
Lecture 13

More dynamic programming!

Longest Common Subsequences, Knapsack, and 

(if time) independent sets in trees.
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Announcements

• HW6 due Wednesday!

• HW7 out Wednesday!

• FAQ: What’s the best way to prepare for the final?
• Practice problems!  

• If Section/HW aren’t enough for you, there are plenty in 
Algorithms Illuminated and in CLRS (which is available for free 
via the Stanford library).  

• We’ll also be posting multiple practice finals soon.

• When you are reading the book or (re)watching lectures 
or section, try to guess what comes next.  
• If we state a lemma, close the book or pause the video, and try 

to prove the lemma.  

• If we’ve seen the intuition for an algorithm, try to write down 
pseudocode.

• Try the HW on your own before collaborating.
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Question from last time

• Does Bellman-Ford/Floyd-Warshall work on 
undirected graphs?

• Yes, just do:

• What about negative edge weights?  Does that 
mean we just can’t handle negative edge weights in 
undirected graphs?

• That’s right.

3

-1 I can still walk back and forth 

forever, and shortest paths might 

not be defined!



Last time

• Not coding in an action movie.

Tom Cruise programs dynamically 

in Mission Impossible 4



Last time

• Dynamic programming is an algorithm design 
paradigm.

• Basic idea:

• Identify optimal sub-structure

• Optimum to the big problem is built out of optima of small 

sub-problems

• Take advantage of overlapping sub-problems

• Only solve each sub-problem once, then use it again and again

• Keep track of the solutions to sub-problems in a table 

as you build to the final solution.

5



Today

• Examples of dynamic programming:

1. Longest common subsequence

2. Knapsack problem

• Two versions!

3. Independent sets in trees 

• If we have time…

• (If not the slides will be there as a reference)

• Yet more examples of DP in Algorithms Illuminated!

• Weighted Independent Set in Paths

• Sequence Alignment

• Optimal Binary Search Trees
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The goal of this lecture

• For you to get really bored of dynamic programming
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Longest Common Subsequence

• How similar are these two species?

AGCCCTAAGGGCTACCTAGCTT GACAGCCTACAAGCGTTAGCTTG
DNA: DNA:
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Longest Common Subsequence

• How similar are these two species?

• Pretty similar, their DNA has a long common subsequence:

AGCCCTAAGGGCTACCTAGCTT GACAGCCTACAAGCGTTAGCTTG

AGCCTAAGCTTAGCTT

DNA: DNA:
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Longest Common Subsequence

• Subsequence:

• BDFH is a subsequence of ABCDEFGH

• If X and Y are sequences, a common subsequence

is a sequence which is a subsequence of both.

• BDFH is a common subsequence of ABCDEFGH and of 

ABDFGHI

• A longest common subsequence…

• …is a common subsequence that is longest.

• The longest common subsequence of ABCDEFGH and 

ABDFGHI is ABDFGH.
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We sometimes want to find these

• Applications in bioinformatics

• The unix command diff

• Merging in version control 

• svn, git, etc…
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Recipe for applying Dynamic Programming

• Step 1: Identify optimal substructure.

• Step 2: Find a recursive formulation for the length 
of the longest common subsequence.

• Step 3: Use dynamic programming to find the 
length of the longest common subsequence.

• Step 4: If needed, keep track of some additional 
info so that the algorithm from Step 3 can find the 

actual LCS.

• Step 5: If needed, code this up like a reasonable 
person.
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Step 1: Optimal substructure

A C G G T

A C G C T T AY

X

Prefixes:

Notation: denote this prefix ACGC by Y4

• Our sub-problems will be finding LCS’s of prefixes to X and Y.

• Let C[i,j] = length_of_LCS( Xi, Yj )

13
C[2,3] = 2

C[4,4] = 3
Examples:



Optimal substructure ctd.

• Subproblem:

• finding LCS’s of prefixes of X and Y.

• Why is this a good choice?

• As we will see, there’s some relationship between LCS’s 

of prefixes and LCS’s of the whole things.

• These subproblems overlap a lot.
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Recipe for applying Dynamic Programming

• Step 1: Identify optimal substructure.

• Step 2: Find a recursive formulation for the length 
of the longest common subsequence.

• Step 3: Use dynamic programming to find the 
length of the longest common subsequence.

• Step 4: If needed, keep track of some additional 
info so that the algorithm from Step 3 can find the 

actual LCS.

• Step 5: If needed, code this up like a reasonable 
person.
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Goal

• Write C[i,j] in terms of the solutions to smaller sub-
problems

C[i,j] = length_of_LCS( Xi, Yj )

A C G G A

A C G C T T AYj

Xi

i

j
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Two cases

A C G G A

A C G C T T AYj

Xi

• Our sub-problems will be finding 

LCS’s of prefixes to X and Y.

• Let C[i,j] = length_of_LCS( Xi, Yj )
Case 1: X[i] = Y[j]

i

j

These are 

the same

• Then C[i,j] = 1 + C[i-1,j-1].

• because LCS(Xi,Yj) = LCS(Xi-1,Yj-1) followed by A
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Two cases

A C G G T

A C G C T T AYj

Xi

• Our sub-problems will be finding 

LCS’s of prefixes to X and Y.

• Let C[i,j] = length_of_LCS( Xi, Yj )
Case 2: X[i] != Y[j]

i

j

These are 

not the 

same

• Then C[i,j] = max{ C[i-1,j], C[i,j-1] }.
• either LCS(Xi,Yj) = LCS(Xi-1,Yj) and       is not involved,

• or LCS(Xi,Yj) = LCS(Xi,Yj-1) and       is not involved,

• (maybe both are not involved, that’s covered by the “or”).

A

T
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Recursive formulation 
of the optimal solution

• ! ", $ = & 0 if " = 0 or $ = 0! " − 1, $ − 1 + 1 if / " = 0 $ and ", $ > 0max ! ", $ − 1 , ! " − 1, $ if / " ≠ 0 $ and ", $ > 0

A C G G A

A C G C T T AYj

Xi
A C G G T

A C G C T T AYj

Xi

Case 1 Case 2

A C G C T T AYj

X0

Case 0
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Recipe for applying Dynamic Programming

• Step 1: Identify optimal substructure.

• Step 2: Find a recursive formulation for the length 
of the longest common subsequence.

• Step 3: Use dynamic programming to find the 
length of the longest common subsequence.

• Step 4: If needed, keep track of some additional 
info so that the algorithm from Step 3 can find the 

actual LCS.

• Step 5: If needed, code this up like a reasonable 
person.
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LCS DP

• LCS(X, Y):

• C[i,0] = C[0,j] = 0 for all i = 0,…,m, j=0,…n.

• For i = 1,…,m and j = 1,…,n:

• If X[i] = Y[j]:

• C[i,j] = C[i-1,j-1]  + 1

• Else:

• C[i,j] = max{ C[i,j-1], C[i-1,j] }

• Return C[m,n]

! ", $ = & 0 if " = 0 or $ = 0! " − 1, $ − 1 + 1 if / " = 0 $ and ", $ > 0max ! ", $ − 1 , ! " − 1, $ if / " ≠ 0 $ and ", $ > 0

Running time: O(nm)
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Example
A C G G A

A C T GY

X

A

C

G

G

A

A C T G

X

Y

0 0 0 0

0

0

0

0

0

0

! ", $ = & 0 if " = 0 or $ = 0! " − 1, $ − 1 + 1 if / " = 0 $ and ", $ > 0max ! ", $ − 1 , ! " − 1, $ if / " ≠ 0 $ and ", $ > 022



0 0 0 0

0

0

0

0

0

0

Example
A C G G A

A C T GY

X

0 0 0 0

0 1 1 1

0 1 2 2

0 1 2 2

0 1 2 2

A

C

G

G

A

A C T G

X

Y

0

1

2

3

3

0 1 2 2 3

! ", $ = & 0 if " = 0 or $ = 0! " − 1, $ − 1 + 1 if / " = 0 $ and ", $ > 0max ! ", $ − 1 , ! " − 1, $ if / " ≠ 0 $ and ", $ > 0

So the LCM of X 

and Y has length 3.
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Recipe for applying Dynamic Programming

• Step 1: Identify optimal substructure.

• Step 2: Find a recursive formulation for the length 
of the longest common subsequence.

• Step 3: Use dynamic programming to find the 
length of the longest common subsequence.

• Step 4: If needed, keep track of some additional 
info so that the algorithm from Step 3 can find the 

actual LCS.

• Step 5: If needed, code this up like a reasonable 
person.
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Example
A C G G A

A C T GY

X

A

C

G

G

A

A C T G

X

Y

0 0 0 0

0

0

0

0

0

0

! ", $ = & 0 if " = 0 or $ = 0! " − 1, $ − 1 + 1 if / " = 0 $ and ", $ > 0max ! ", $ − 1 , ! " − 1, $ if / " ≠ 0 $ and ", $ > 025



0 0 0 0

0

0

0

0

0

0

Example
A C G G A

A C T GY

X

0 0 0 0

0 1 1 1

0 1 2 2

0 1 2 2

0 1 2 2

A

C

G

G

A

A C T G

X

Y

0

1

2

3

3

0 1 2 2 3

! ", $ = & 0 if " = 0 or $ = 0! " − 1, $ − 1 + 1 if / " = 0 $ and ", $ > 0max ! ", $ − 1 , ! " − 1, $ if / " ≠ 0 $ and ", $ > 026



0 0 0 0

0

0

0

0

0

0

Example
A C G G A

A C T GY

X

0 0 0 0

0 1 1 1

0 1 2 2

0 1 2 2

0 1 2 2

A

C

G

G

A

A C T G

X

Y

0

1

2

3

3

0 1 2 2 3

! ", $ = & 0 if " = 0 or $ = 0! " − 1, $ − 1 + 1 if / " = 0 $ and ", $ > 0max ! ", $ − 1 , ! " − 1, $ if / " ≠ 0 $ and ", $ > 0

• Once we’ve filled this in, 

we can work backwards.
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0 0 0 0

0

0

0

0

0

0

Example
A C G G A

A C T GY

X

0 0 0 0

0 1 1 1

0 1 2 2

0 1 2 2

0 1 2 2

A

C

G

G

A

A C T G

X

Y

0

1

2

3

3

0 1 2 2 3

! ", $ = & 0 if " = 0 or $ = 0! " − 1, $ − 1 + 1 if / " = 0 $ and ", $ > 0max ! ", $ − 1 , ! " − 1, $ if / " ≠ 0 $ and ", $ > 0

• Once we’ve filled this in, 

we can work backwards.

That 3 must have come 

from the 3 above it.
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0 0 0 0

0

0

0

0

0

0

Example
A C G G A

A C T GY

X

0 0 0 0

0 1 1 1

0 1 2 2

0 1 2 2

0 1 2 2

A

C

G

G

A

A C T G

X

Y

0

1

2

3

3

0 1 2 2 3

! ", $ = & 0 if " = 0 or $ = 0! " − 1, $ − 1 + 1 if / " = 0 $ and ", $ > 0max ! ", $ − 1 , ! " − 1, $ if / " ≠ 0 $ and ", $ > 0

• Once we’ve filled this in, 

we can work backwards.

This 3 came from that 2 –

we found a match!

• Once we’ve filled this in, 

we can work backwards.

• A diagonal jump means 

that we found an element 

of the LCS!
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0 0 0 0

0

0

0

0

0

0

Example
A C G G A

A C T GY

X

0 0 0 0

0 1 1 1

0 1 2 2

0 1 2 2

0 1 2 2

A

C

G

G

A

A C T G

X

Y

0

1

2

3

3

0 1 2 2 3

! ", $ = & 0 if " = 0 or $ = 0! " − 1, $ − 1 + 1 if / " = 0 $ and ", $ > 0max ! ", $ − 1 , ! " − 1, $ if / " ≠ 0 $ and ", $ > 0

• Once we’ve filled this in, 

we can work backwards.

• A diagonal jump means 

that we found an element 

of the LCS!

G

That 2 may as well 

have come from 

this other 2.
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0 0 0 0

0

0

0

0

0

0

Example
A C G G A

A C T GY

X

0 0 0 0

0 1 1 1

0 1 2 2

0 1 2 2

0 1 2 2

A

C

G

G

A

A C T G

X

Y

0

1

2

3

3

0 1 2 2 3

! ", $ = & 0 if " = 0 or $ = 0! " − 1, $ − 1 + 1 if / " = 0 $ and ", $ > 0max ! ", $ − 1 , ! " − 1, $ if / " ≠ 0 $ and ", $ > 0

• Once we’ve filled this in, 

we can work backwards.

• A diagonal jump means 

that we found an element 

of the LCS!

G
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0 0 0 0

0

0

0

0

0

0

Example
A C G G A

A C T GY

X

0 0 0 0

0 1 1 1

0 1 2 2

0 1 2 2

0 1 2 2

A

C

G

G

A

A C T G

X

Y

0

1

2

3

3

0 1 2 2 3

! ", $ = & 0 if " = 0 or $ = 0! " − 1, $ − 1 + 1 if / " = 0 $ and ", $ > 0max ! ", $ − 1 , ! " − 1, $ if / " ≠ 0 $ and ", $ > 0

• Once we’ve filled this in, 

we can work backwards.

• A diagonal jump means 

that we found an element 

of the LCS!

GC
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0 0 0 0

0

0

0

0

0

0

Example
A C G G A

A C T GY

X

0 0 0 0

0 1 1 1

0 1 2 2

0 1 2 2

0 1 2 2

A

C

G

G

A

A C T G

X

Y

0

1

2

3

3

0 1 2 2 3

! ", $ = & 0 if " = 0 or $ = 0! " − 1, $ − 1 + 1 if / " = 0 $ and ", $ > 0max ! ", $ − 1 , ! " − 1, $ if / " ≠ 0 $ and ", $ > 0

• Once we’ve filled this in, 

we can work backwards.

• A diagonal jump means 

that we found an element 

of the LCS!

GCA

This is the LCS!
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Finding an LCS

• Good exercise to write out pseudocode for what we 
just saw!

• Or you can find it in CLRS.

• Takes time O(mn) to fill the table

• Takes time O(n + m) on top of that to recover the LCS

• We walk up and left in an n-by-m array

• We can only do that for n + m steps.

• Altogether, we can find LCS(X,Y) in time O(mn).
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Recipe for applying Dynamic Programming

• Step 1: Identify optimal substructure.

• Step 2: Find a recursive formulation for the length 
of the longest common subsequence.

• Step 3: Use dynamic programming to find the 
length of the longest common subsequence.

• Step 4: If needed, keep track of some additional 
info so that the algorithm from Step 3 can find the 

actual LCS.

• Step 5: If needed, code this up like a reasonable 
person.

35



Our approach actually isn’t so bad

• If we are only interested in the length of the LCS we 
can do a bit better on space:
• Since we go across the table one-row-at-a-time, we can only 

keep two rows if we want.

• If we want to recover the LCS, we need to keep the 
whole table.

• Can we do better than O(mn) time?
• A bit better.

• By a log factor or so.

• But doing much better (polynomially better) is an open 
problem!
• If you can do it let me know :D 

36



What have we learned?

• We can find LCS(X,Y) in time O(nm) 

• if |Y|=n, |X|=m

• We went through the steps of coming up with a 
dynamic programming algorithm.

• We kept a 2-dimensional table, breaking down the 
problem by decrementing the length of X and Y.

37



Example 2: Knapsack Problem

• We have n items with weights and values:

• And we have a knapsack: 
• it can only carry so much weight:

Weight:

Value:

6 2 4 3 11

20 8 14 3513

Item:

Capacity: 10

38



• Unbounded Knapsack:

• Suppose I have infinite copies of all of the items.

• What’s the most valuable way to fill the knapsack?

• 0/1 Knapsack:

• Suppose I have only one copy of each item.

• What’s the most valuable way to fill the knapsack? 

Weight:

Value:

6 2 4 3 11

20 8 14 3513

Item:

Capacity: 10

Total weight: 10

Total value: 42

Total weight: 9

Total value: 35
39



Some notation

Capacity: W

Weight:

Value:

w1

v1

Item:

w2 w3
wn

v2 v3 vn

…

40



Recipe for applying Dynamic Programming

• Step 1: Identify optimal substructure.

• Step 2: Find a recursive formulation for the value of 
the optimal solution.

• Step 3: Use dynamic programming to find the value 
of the optimal solution.

• Step 4: If needed, keep track of some additional 
info so that the algorithm from Step 3 can find the 

actual solution.

• Step 5: If needed, code this up like a reasonable 
person.

41



Optimal substructure

• Sub-problems: 

• Unbounded Knapsack with a smaller knapsack.

• K[x] = value you can fit in a knapsack of capacity x

First solve the 

problem for 

small knapsacks
Then larger 

knapsacks

Then larger 

knapsacks
42



Optimal substructure

• Suppose this is an optimal solution for capacity x:

• Then this optimal for capacity x - wi:
Capacity x

Value V

Weight wi

Value vi

Capacity x – wi

Value V - vi

Say that the 

optimal solution 

contains at least 

one copy of item i.

item i

Why?
1 minute think

1 minute pair+share
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Optimal substructure

• Suppose this is an optimal solution for capacity x:

• Then this optimal for capacity x - wi:
Capacity x

Value V

Weight wi

Value vi

Capacity x – wi

Value V - vi

If I could do better than the second solution, 

then adding a turtle to that improvement 

would improve the first solution.

Say that the 

optimal solution 

contains at least 

one copy of item i.

item i

44



Recipe for applying Dynamic Programming

• Step 1: Identify optimal substructure.

• Step 2: Find a recursive formulation for the value of 
the optimal solution.

• Step 3: Use dynamic programming to find the value 
of the optimal solution.

• Step 4: If needed, keep track of some additional 
info so that the algorithm from Step 3 can find the 

actual solution.

• Step 5: If needed, code this up like a reasonable 
person.
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• Let K[x] be the optimal value for capacity x.

K[x] = maxi { + }

K[x] = maxi { K[x – wi] + vi }

• (And K[x] = 0 if the maximum is empty).
• That is, if there are no i so that !" ≤ $

Recursive relationship

The maximum is over 

all i so that !" ≤ $.
Optimal way to 

fill the smaller 

knapsack

The value of 

item i.

46



Recipe for applying Dynamic Programming

• Step 1: Identify optimal substructure.

• Step 2: Find a recursive formulation for the value of 
the optimal solution.

• Step 3: Use dynamic programming to find the value 
of the optimal solution.

• Step 4: If needed, keep track of some additional 
info so that the algorithm from Step 3 can find the 

actual solution.

• Step 5: If needed, code this up like a reasonable 
person.

47



Let’s write a bottom-up DP algorithm

• UnboundedKnapsack(W, n, weights, values):

• K[0] = 0

• for x = 1, …, W:

• K[x] = 0

• for i = 1, …, n:

• if !" ≤ $:

• & $ = max{ & $ , & $ − !" + /" }

• return K[W]

Running time: O(nW)

Why does this work?  
Because our recursive relationship makes sense.= maxi { K[x – wi] + vi }

K[x] = maxi { + }

48



Can we do better?

• Writing down W takes log(W) bits.

• Writing down all n weights takes at most nlog(W) bits.

• Input size: nlog(W).

• Maybe we could have an algorithm that runs in time 

O(nlog(W)) instead of O(nW)?  

• Or even O( n1000000 log1000000(W) )?

• Open problem!

• (But probably the answer is no…otherwise P = NP)
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Recipe for applying Dynamic Programming

• Step 1: Identify optimal substructure.

• Step 2: Find a recursive formulation for the value of 
the optimal solution.

• Step 3: Use dynamic programming to find the value 
of the optimal solution.

• Step 4: If needed, keep track of some additional 
info so that the algorithm from Step 3 can find the 

actual solution.

• Step 5: If needed, code this up like a reasonable 
person.
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Let’s write a bottom-up DP algorithm

• UnboundedKnapsack(W, n, weights, values):

• K[0] = 0

• for x = 1, …, W:

• K[x] = 0

• for i = 1, …, n:

• if !" ≤ $:

• & $ = max{ & $ , & $ − !" + /" }

• return K[W]

= maxi { K[x – wi] + vi }

K[x] = maxi { + }
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Let’s write a bottom-up DP algorithm

• UnboundedKnapsack(W, n, weights, values):
• K[0] = 0

• ITEMS[0] = ∅

• for x = 1, …, W:

• K[x] = 0

• for i = 1, …, n:

• if "# ≤ %:

• ' % = max{ ' % , ' % − "# + 0# }

• If K[x] was updated:

• ITEMS[x] = ITEMS[x – wi] ∪ { item i }

• return ITEMS[W]

= maxi { K[x – wi] + vi }

K[x] = maxi { + }
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Example

• UnboundedKnapsack(W, n, weights, values):

• K[0] = 0

• ITEMS[0] = ∅

• for x = 1, …, W:

• K[x] = 0

• for i = 1, …, n:

• if "# ≤ %:

• ' % = max{ ' % , ' % − "# + 0# }

• If K[x] was updated:

• ITEMS[x] = ITEMS[x – wi] ∪ { item i }

• return ITEMS[W]0

Weight:

Value:

1 2 3

1 4 6

Item:

Capacity: 4

K

IT
E

M
S

0 1 2 3 4
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Example

• UnboundedKnapsack(W, n, weights, values):

• K[0] = 0

• ITEMS[0] = ∅

• for x = 1, …, W:

• K[x] = 0

• for i = 1, …, n:

• if "# ≤ %:

• ' % = max{ ' % , ' % − "# + 0# }

• If K[x] was updated:

• ITEMS[x] = ITEMS[x – wi] ∪ { item i }

• return ITEMS[W]0 1

Weight:

Value:

1 2 3

1 4 6

Item:

Capacity: 4

K

IT
E

M
S

0 1 2 3 4

ITEMS[1] = ITEMS[0] + 
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Example

• UnboundedKnapsack(W, n, weights, values):

• K[0] = 0

• ITEMS[0] = ∅

• for x = 1, …, W:

• K[x] = 0

• for i = 1, …, n:

• if "# ≤ %:

• ' % = max{ ' % , ' % − "# + 0# }

• If K[x] was updated:

• ITEMS[x] = ITEMS[x – wi] ∪ { item i }

• return ITEMS[W]0 1 2

Weight:

Value:

1 2 3

1 4 6

Item:

Capacity: 4

K

IT
E

M
S

0 1 2 3 4

ITEMS[2] = ITEMS[1] + 
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Example

• UnboundedKnapsack(W, n, weights, values):

• K[0] = 0

• ITEMS[0] = ∅

• for x = 1, …, W:

• K[x] = 0

• for i = 1, …, n:

• if "# ≤ %:

• ' % = max{ ' % , ' % − "# + 0# }

• If K[x] was updated:

• ITEMS[x] = ITEMS[x – wi] ∪ { item i }

• return ITEMS[W]0 1 4

Weight:

Value:

1 2 3

1 4 6

Item:

Capacity: 4

K

IT
E

M
S

0 1 2 3 4

ITEMS[2] = ITEMS[0] + 
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Example

• UnboundedKnapsack(W, n, weights, values):

• K[0] = 0

• ITEMS[0] = ∅

• for x = 1, …, W:

• K[x] = 0

• for i = 1, …, n:

• if "# ≤ %:

• ' % = max{ ' % , ' % − "# + 0# }

• If K[x] was updated:

• ITEMS[x] = ITEMS[x – wi] ∪ { item i }

• return ITEMS[W]0 1 4 5

Weight:

Value:

1 2 3

1 4 6

Item:

Capacity: 4

K

IT
E

M
S

0 1 2 3 4

ITEMS[3] = ITEMS[2] + 
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Example

• UnboundedKnapsack(W, n, weights, values):

• K[0] = 0

• ITEMS[0] = ∅

• for x = 1, …, W:

• K[x] = 0

• for i = 1, …, n:

• if "# ≤ %:

• ' % = max{ ' % , ' % − "# + 0# }

• If K[x] was updated:

• ITEMS[x] = ITEMS[x – wi] ∪ { item i }

• return ITEMS[W]0 1 4 6

Weight:

Value:

1 2 3

1 4 6

Item:

Capacity: 4

K

IT
E

M
S

0 1 2 3 4

ITEMS[3] = ITEMS[0] + 
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Example

• UnboundedKnapsack(W, n, weights, values):

• K[0] = 0

• ITEMS[0] = ∅

• for x = 1, …, W:

• K[x] = 0

• for i = 1, …, n:

• if "# ≤ %:

• ' % = max{ ' % , ' % − "# + 0# }

• If K[x] was updated:

• ITEMS[x] = ITEMS[x – wi] ∪ { item i }

• return ITEMS[W]0 1 4 6 7

Weight:

Value:

1 2 3

1 4 6

Item:

Capacity: 4

K

IT
E

M
S

0 1 2 3 4

ITEMS[4] = ITEMS[3] + 
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Example

• UnboundedKnapsack(W, n, weights, values):

• K[0] = 0

• ITEMS[0] = ∅

• for x = 1, …, W:

• K[x] = 0

• for i = 1, …, n:

• if "# ≤ %:

• ' % = max{ ' % , ' % − "# + 0# }

• If K[x] was updated:

• ITEMS[x] = ITEMS[x – wi] ∪ { item i }

• return ITEMS[W]0 1 4 6 8

Weight:

Value:

1 2 3

1 4 6

Item:

Capacity: 4

K

IT
E

M
S

0 1 2 3 4

ITEMS[4] = ITEMS[2] + 
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Recipe for applying Dynamic Programming

• Step 1: Identify optimal substructure.

• Step 2: Find a recursive formulation for the value of 
the optimal solution.

• Step 3: Use dynamic programming to find the value 
of the optimal solution.

• Step 4: If needed, keep track of some additional 
info so that the algorithm from Step 3 can find the 

actual solution.

• Step 5: If needed, code this up like a reasonable 
person.

(Pass)
61



What have we learned?

• We can solve unbounded knapsack in time O(nW).

• If there are n items and our knapsack has capacity W.

• We again went through the steps to create DP 
solution:

• We kept a one-dimensional table, creating smaller 
problems by making the knapsack smaller.
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• Unbounded Knapsack:

• Suppose I have infinite copies of all of the items.

• What’s the most valuable way to fill the knapsack?

• 0/1 Knapsack:

• Suppose I have only one copy of each item.

• What’s the most valuable way to fill the knapsack? 

Weight:

Value:

6 2 4 3 11

20 8 14 3513

Item:

Capacity: 10

Total weight: 10

Total value: 42

Total weight: 9

Total value: 35
63



Recipe for applying Dynamic Programming

• Step 1: Identify optimal substructure.

• Step 2: Find a recursive formulation for the value of 
the optimal solution.

• Step 3: Use dynamic programming to find the value 
of the optimal solution.

• Step 4: If needed, keep track of some additional 
info so that the algorithm from Step 3 can find the 

actual solution.

• Step 5: If needed, code this up like a reasonable 
person.

64



Optimal substructure: try 1

• Sub-problems: 

• Unbounded Knapsack with a smaller knapsack.

First solve the 

problem for 

small knapsacks
Then larger 

knapsacks

Then larger 

knapsacks
65



This won’t quite work…

• We are only allowed one copy of each item.

• The sub-problem needs to “know” what items 
we’ve used and what we haven’t.

I can’t use 

any turtles…

66



Optimal substructure: try 2

• Sub-problems:

• 0/1 Knapsack with fewer items.

First solve the 

problem with 

few items

Then yet 

more 

items

Then more 

items

We’ll still increase the size of the knapsacks.

(We’ll keep a two-dimensional table).
67



Our sub-problems:

• Indexed by x and j

Capacity xFirst j items

K[x,j] = optimal solution for a knapsack of 

size x using only the first j items. 68



Relationship between sub-problems

• Want to write K[x,j] in terms of smaller sub-problems.

First j items Capacity x

K[x,j] = optimal solution for a knapsack of 

size x using only the first j items. 69



Two cases

• Case 1:  Optimal solution for j items does not use item j.

• Case 2:  Optimal solution for j items does use item j.

item j

First j items Capacity x

K[x,j] = optimal solution for a knapsack of 

size x using only the first j items. 70



Two cases

• Case 1:  Optimal solution for j items does not use item j.

Capacity x

Value V

Use only the first j items

item j

First j items

What lower-indexed 

problem should we solve 

to solve this problem?

71



Two cases

• Case 1:  Optimal solution for j items does not use item j.

• Then this is an optimal solution for j-1 items:

Capacity x

Value V

Use only the first j items

Capacity x 

Value V

Use only the first j-1 items.

item j

First j items

First j-1 items
72



Two cases

• Case 2:  Optimal solution for j items uses item j.

Capacity x

Value V

Use only the first j items

Weight wj

Value vj

item j

First j items

What lower-indexed 

problem should we solve 

to solve this problem?
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Two cases

• Case 2:  Optimal solution for j items uses item j.

• Then this is an optimal solution for j-1 items and a 

smaller knapsack:

Capacity x

Value V

Use only the first j items

Weight wj

Value vj

Capacity x – wj

Value V – vj

Use only the first j-1 items.

item j

First j items

First j-1 items
74



Recipe for applying Dynamic Programming

• Step 1: Identify optimal substructure.

• Step 2: Find a recursive formulation for the value of 
the optimal solution.

• Step 3: Use dynamic programming to find the value 
of the optimal solution.

• Step 4: If needed, keep track of some additional 
info so that the algorithm from Step 3 can find the 

actual solution.

• Step 5: If needed, code this up like a reasonable 
person.

75



Recursive relationship

• Let K[x,j] be the optimal value for: 

• capacity x, 

• with j items.

K[x,j] = max{ K[x, j-1] , K[x – wj, j-1] + vj }

• (And K[x,0] = 0 and K[0,j] = 0).

Case 1 Case 2
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Recipe for applying Dynamic Programming

• Step 1: Identify optimal substructure.

• Step 2: Find a recursive formulation for the value of 
the optimal solution.

• Step 3: Use dynamic programming to find the value 
of the optimal solution.

• Step 4: If needed, keep track of some additional 
info so that the algorithm from Step 3 can find the 

actual solution.

• Step 5: If needed, code this up like a reasonable 
person.

77



Bottom-up DP algorithm

• Zero-One-Knapsack(W, n, w, v):

• K[x,0] = 0 for all x = 0,…,W

• K[0,i] = 0 for all i = 0,…,n

• for x = 1,…,W:

• for j = 1,…,n:

• K[x,j] = K[x, j-1]

• if wj ≤ x:

• K[x,j] = max{ K[x,j], K[x – wj, j-1] + vj }

• return K[W,n]

Case 1

Case 2

Running time O(nW)78



0 0 0 0

Weight:

Value:

1 2 3

1 4 6

Item:

Capacity: 3

Example

0

0

0

j=0

j=1

j=2

j=3

x=0 x=1 x=2 x=3

• Zero-One-Knapsack(W, n, w, v):

• K[x,0] = 0 for all x = 0,…,W

• K[0,i] = 0 for all i = 0,…,n

• for x = 1,…,W:

• for j = 1,…,n:

• K[x,j] = K[x, j-1]

• if wj ≤ x:

• K[x,j] = max{ K[x,j],   

K[x – wj, j-1] + vj }

• return K[W,n]

current 

entry

relevant 

previous entry 79



0 0 0 0

Weight:

Value:

1 2 3

1 4 6

Item:

Capacity: 3

Example

0 0

0

0

j=0

j=1

j=2

j=3

x=0 x=1 x=2 x=3

• Zero-One-Knapsack(W, n, w, v):

• K[x,0] = 0 for all x = 0,…,W

• K[0,i] = 0 for all i = 0,…,n

• for x = 1,…,W:

• for j = 1,…,n:

• K[x,j] = K[x, j-1]

• if wj ≤ x:

• K[x,j] = max{ K[x,j],   

K[x – wj, j-1] + vj }

• return K[W,n]

current 

entry

relevant 

previous entry 80



0 0 0 0

Weight:

Value:

1 2 3

1 4 6

Item:

Capacity: 3

Example

0 1

0

0

j=0

j=1

j=2

j=3

x=0 x=1 x=2 x=3

• Zero-One-Knapsack(W, n, w, v):

• K[x,0] = 0 for all x = 0,…,W

• K[0,i] = 0 for all i = 0,…,n

• for x = 1,…,W:

• for j = 1,…,n:

• K[x,j] = K[x, j-1]

• if wj ≤ x:

• K[x,j] = max{ K[x,j],   

K[x – wj, j-1] + vj }

• return K[W,n]

current 

entry

relevant 

previous entry 81



0 0 0 0

Weight:

Value:

1 2 3

1 4 6

Item:

Capacity: 3

Example

0 1

0 1

0

j=0

j=1

j=2

j=3

x=0 x=1 x=2 x=3

• Zero-One-Knapsack(W, n, w, v):

• K[x,0] = 0 for all x = 0,…,W

• K[0,i] = 0 for all i = 0,…,n

• for x = 1,…,W:

• for j = 1,…,n:

• K[x,j] = K[x, j-1]

• if wj ≤ x:

• K[x,j] = max{ K[x,j],   

K[x – wj, j-1] + vj }

• return K[W,n]

current 

entry

relevant 

previous entry 82



0 0 0 0

Weight:

Value:

1 2 3

1 4 6

Item:

Capacity: 3

Example

0 1

0 1

0 1

j=0

j=1

j=2

j=3

x=0 x=1 x=2 x=3

• Zero-One-Knapsack(W, n, w, v):

• K[x,0] = 0 for all x = 0,…,W

• K[0,i] = 0 for all i = 0,…,n

• for x = 1,…,W:

• for j = 1,…,n:

• K[x,j] = K[x, j-1]

• if wj ≤ x:

• K[x,j] = max{ K[x,j],   

K[x – wj, j-1] + vj }

• return K[W,n]

current 

entry

relevant 

previous entry 83



0 0 0 0

Weight:

Value:

1 2 3

1 4 6

Item:

Capacity: 3

Example

0 1 0

0 1

0 1

j=0

j=1

j=2

j=3

x=0 x=1 x=2 x=3

• Zero-One-Knapsack(W, n, w, v):

• K[x,0] = 0 for all x = 0,…,W

• K[0,i] = 0 for all i = 0,…,n

• for x = 1,…,W:

• for j = 1,…,n:

• K[x,j] = K[x, j-1]

• if wj ≤ x:

• K[x,j] = max{ K[x,j],   

K[x – wj, j-1] + vj }

• return K[W,n]

current 

entry

relevant 

previous entry 84



0 0 0 0

Weight:

Value:

1 2 3

1 4 6

Item:

Capacity: 3

Example

0 1 1

0 1

0 1

j=0

j=1

j=2

j=3

x=0 x=1 x=2 x=3

• Zero-One-Knapsack(W, n, w, v):

• K[x,0] = 0 for all x = 0,…,W

• K[0,i] = 0 for all i = 0,…,n

• for x = 1,…,W:

• for j = 1,…,n:

• K[x,j] = K[x, j-1]

• if wj ≤ x:

• K[x,j] = max{ K[x,j],   

K[x – wj, j-1] + vj }

• return K[W,n]

current 

entry

relevant 

previous entry 85



0 0 0 0

Weight:

Value:

1 2 3

1 4 6

Item:

Capacity: 3

Example

0 1 1

0 1 1

0 1

j=0

j=1

j=2

j=3

x=0 x=1 x=2 x=3

• Zero-One-Knapsack(W, n, w, v):

• K[x,0] = 0 for all x = 0,…,W

• K[0,i] = 0 for all i = 0,…,n

• for x = 1,…,W:

• for j = 1,…,n:

• K[x,j] = K[x, j-1]

• if wj ≤ x:

• K[x,j] = max{ K[x,j],   

K[x – wj, j-1] + vj }

• return K[W,n]

current 

entry

relevant 

previous entry 86



0 0 0 0

Weight:

Value:

1 2 3

1 4 6

Item:

Capacity: 3

Example

0 1 1

0 1 4

0 1

j=0

j=1

j=2

j=3

x=0 x=1 x=2 x=3

• Zero-One-Knapsack(W, n, w, v):

• K[x,0] = 0 for all x = 0,…,W

• K[0,i] = 0 for all i = 0,…,n

• for x = 1,…,W:

• for j = 1,…,n:

• K[x,j] = K[x, j-1]

• if wj ≤ x:

• K[x,j] = max{ K[x,j],   

K[x – wj, j-1] + vj }

• return K[W,n]

current 

entry

relevant 

previous entry 87



0 0 0 0

Weight:

Value:

1 2 3

1 4 6

Item:

Capacity: 3

Example

0 1 1

0 1 4

0 1 4

j=0

j=1

j=2

j=3

x=0 x=1 x=2 x=3

• Zero-One-Knapsack(W, n, w, v):

• K[x,0] = 0 for all x = 0,…,W

• K[0,i] = 0 for all i = 0,…,n

• for x = 1,…,W:

• for j = 1,…,n:

• K[x,j] = K[x, j-1]

• if wj ≤ x:

• K[x,j] = max{ K[x,j],   

K[x – wj, j-1] + vj }

• return K[W,n]

current 

entry

relevant 

previous entry 88



0 0 0 0

Weight:

Value:

1 2 3

1 4 6

Item:

Capacity: 3

Example

0 1 1 0

0 1 4

0 1 4

j=0

j=1

j=2

j=3

x=0 x=1 x=2 x=3

• Zero-One-Knapsack(W, n, w, v):

• K[x,0] = 0 for all x = 0,…,W

• K[0,i] = 0 for all i = 0,…,n

• for x = 1,…,W:

• for j = 1,…,n:

• K[x,j] = K[x, j-1]

• if wj ≤ x:

• K[x,j] = max{ K[x,j],   

K[x – wj, j-1] + vj }

• return K[W,n]

current 

entry

relevant 

previous entry 89



0 0 0 0

Weight:

Value:

1 2 3

1 4 6

Item:

Capacity: 3

Example

0 1 1 1

0 1 4

0 1 4

j=0

j=1

j=2

j=3

x=0 x=1 x=2 x=3

• Zero-One-Knapsack(W, n, w, v):

• K[x,0] = 0 for all x = 0,…,W

• K[0,i] = 0 for all i = 0,…,n

• for x = 1,…,W:

• for j = 1,…,n:

• K[x,j] = K[x, j-1]

• if wj ≤ x:

• K[x,j] = max{ K[x,j],   

K[x – wj, j-1] + vj }

• return K[W,n]

current 

entry

relevant 

previous entry 90



0 0 0 0

Weight:

Value:

1 2 3

1 4 6

Item:

Capacity: 3

Example

0 1 1 1

0 1 4 1

0 1 4

j=0

j=1

j=2

j=3

x=0 x=1 x=2 x=3

• Zero-One-Knapsack(W, n, w, v):

• K[x,0] = 0 for all x = 0,…,W

• K[0,i] = 0 for all i = 0,…,n

• for x = 1,…,W:

• for j = 1,…,n:

• K[x,j] = K[x, j-1]

• if wj ≤ x:

• K[x,j] = max{ K[x,j],   

K[x – wj, j-1] + vj }

• return K[W,n]

current 

entry

relevant 

previous entry 91



0 0 0 0

Weight:

Value:

1 2 3

1 4 6

Item:

Capacity: 3

Example

0 1 1 1

0 1 4 5

0 1 4

j=0

j=1

j=2

j=3

x=0 x=1 x=2 x=3

• Zero-One-Knapsack(W, n, w, v):

• K[x,0] = 0 for all x = 0,…,W

• K[0,i] = 0 for all i = 0,…,n

• for x = 1,…,W:

• for j = 1,…,n:

• K[x,j] = K[x, j-1]

• if wj ≤ x:

• K[x,j] = max{ K[x,j],   

K[x – wj, j-1] + vj }

• return K[W,n]

current 

entry

relevant 

previous entry 92



0 0 0 0

Weight:

Value:

1 2 3

1 4 6

Item:

Capacity: 3

Example

0 1 1 1

0 1 4 5

0 1 4 5

j=0

j=1

j=2

j=3

x=0 x=1 x=2 x=3

• Zero-One-Knapsack(W, n, w, v):

• K[x,0] = 0 for all x = 0,…,W

• K[0,i] = 0 for all i = 0,…,n

• for x = 1,…,W:

• for j = 1,…,n:

• K[x,j] = K[x, j-1]

• if wj ≤ x:

• K[x,j] = max{ K[x,j],   

K[x – wj, j-1] + vj }

• return K[W,n]

current 

entry

relevant 

previous entry 93



0 0 0 0

Weight:

Value:

1 2 3

1 4 6

Item:

Capacity: 3

Example

0 1 1 1

0 1 4 5

0 1 4 6

j=0

j=1

j=2

j=3

x=0 x=1 x=2 x=3

• Zero-One-Knapsack(W, n, w, v):

• K[x,0] = 0 for all x = 0,…,W

• K[0,i] = 0 for all i = 0,…,n

• for x = 1,…,W:

• for j = 1,…,n:

• K[x,j] = K[x, j-1]

• if wj ≤ x:

• K[x,j] = max{ K[x,j],   

K[x – wj, j-1] + vj }

• return K[W,n]

current 

entry

relevant 

previous entry 94



0 0 0 0

Weight:

Value:

1 2 3

1 4 6

Item:

Capacity: 3

Example

0 1 1 1

0 1 4 5

0 1 4 6

j=0

j=1

j=2

j=3

x=0 x=1 x=2 x=3

• Zero-One-Knapsack(W, n, w, v):

• K[x,0] = 0 for all x = 0,…,W

• K[0,i] = 0 for all i = 0,…,n

• for x = 1,…,W:

• for j = 1,…,n:

• K[x,j] = K[x, j-1]

• if wj ≤ x:

• K[x,j] = max{ K[x,j],   

K[x – wj, j-1] + vj }

• return K[W,n]

So the optimal solution is to 

put one watermelon in your 

knapsack!

current 

entry

relevant 

previous entry 95



Recipe for applying Dynamic Programming

• Step 1: Identify optimal substructure.

• Step 2: Find a recursive formulation for the value of 
the optimal solution.

• Step 3: Use dynamic programming to find the value 
of the optimal solution.

• Step 4: If needed, keep track of some additional 
info so that the algorithm from Step 3 can find the 

actual solution.

• Step 5: If needed, code this up like a reasonable 
person. You do this one!

(We did it on the slide in the previous 

example, just not in the pseudocode!)96



What have we learned?

• We can solve 0/1 knapsack in time O(nW).

• If there are n items and our knapsack has capacity W.

• We again went through the steps to create DP 
solution:

• We kept a two-dimensional table, creating smaller 
problems by restricting the set of allowable items.

97



Question

• How did we know which substructure to use in 
which variant of knapsack?

vs.

This one made sense for 

unbounded knapsack 

because it doesn’t have 

any memory of what 

items have been used.

In 0/1 knapsack, we 

can only use each item 

once, so it makes sense 

to leave out one item 

at a time.

Operational Answer: try some stuff, see what works!

Answer in retrospect:

98



Example 3: Independent Set
if we still have time

2

2

3

5

1

2

1

• Given a graph with 

weights on the 

vertices…

• What is the 

independent set with 

the largest weight?

An independent set 

is a set of vertices 

so that no pair has 

an edge between 

them.

5

1

2

1
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Actually this problem is NP-complete.
So we are unlikely to find an efficient algorithm

• But if we also assume that the graph is a tree…

5 2

1

3

3

2

2

5

5

3
53

2

2

5

5

3

Problem: 

find a maximal independent set in a tree (with vertex weights).

A tree is a 

connected 

graph with no 

cycles.

100



Recipe for applying Dynamic Programming

• Step 1: Identify optimal substructure.

• Step 2: Find a recursive formulation for the value of 
the optimal solution

• Step 3: Use dynamic programming to find the value 
of the optimal solution

• Step 4: If needed, keep track of some additional 
info so that the algorithm from Step 3 can find the 

actual solution.

• Step 5: If needed, code this up like a reasonable 
person.

101



Optimal substructure

• Subtrees are a natural candidate.

• There are two cases:

1. The root of this tree is not in a 

maximal independent set.

2. Or it is.

102



Case 1: 
the root is not in an maximal independent set

• Use the optimal solution 
from these smaller problems.

103



Case 2: 
the root is in an maximal independent set

• Then its children can’t be.

• Below that, use the optimal 
solution from these smaller 

subproblems.

104



Recipe for applying Dynamic Programming

• Step 1: Identify optimal substructure.

• Step 2: Find a recursive formulation for the value of 
the optimal solution.

• Step 3: Use dynamic programming to find the value 
of the optimal solution

• Step 4: If needed, keep track of some additional 
info so that the algorithm from Step 3 can find the 

actual solution.

• Step 5: If needed, code this up like a reasonable 
person.

105



Recursive formulation: try 1

• Let A[u] be the weight of a maximal independent set 
in the tree rooted at u.

• ! " =
max' ∑)∈+.children![6]weight " + ∑)∈+.grandchildren![6]

When we implement this, how do 

we keep track of this term?

106



Recursive formulation: try 2
Keep two arrays!

• Let A[u] be the weight of a maximal independent set 
in the tree rooted at u.

• Let B[u] = ∑"∈$.children.[0]
• . 2 = max7 ∑"∈$.children.[0]weight 2 + ∑"∈$.children<[0]

107



Recipe for applying Dynamic Programming

• Step 1: Identify optimal substructure.

• Step 2: Find a recursive formulation for the value of 
the optimal solution.

• Step 3: Use dynamic programming to find the value 
of the optimal solution.

• Step 4: If needed, keep track of some additional 
info so that the algorithm from Step 3 can find the 

actual solution.

• Step 5: If needed, code this up like a reasonable 
person.

108



A top-down DP algorithm

• MIS_subtree(u):

• if u is a leaf:

• A[u] = weight(u)

• B[u] = 0

• else:

• for v in u.children:

• MIS_subtree(v)

• ! " = max{ ∑
)∈+.children![6] , weight " + ∑

)∈+.children=[6] }

• B " = ∑
)∈+.children![6]

• MIS(T):

• MIS_subtree(T.root)

• return A[T.root]

Initialize global arrays A, B 

that we will use in all of 

the recursive calls.

Running time?

• We visit each vertex once, and at 

every vertex we do O(1) work:

• Make a recursive call 

• look stuff up in tables

• Running time is O(|V|)
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Why is this different from divide-and-conquer?
That’s always worked for us with tree problems before…

• MIS_subtree(u):

• if u is a leaf:

• return weight(u)

• else:

• return max{ ∑
&∈(.childrenMIS_subtree(;) ,

weight @ + ∑
&∈(.grandchildrenMIS_subtree(;) }

• MIS(T):

• return MIS_subtree(T.root)

This is exactly the same pseudocode, 

except we’ve ditched the table and 
are just calling MIS_subtree(v) 

instead of looking up A[v] or B[v].
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Why is this different from divide-and-conquer?
That’s always worked for us with tree problems before…

How often would we ask 

about the subtree rooted 

here?

Once for this node 

and once for this one.

But we then ask 

about this node 

twice, here and here.

This will blow up exponentially 

without using dynamic 

programming to take advantage 

of overlapping subproblems.
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Recipe for applying Dynamic Programming

• Step 1: Identify optimal substructure.

• Step 2: Find a recursive formulation for the value of 
the optimal solution.

• Step 3: Use dynamic programming to find the value 
of the optimal solution.

• Step 4: If needed, keep track of some additional 
info so that the algorithm from Step 3 can find the 

actual solution.

• Step 5: If needed, code this up like a reasonable 
person.

You do this one!
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What have we learned?

• We can find maximal independent sets in trees in 
time O(|V|) using dynamic programming!

• For this example, it was natural to implement our 
DP algorithm in a top-down way.
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Recap

• Today we saw examples of how to come up with 
dynamic programming algorithms.

• Longest Common Subsequence

• Knapsack two ways

• (If time) maximal independent set in trees.

• There is a recipe for dynamic programming 
algorithms.
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Recipe for applying Dynamic Programming

• Step 1: Identify optimal substructure.

• Step 2: Find a recursive formulation for the value of 
the optimal solution.

• Step 3: Use dynamic programming to find the value 
of the optimal solution.

• Step 4: If needed, keep track of some additional 
info so that the algorithm from Step 3 can find the 

actual solution.

• Step 5: If needed, code this up like a reasonable 
person.
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Recap

• Today we saw examples of how to come up with dynamic 
programming algorithms.

• Longest Common Subsequence

• Knapsack two ways

• (If time) maximal independent set in trees.

• There is a recipe for dynamic programming algorithms.

• Sometimes coming up with the right substructure takes 
some creativity

• You got some practice on HW6 and you’ll get more on HW7! J

• For even more practice check out additional examples/practice 
problems in Algorithms Illuminated or CLRS or section!
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Next week

• Greedy algorithms!

• Pre-lecture exercise: Greed is good!

Before next time
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