /
_______

33



Karger’s algorithm

{fg)
{fe)

{fh)

~ /
_______

random
edge!

34



Karger’s algorithm

Now stop!

* There are only two nodes left.

The minimum cut is given by

—————
7 Ss

%, theremaining super-nodes:
i abcd \ ° {ab,cd}and{eh,fg}
\\ /‘ )/@ ‘
M- 7 611 Ife,d/l ,
o W L] — ’, ----------
-~ .

’ 'l/ \“

I I‘ elhlglf ':

. \ /’

~
~ ’
________

35



The minimum cut is given by

o
Q
©
o
C
5
o o
S5
v o
o 2
R
c s
.m.\m
£ 5
L o
o S
<
) o
i
-+
r
(O
V)

]

Karger




Karger’s algorithm

 Does it work?

* |s it fast? ’

37



How do we implement this?

* See Lecture 16 IPython Notebook for one way

* This maintains a secondary “superGraph” which keeps
track of superNodes and superEdges

* There’s a skipped slide with pseudocode

* Running time?
* We contract n-2 edges

* Each time we contract an edge we get rid of a vertex, and we
get rid of n — 2 vertices total.

* Naively each contraction takes time O(n)

* Maybe there are 0(n) nodes in the superNodes that we are
merging. (We can do better with fancy data structures).

* So total running time O(n?).

e We can do O(m - a(n)) with a union-find data structure, but
0(n?) is good enough for today. 38



Pse U d OCO d e Let u denote the SuperNode in I" containing u

Say E3 5 is the SuperEdge between u, v.

o Karger( G=(V’E) ): This slide skipped in class

e [' ={SuperNode(v):vinV} // one supernode for each vertex
* Euw={(uv)}for(u,v)inkE // one superedge for each edge
* Eyp={}for(uyv)notinE.
e F=copyofE // we’ll choose randomly from F
’ Whlle l Fl > 2 The while loop runs n-2 times

* (u,v) < uniformly random edge in F

o merge( u, v ) merge takes time O(n) naively

// merge the SuperNode containing u with the SuperNode containing v.
* F < F\Egp
// remove all the edges in the SuperEdge between those SuperNodes.

return the cut given by the remaining two superNodes.

° mergE( u,v )Z // merge also knows about I and the E,,, ‘s
e X= SuperNode( uuvw ) // create a new supernode
. — — L3 2
« foreachwinT\ {u, v}: total runtime O(n?)
° Ef,v_v — Eﬁ,v_v U ET),V_V We can do a bit better with

fancy data structyres, but

e Remove u and v from I' and add x. let’s go with this for now.



Karger’s algorithm

* Does it work? ’

" Think-pair-share!

e |s it fast? Create a

-,

~ssupernode!
A

© O(nZ)

Create a
superedge!

Create a

superedge!
Algorithm:

* Randomly contract edges until there are only 20
two supernodes left.



Karger’s algorithm

e Does it work? ’

No?
 |s it fast? Create a
(] O(n2) -
Create a
superedge!

Create a

superedge!
Algorithm:

 Randomly contract edges until there are only i
two supernodes left.



Why did that work?

* We got really lucky!

* This could have gone wrong in so many ways.

5@

42




Ka rge r,S d |gO rlt h M Say we had chosen this edge




Ka rge r,S d |gO r|t h M Say we had chosen this edge

Now there is no way we could return a cut
that separates b and e.

44



Even worse

If the algorithm EVER chooses either of these edges,

it will be wrong. /

45



How likely is that?

* For this particular graph, | did it 10,000 times:

How often does Karger get minimum cuts? (out of 10K trials)

03 The algorithm is
N only correct about
o 04 20% of the time!
=
‘s
n 03
=
i
s
o 02
k=
QL
g
&= 01
0.0 T T T T

0 1 2 3 4 5 b 7
Size of cut

46



That doesn’t sound good

* Too see why it’s good after all, we’ll do a case study

of this graph.\

The plan:

* See that 20% chance of correctness is
actually nontrivial.

* Use repetition to boost an algorithm
that’s correct 20% of the time to an
algorithm that’s correct 99% of the time.

* To see the first point, let’s compare Karger’s
algorithm to the algorithm:

Choose a completely random cut
and hope that it’s a minimum cut. 47



Uniformly random cut

* Pick a random way to split the vertices into two parts:




Uniformly random cut

* Pick a random way to split the vertices into two parts:

* The probability of choosing the minimum cut is*...

number of min cuts in that graph

2
= ~ 0.008
number of ways to split 8 vertices in 2 parts 28 — 2

e Aka, we get a minimum cut 0.8% of the time.

49
*For this example in particular



Karger is better than completely random!

Frequency of different cut sizes (out of 10K trials)

Karger’s alg. is correct

0.4
about 20% of the time\g}}‘
% )
5]
> 02
Completely random is T
correct about 0.8% of D

hat size

I
=
ot

the time

e
(=}

.\

. completely random
BN karger

Size of cut

I|Iq
8 10

50




What’s going on?

* Which is more likely?

A: The algorithm never
chooses either of the
edges in the minimum cut.

Thing 1: It’s unlikely that
Karger will hit the min cut
since it’s so small!

Lucky the
lackadaisical lemur

B: The algorithm never
chooses any of the edges
in this big cut.

* Neither A nor B are very likely, but A is more likely than B.



Y . Thing 2: By only contracting
W h at S gO | ﬂ g O n ? edges we are ignoring certain

really-not-minimal cuts.

Lucky the
lackadaisical lemur

B: This cut can’t be returned by
Karger’s algorithm!

(Because how would a and g end up
in the same super-node?)

A: This cut can be returned
by Karger’s algorithm.

This cut actually separates the graph into three pieces, so it’s
not minimal — either half of it is a snller cut.



Why does that help?

e Okay, so it’s better than completely random...
* We're still wrong about 80% of the time.

* The main idea: repeat!

* If I'm wrong 20% of the time, then if | repeat it a few
times I'll eventually get it right.

The,plan:
fee that 20% chance of
correctness is actually nontrivial.

e Use repetition to boost an
algorithm that’s correct 20% of the
time to an algorithm that’s correct
99% of the time. 53




Thought experiment
from pre-lecture exercise

* Suppose you have a magic button that produces one of 5
numbers, {a,b,c,d,e}, uniformly at random when you push it.
* You don’t know what {a,b,c,d,e} are.

* Q: What is the minimum of a,b,c,d,e?

3 5 5
6 32 5,7

How many times do you have to push the button, in
expectation, before you see the minimum value?

What is the probability that you have to push it

more than 5 times? 10 times?




[This was done on the board]

This is the same calculation

we’ve done a bunch of times: S||de sk|pped in ClaSS

Number of times

° E[ we push the button ] — 1/(020) =5

until we get the
minimum value

This one we’ve done less frequently:

We push the button
o Pr[ t times and don’t ] = (1 — OZ)t

ever get the min

We push the button
° Pr[ 5 times and don’t ]= (1 — 02)5 ~ 0.33

ever get the min

We push the button 10
° Pr[ 10 times and don’t ] = (1 — 02) ~ 0.1
ever get the min

55



In this context

Q} * Run Karger’s! The cut size is 6!
@ * Run Karger’s! The cut size is 3!
@ * Run Karger’s! The cut size is 3!
@ * Run Karger’s! The cut size is 2! - Correct!

Q) * Run Karger’s! The cut size is 5!

If the success probability is about 20%, then if you run Karger’s
algorithm 5 times and take the best answer you get, that will likely
be correct! (with probability about 0.66)

56



For this particular graph

* Repeat Karger’s algorithm about 5 times, and we
will get a min cut with decent probability.

* |In contrast, we’d have to choose a random cut about
1/0.008 = 125 times!

Hang on! This “20%” figure just came
from running experiments on this

particular graph. What about general
i The plan:
graphs? Can we prove something?
See that 20% chance of
e Also, we should be a bit more correctness is actually nontrivial.
precise about this “about 5 "
i " ctat ¢ *4"Use repetition to boost an
'mes= statement. algorithm that’s correct 20% of the
Plucky the pedantic beneuin time to an algorithm that’s correct
Y P PEns most of the time. 57




®

Questions 9 99 g 6

To generalize this approach to all graphs

1. What is the probability that Karger’s algorithm
returns a minimum cut?

2. How many times should we run Karger’s
algorithm to “probably” succeed?

 Say, with probability 0.997
* Or more generally, probability 1 — 6 ?

58



Answer to Question 1

Claim:

The probability that Karger’s algorithm returns a
minimum cut is

at least 1
/)

In this case, 1/(8) = 0.036, so we are
2

guaranteed to win at least 3.6% of the time.



%

&b
Questions g " ag

1. What is the probability that Karger’s algorithm
returns a minimum cut?

2. How many times should we run Karger’s
algorithm to “probably” succeed?

 Say, with probability 0.997
* Or more generally, probability 1 — ¢ ?

60



Before we prove the Claim

2. How many times should we run Karger’s
algorithm to succeed with probability 1 — 6 ?

Success probability for repeating Karger's algorithm a bunch
10 A

(=)
]
L

o
h
1

(=]
o+

Empirical success probability

=
M

(=)
o

0 5 10 15 20 25 61 30
Number of repetitions



A CO m p u tat| O n Punchline: If we repeat T = ('2') In(1/48) times,

we win with probability at least 1 — 4.

* Suppose :
* the probability of successfully returning a minimum cutis p € [0, 1],
« we want failure probability at most § € (0,1).

 Pr[ don't return amincutin T trials ] = (1 — p)?
*Sop-= 1/(72‘) by the Claim. Let’s choose T = (g) In(1/0)

* Pr[ don't return a min cut in T trials ]

=1 -p)f
¢« < (e—p)T

o — o DT

. = ()

. =5




%

&b
Answers g " ag

1. What is the probability that Karger’s algorithm
returns a minimum cut?

2. How many times should we run Karger’s
algorithm to “probably” succeed?

 Say, with probability 0.997
* Or more generally, probability 1 — ¢ ?

63



Theorem
Assuming the claim about 1/(’21)

e Suppose G has n vertices.

* Consider the following algorithm:
e bestCut = None

e fort=1,..., (g)ln (%) :
e candidateCut « Karger(G)

e if candidateCut is smaller than bestCut:

* bestCut « candidateCut How many repetitions

e return bestCut would you need if
instead of Karger we

just chose a uniformly
random cut?

* Then Pr[ this doesn’t return a min cut | < 6.




What’s the running time?

. (’21) In (% repetitions, and O(n?) per repetition.
n

50,0 (- (3)In(5)) = 0" L

Again we can do better with a union-find
data structure. Write pseudocode for—or
better yet, implement—a fast version of
Karger’s algorithm! How fast can you
make the asymptotic running time?

Ollie the over-achieving ostrich
65



Theorem
Assuming the claim about 1/(’21)

Suppose G has n vertices. Then [repeating Karger’s
algorithm] finds a min cut in G with probability at
least 0.99 in time O(n%).

Now let’s prove the claim...



Claim

The probability that Karger’s algorithm returns a
minimum cut is

at least 1
/)

67




Now let’s prove that claim
Say that S* is a minimum cut.

* Suppose the edges that we choose are e, e, ..., €,
* PR[ return S* | = PR[ none of the e, cross S* ]
= PR[ e, doesn’t cross $* ]

X PR[ e, doesn’t cross S* | e; doesn’t cross S* |

X PR[ e, doesn’t cross S* | ey,...,e, 5 don’t cross S* ]

/J
I
I
/]
[
I (e
/|

I
l’ S¥ o8
I



Focus in on:
PR[ e, doesn’t cross S* | ey,...,e; ; don’t cross S* |

* Suppose: After j-1 iterations, we haven’t messed up yet!
* What'’s the probability of messing up now?

69




Focus in on:
PR[ e, doesn’t cross S* | ey,...,.e;; don't cross S* |

* Suppose: After j-1 iterations, we haven’t messed up yet!
* What'’s the probability of messing up now?

* Say there are k edges that cross S*

* Every supernode has at least k (original) edges coming out.
e Otherwise we’d have a smaller cut.

* Thus, there are at least (n-j+1)k/2 edges total.
* b/ctherearen-j+1supernodes left, each with k edges.

So the probability that we b i (D\.
choose one of the k edges \ 2 I' @
crossing S* atstepjisatmost: /N T~ L.

A

k — 2 v ( eh ]
(n_j+1)k Il 7 S .o ’
( _ ) n—j+1 c ~X )




Focus in on:
PR[ e, doesn’t cross S* | ey,...,.e;; don't cross S* |

* So the probability that we choose one of the k edges
crossing S* at step j is at most:

Kk 2
((n—j2+1)k) — n—j+1

* The probability we don’t choose one of the k edges is at
legst: f
(2 _noj-1 a,b::' ! ¢

~ ’
______

¢ d \ 71




Now let’s prove that claim
Say that S* is a minimum cut.

* Suppose the edges that we choose are e, e, ..., €,
* PR[ return S* | = PR[ none of the e, cross S* ]
= PR[ e, doesn’t cross $* ]

X PR[ e, doesn’t cross S* | e; doesn’t cross S* |

X PR[ e, doesn’t cross S* | ey,...,e, 5 don’t cross S* ]

/J
I
I
/]
[
I (e
/|

I
l’ S¥ 72
I



Now let’s prove that claim
Say that S* is a minimum cut.

* Suppose the edges that we choose are e, e, ..., €,
* PR[ return S* | = PR[ none of the e, cross S* ]

-(5) (5) (=) 5 65) -0 G 6 6)

/J
I
I
/]
[
I (e
/|
1
I
I S*
| |



Now let’s prove that claim
Say that S* is a minimum cut.

* Suppose the edges that we choose are e, e, ..., €,
* PR[ return S* ] = PR[ none of the e, cross S*

1

= Clq Iy

(n
2
I
]
]
]
]
1 e
1
1
" S* 74
| |




Theorem
Assuming the claim about 1/(’21)

Suppose G has n vertices. Then [repeating Karger’s
algorithm] finds a min cut in G with probability at
least 0.99 in time O(n%).

That proves this
Theorem!

75




What have we learned?

* If we randomly contract edges:
* It’s unlikely that we’ll end up with a min cut.
e Butit’s not TOO unlikely

* By repeating, we likely will find a min cut.
Here | chose 6 = 0.01
just for concreteness.

* Repeating this process: |
* Finds a global min cut in time O(n?), with probability 0.99.
 We can run a bit faster if we use a union-find data structure.

76



More generally

* If we have a Monte-Carlo algorithm with a small
success probability,

* and we can check how good a solution is,

* Then we can boost the success probability by
repeating it a bunch and taking the best solution.




Can we do better?

* Repeating O(n?2) times is pretty expensive.
* O(n%) total runtime to get success probability 0.99.

* The Karger-Stein Algorithm will do better!
* The trick is that we’ll do the repetitions in a clever way.
* O( n?log?(n) ) runtime for the same success probability.

 Warning! This is a tricky algorithm! We’ll sketch the
approach here: the important part is the high-level idea,
not the details of the computations.

To see how we might save on repetitions,
let’s run through Karger’s algorithm again.

78






Probability that we didn’t mess up:

Karger’s algorithm 12/14

There are 14 edges, 12 of
which are good to contract.

random

80



Karger’s algorithm

Create a
supernode!

——— —,
-
-

Create a
superedge!

81



Karger’s algorithm

Create a
Loy supernode!

/7 A

[ b )

1 d,

1 1

N / {e/b,?
Create a
superedge! {Qa 1 Create a

Co !
) \6:‘;\\ superedge!

(—"

82



Probability that we didn’t mess up:

Karger’s algorithm  17/13

Now there are only 13 edges,
since the edge betweenaandb

disappeared.
0 & '@
fqa}
o
»0f )
g
random

(— "
0 edge! G
@ 83



Karger’s algorithm

-
- So

U4
g: a,b Create a
\

. / 84 2 superedge! /e

Create a
superedge!

Create a
supernode!

84



Karger’s algorithm

-
- So

U4
[ ab Create a
5 superedge!

- -~
~
= ~

N 4

-
______

Create a
supernode!

Create a
superedge!

85



Probability that we didn’t mess up:

Karger’s algorithm  14/17

Now there are only 12 edges,
since the edge between e and h

disappeared.

-
- So

random
edge!

g )




Karger’s algorithm

-
- So

‘\\ d ;b /l ’f@, b}
N
{c,a}
{c,b}
{d,a}
LLLL {_d)b.} \\\\\\ /
[ cd ;{e/}

NNNNN

87



Probability that we didn’t mess up:

Karger’s algorithm  g/14

random edge!
(We pick at
random from
the original
edges).

NNNNN

g .



Karger’s algorithm

—————
i Ss

89



Karger’s algorithm

Probability that we didn’t mess up:

5/7

random
edge!

90



Karger’s algorithm

~~~~~~~~
4 N

\\\\\\
55555

fffff
~
= N

N /

91

Karger’s algorithm

—————

- ~
~
2 N

Probability that we didn’t mess up:

3/5

random
edge!

~ /

92

Karger’s algorithm

7 S

~
———————

aaaaa
» SS

~
~ -
~~~~~~~

93



Karger’s algorithm

—————
7 Ss

l/ \\
1 |\
i ab,cd i
\\ 1,@
\\\ ’/, ’é} )f
_______ @, OIII

Now stop!

e There are only two nodes left.

_______
» SS

4
\\\\\
______

94



Probability of not messing up

* At the beginning, it’s pretty likely we’ll be fine.

* The probability that we mess up gets worse and
worse over time.

Moral:

Repeating the stuff from
the beginning of the
algorithm is wasteful!

12/14 |

0.8 -
0.7 |-

0.6 |-

0.5

probability
of success

3/5

iteration

1 2 3 4 955






In words

* Run Karger’s algorithm on G for a bit.

e Until there are % supernodes left.

* Then split into two independent copies, G; and G,
* Run Karger’s algorithm on each of those for a bit.
()

« Until there are == supernodes left in each.
V2 2

* Then split each of those into two independent copies...

97



In pseudocode

» KargerStein(G = (V,E)):
°ne« |V]
e ifn<4:
* find a min-cut by brute force \\ time O(1)
* Run Karger’s algorithm on G with independent

. . n .
repetitions until {ﬁ‘ nodes remain.

* Gy, G, « copies of what’s left of G

S, = KargerStein(G,)

S, = KargerStein(G,)

return whichever of S, S, is the smaller cut.



n nodes

Recursion
tree

Contract a
bunch of edges
n

T nodes

Make 2
copies

Contract a
bunch of edges

Contract a
bunch of edges

n

n
— nodes Ja

Va

nodes

Make 2
copies

Make 2
copies

V8

nodes



Recursion tree

. 1
* depthislog 7(n) = loogg((\"/% = 2log(n)

e number of leaves is 22/08(n) = p2

/—

This counts as one level
. . —==
for this analysis

—
This counts as one level Contract a
for this analysis S bunch of
edges

\

Contract a
bunch of edges

Make 2
copies
Contract a

bunch of



Two gquestions

* Does this work?

¢ |s it fast? <



At the jth |eve|  The amount of work per level is

the amount of work needed to
reduce the number of nodes by

a factor of /2.

e That’s at most O(n?).

* since that’s the time it takes to
run Karger’s algorithm once,
cutting down the number of
supernodes to two.

Contract a
bunch of edges

n
2(j+1)/2
nodes

e Qurrecurrence relationis...

T(n) = 2T(n/V/2) + O(n2)

Make 2
copies

The Master Theorem says...
T(n) = O(n*log(n))

102

n n

2(j+1)/2 2(j+1)/2
nodes nodes

Jedi Master Yoda



Two gquestions

* Does this work? =

* |s it fast?
* Yes, O(n?%log(n)).

103



Suppose we contract n—t edges, until

W hy n/,‘ / 2 P there are t supernodes remaining.

e Suppose the first n-t edges that we choose are
€1, €5, vy €4
* PR[ none of e, e, ..., €, Cross S*]
= PR[ e, doesn’t cross S* ]
X PR[ e, doesn’t cross S* | e; doesn’t cross S* |

X PR[ e, doesn’t cross S* | ey,...,e,+, don’t cross S* ]

104



Suppose we contract n—t edges, until

W hy n/,‘ / 2 P there are t supernodes remaining.

e Suppose the first n-t edges that we choose are
€1, €5, wur, €14
* PR[ none of e, e, ..., €, Cross S*]
_ (n-=2 n-—3 n—4\ [n-5 n—6 t+1 t t—1
t-(t—1)
n-(n—1)

Choose t = n/v2

n/n
— V2 (\E ) ~ l when n is large
n-(n—1) 2

105



n nodes

Recursion
tree

Contract a .
Pr[ failure ] =1/2
bunch of edges [ 1=1/

n

T nodes

. Make 2 "
Contract a \/_E nodes copies \/_5 nodes Contract a

bunch of edges
Pr[ failure ] =1/2

bunch of edges
Pr[ failure ] =1/2

n

Va

n
nodes W7 nodes

Make 2
copies

Make 2
copies

U
N
odes nodes
Pr[ failure] =1/2

Pr[ failure] =1/2

n
NE)
nodes



Probability n nodes ,
of success iy | e

Is the probability that there’s
a path from the root to a leaf

n
\/_E‘ des
with no failures. e ¢

Make 2
copies

Make 2
copies




The problem we need to analyze

* Let T be binary tree of depth 2log(n)

* Each node of T succeeds or fails independently with
probability 1/2

* What is the probability that there’s a path from the
root to any leaf that’s entirely successful?



Analysis
 Say the tree has height d.

* Let p,4 be the probability that
there’s a path from the root to a
leaf that doesn’t fail.

1
2

/pr[

444

N | =

)\

4

1
> (Pa-1 + Pa-1

_ 1

2
"Pa-1

at least one subtree
has a successful path

#\ wins _|_ Pr lé wins

\ - [ﬁA

b))

— Pc21—1)

Contract a
bunch of

edges




It’s a recurrence relation!

1. 2
* Pa = Pa-1 — 75 Pda-1

*po=1

* We are real good at those.
* |In this case, the answer is:

1
® i . - J—
Claim: foralld, p; = T




Recurrence relation

1
d+1
* Proof: induction on d.

* Claim: foralld, p; =

e Basecase:1 = 1. YEP.
* Inductive step: sayd > 0.

* Suppose thatpy_1 = %.

_ 1 2
* Pa = Pd-1 — 7 Pd-1
° Zl_l.i
d1 2 ciz
° 2__
d d(d+1)
. 1
T d+1

1
* Pa = Pa-1 — 7 Pda-1
* Po =

|
p—

This slide
skipped in class




What does that mean for Karger-Stein?

1
laim: for all > —
Cla ora d,pd_d+1

* For d = 2log(n)
e thatis, d = the height of the tree:

1
>
Pzlog(n) = 2log(n) + 1

e aka,

Pr[ Karger-Stein is successful | = () (1og1(n))

112



Altogether now

* We can do the same trick as before to amplify the
success probability.
* Run Karger-Stein O (log(n) - log (%)) times to achieve
success probability 1 — 6.

* Each iteration takes time 0(n*log(n))
* That’s what we proved before.

* Choosing 6 = 0.01 as before, the total runtime is
0(n?log(n) -log(n)) = 0(n?log?(n))

Much better than O(n*)!

113



What have we learned?

e Just repeating Karger’s algorithm isn’t the best use
of repetition.
* We're probably going to be correct near the beginning.
* Instead, Karger-Stein repeats when it counts.
n

. V2
that we fail is close to 7.

* If we wait until there are —=nodes left, the probability

* This lets us (probably) find a global minimum cut in
an undirected graph in time O(n? log?(n) ).

* Notice that we can’t do better than n? in a dense graph

(we need to look at all the edges), so this is pretty good.

114



Recap

* Some algorithms:
e Karger’s algorithm for global min-cut
* Improvement: Karger-Stein

* Some concepts:

 Monte Carlo algorithms:
* Might be wrong, are always fast.

* We can boost their success probability with repetition.
* Sometimes we can do this repetition very cleverly.

115



Next time

* Recap of what we’ve done this quarter
* What's next???

* Reminder: Please complete course evaluations!



