Lecture 13

More dynamic programming!
Longest Common Subsequences, Knapsack, and
(if time) independent sets in trees.

Announcements

* HW6 due Wednesday!
* HW7 out Wednesday!

* FAQ: What's the best way to prepare for the final?

* Practice problems!

* |f Section/HW aren’t enough for you, there are plenty in
Algorithms llluminated and in CLRS (which is available for free
via the Stanford library).

 We’'ll also be posting multiple practice finals soon.
 When you are reading the book or (re)watching lectures
or section, try to guess what comes next.

* If we state a lemma, close the book or pause the video, and try
to prove the lemma.

* If we've seen the intuition for an algorithm, try to write down
pseudocode.

* Try the HW on your own before collaborating.

Question from last time

* Does Bellman-Ford/Floyd-Warshall work on
undirected graphs?

* Yes, just do:

O0—0 = (D

* What about negative edge weights? Does that
mean we just can’t handle negative edge weights in
undirected graphs?

* That’s right.
| can still walk back and forth
= — forever, and shortest paths might

not be defined! 3

Last time Prp

¥c programs dynamically
in Mission Impossible

4

Last time Pro

* Dynamic programming is an algorithm design
paradigm.

e Basic idea:

* |dentify optimal sub-structure

e Optimum to the big problem is built out of optima of small
sub-problems

* Take advantage of overlapping sub-problems
* Only solve each sub-problem once, then use it again and again

* Keep track of the solutions to sub-problems in a table
as you build to the final solution.

Today

* Examples of dynamic programming:
1. Longest common subsequence

2. Knapsack problem
e Two versions!

3. Independent sets in trees

* If we have time...
* (If not the slides will be there as a reference)

* Yet more examples of DP in Algorithms Illluminated!
* Weighted Independent Set in Paths
e Sequence Alignment
e Optimal Binary Search Trees

The goal of this lecture

* For you to get really bored of dynamic programming

w :
‘ . Lo p
: . g
’ &
s

e
. . S
. }
e .
et S A
L e
. et -y
o T
. pr . o e .
~*. - >, 5
Eedc -
Skl
+ $
-
-~ -
=3
-

Longest Common Subsequence

* How similar are these two species?

DNA: DNA:
AGCCCTAAGGGCTACCTAGCTT GACAGCCTACAAGCGTTAGCTTG

Longest Common Subsequence

* How similar are these two species?

DNA: DNA:
AGCCCTAAGGGCTACCIAGCTT GACAGCCTACAAGCGTTAGCTTG

* Pretty similar, their DNA has a long common subsequence:

AGCCTAAGCTTAGCTT

Longest Common Subsequence

e Subsequence:
is a subsequence of ABCDEFG

* If Xand Y are sequences, a common subsequence
is a sequence which is a subsequence of both.

is a common subsequence of ABCDEFGH and of
ABDFGHI
* A longest common subsequence...
e ...iIsa common subsequence that is longest.

* The longest common subsequence of ABCDE and
lis

We sometimes want to find these

. DNGaZ2Z2a66@:~ mary$ cat filel
e Applications in bioinformatics
B

=
=
H
H

INGa2Z2ab6@:~ maryy cat fileZ

|
C
C
C

.
. . F
* The unixcommand diff .
* Merging in version control !

DNBaZ22a660:~ maryf diff filel fileZ
32de

* svn, git, etc...

DN@a2Zabb@:~ maryd

Recipe for applying Dynamic Programming

* Step 1: Identify optimal substructure. -

* Step 2: Find a for the length
of the longest common subsequence.

e Step 3: Use dynamic programming to find the
length of the longest common subsequence.

* Step 4: If needed, keep track of some additional
info so that the algorithm from Step 3 can find the
actual LCS.

 Step 5: If needed, code this up like a reasonable
person.

12

Step 1: Optimal substructure

Prefixes:
X AlclGcg |G| T
Y AlclGglc|lTI|T]A

Notation: denote this prefix ACGC by Y,

* Qur sub-problems will be finding LCS’s of prefixes to X and Y.

* Let C[i,j] = length_of_LCS(X, Y;)

Examples: C[2,3] =2
Cl4,4] =3

13

Optimal substructure ctd.

e Subproblem:
* finding LCS’s of prefixes of X and Y.

* Why is this a good choice?

* As we will see, there’s some relationship between LCS’s
of prefixes and LCS’s of the whole things.

* These subproblems overlap a lot.

14

Recipe for applying Dynamic Programming

* Step 1: Identify optimal substructure. J

* Step 2: Find a for the length
of the longest common subsequence.

e Step 3: Use dynamic programming to find the
length of the longest common subsequence.

* Step 4: If needed, keep track of some additional
info so that the algorithm from Step 3 can find the
actual LCS.

 Step 5: If needed, code this up like a reasonable
person.

15

Goal

* Write Cl[i,j] in terms of the solutions to smaller sub-
problems

C[i,j] = length_of_LCS(X, Y;)

16

* QOur sub-problems will be finding

TWO cases LCS’s of prefixes to X and Y.
: : * Let C[i,j] = length_of_LCS(X, Y;)
Case 1: X[i] = Y[j]

These are
A the same
| |
A C| G G A
Xi
j
|
| |
Yj Alc|lGcg|lc|T]|T]|A

Then CJi,j] =1 + C[i-1,j-1].
* because LCS(X,)Y;) = LCS(X, 1,Y; ;) followed by | A

17

* QOur sub-problems will be finding

TWO cases LCS’s of prefixes to X and Y.
: : * Let C[i,j] = length_of_LCS(X, Y;)
Case 2: X[i] = Y[j]

These are
l A \/ not the
same
A C| G G T
Xi
j
|
| |
Yj AlclGgl|lc|T|T]|A

 Then C[i,j] = max{ C[i-1,j], C[i,j-1] }.
* either LCS(X,Y;) = LCS(X,1,Y;) and | T| is not involved,
* or LCS(X,Y;) = LCS(X,)Y; 1) and |A| is not involved,

* (maybe both are not involved, that’s covered by the “or”),

Recursive formulation
of the optimal solution X, |

Y. |Alc|G|c|T|[T]|A
j

‘jCaseO

(0 if i=0o0rj=0

. Cli,jl=4cCli—1,j—1]+1 if X[i] = Y[j] and i,j > O
kmaX{C[i,j— 1],Cli —1,j]} ifX[i] # Y[j] andi,j >0 §

C .

Case 1 Case 2

Recipe for applying Dynamic Programming

* Step 1: Identify optimal substructure.

* Step 2: Find a for the length
of the longest common subsequence.

&

e Step 3: Use dynamic programming to find the
length of the longest common subsequence.

* Step 4: If needed, keep track of some additional
info so that the algorithm from Step 3 can find the
actual LCS.

 Step 5: If needed, code this up like a reasonable
person.

20

LCS DP

* LCS(X, Y):

e C[i,0]=C[0,j] =0foralli=0,...,m, j=0,...n.
* Fori=1,.,mandj=1,..,n:
 If X[i] = Y[j]:

* C[i,j] =Cli-1,j-1] +1

e Else:

e Return C[m,n]

/

Rup,..
Ming ¢
* Cli,j] = max{ C[i,j-1], C[i-1,j] } O{"'h} Me.
0 ifi=0o0rj=0
Cli—-1,j—1]+1 if X[i] = Y[j] and i,j > 0

Cli,j] = <

Kmax{ Cli,j —1],C[i — 1,j]} ifX[i] # Y[j] and,j > 0

SEHEBE

Cli,j]

0 ifi=0o0rj=0
Cli-1,j—1]+1 if X[i] = Y[j] andi,j >0
max{ C[i,j — 1],C[i — 1,j1} ifX[i] # Y[j] andi,j >0

So the LCM of X

and Y has length 3.

SEHEBE

0 ifi=0o0rj=0
Cli,jl={Cli—1,j—1]+1 if X[i] = Y[j] andi,j >0
max{ C[i,j — 1],C[i — 1,j1} ifX[i] # Y[j] andi,j >0

Recipe for applying Dynamic Programming

* Step 1: Identify optimal substructure.

* Step 2: Find a for the length
of the longest common subsequence.

e Step 3: Use dynamic programming to find the
length of the longest common subsequence.

* Step 4: If needed, keep track of some additional
info so that the algorithm from Step 3 can find the
actual LCS.

 Step 5: If needed, code this up like a reasonable
person.

24

SEHEBE

Cli,j]

0 ifi=0o0rj=0
Cli-1,j—1]+1 if X[i] = Y[j] and i, j > 0
max{ C[i,j — 1],C[i — 1,j1} ifX[i] # Y[j] andi,j >0

SEHEBE

Cli,j]

0 ifi=0o0rj=0
Cli-1,j—1]+1 if X[i] = Y[j] andi,j >0
max{ C[i,j — 1],C[i — 1,j1} ifX[i] # Y[j] andi,j >0

>[o]o]o]>

Y
A ‘ C ‘ T
* Once we've filled this in,
we can work backwards.
0 0 0
1 1 1
1 2 2
1 2 2
1 2 2
1 2 2
0 ifi=0o0rj=0
Cli,jl={Cli—1,j—1]+1 if X[i] = Y[j] andi,j >0

max{ C[i,j — 1], C[i — 1,j1} ifX[i] # Y[j] andi,j > 0

>[a]o]o]>

Y
A ‘ C ‘ T
* Once we've filled this in,

we can work backwards.
0 0 0
1 1 1
1 2 2
1 2 2
1 2 2 That 3 must have come

from the 3 above it.

1 2 2

0 ifi=0o0rj=0

Cli,jl={cli—1,j—1]+1 if X[i] = Y[j] and i,j > 0

max{ C[i,j — 1],C[i — 1,j]} ifX[i] # Y[j] andi,j > 0

>[o]a]o]>

Y
A ‘ C ‘ T
* Once we've filled this in,
we can work backwards.
0Ol 0] O * Adiagonal jump means
) . that we found an element
1 of the LCS!
1 2 2
1 2 2 This 3 came from that 2 —
|
1) 5 we found a match!
1 2 2
0 ifi=0o0rj=0
Cli,jl=<Cli—1,j—1]+1 if X[i] = Y[j] andi,j > 0

max{ C[i,j — 1],C[i — 1,j]} ifX[i] # Y[j] andi,j >0

SEHEBE

Y
A ‘ C ‘ T
* Once we've filled this in,
we can work backwards.
0Ol 0] O * Adiagonal jump means
) .) that we found an element
of the LCS!
1 2 2 That 2 may as well
have come from
1 2 2 this other 2. G
1 2 2
1 2 2
0 ifi=0o0rj=0
Cli,jl=<Cli—1,j—1]+1 if X[i] = Y[j] andi,j > 0

max{ C[i,j — 1],C[i — 1,j]} ifX[i] # Y[j] andi,j > 0

SEHEBE

Y
A ‘ C ‘ T
* Once we've filled this in,

we can work backwards.

0Ol 0] O * Adiagonal jump means

) .) that we found an element
of the LCS!

1 2 2

1 2 2 G

1 2 2

1 2 2
0 ifi=0o0rj=0

Cli,jl=<Cli—1,j—1]+1 if X[i] = Y[j] andi,j >0

max{ C[i,j — 1], C[i — 1,j1} ifX[i] # Y[j] andi,j > 0

>[o]o]o|>

Y
A ‘ C ‘ T
* Once we've filled this in,

we can work backwards.

0Ol 0] O * Adiagonal jump means

) .) that we found an element
of the LCS!

1 2 2

1 2 2 C G

1 2 2

1 2 2
0 ifi=0o0rj=0

Cli,jl=<Cli—1,j—1]+1 if X[i] = Y[j] andi,j >0

max{ C[i,j — 1],C[i — 1,j]} ifX[i] # Y[j] andi,j >0

* Once we've filled this in,
we can work backwards.

* Adiagonal jump means

that we found an element
of the LCS!

A C G

>[o]o]o]>

This is the LCS!

0 ifi=0o0rj=0
Cli,jl={Cli—1,j—1]+1 if X[i] = Y[j] andi,j >0
max{ C[i,j — 1],C[i — 1,j1} ifX[i] # Y[j] andi,j >0

Finding an LCS

* Good exercise to write out pseudocode for what we
just saw!

e Oryou can find it in CLRS.
* Takes time O(mn) to fill the table

* Takes time O(n + m) on top of that to recover the LCS
 We walk up and left in an n-by-m array
* We can only do that for n + m steps.

e Altogether, we can find LCS(X,Y) in time O(mn).

34

Recipe for applying Dynamic Programming

* Step 1: Identify optimal substructure.

* Step 2: Find a for the length
of the longest common subsequence.

e Step 3: Use dynamic programming to find the
length of the longest common subsequence.

* Step 4: If needed, keep track of some additional
info so that the algorithm from Step 3 can find the
actual LCS.

 Step 5: If needed, code this up like a reasonable ,
person.

35

Our approach actually isn’t so bad

* If we are only interested in the length of the LCS we
can do a bit better on space:

* Since we go across the table one-row-at-a-time, we can only
keep two rows if we want.

* If we want to recover the LCS, we need to keep the
whole table.

than O(mn) time?
* A bit better.
* By alog factor or so.

e But doing much better (polynomially better) is an open
problem!

* If you can do it let me know :D
36

What have we learned?

* We can find LCS(X,Y) in time O(nm)
e if |Y|[=n, |X]|=m

* We went through the steps of coming up with a
dynamic programming algorithm.
* We kept a 2-dimensional table, breaking down the
problem by decrementing the length of X and Y.

37

Example 2: Knapsack Problem

* We have n items with weights and values:

ltem:

©
Weight: 6)
Value: 20 8 14

* And we have a knapsack:
* it can only carry so much weight:

Weight: 6 2 4
Value: 20 8 14

- @ e @

11
35

* Unbounded Knapsack:
* Suppose | have infinite copies of all of the items.
 What’s the most valuable way to fill the knapsack?

g i \ Total weight: 10
/ / = & Total value: 42

* 0/1 Knapsack:

* Suppose | have only one copy of each item.
 What'’s the most valuable way to fill the knapsack?

\; b f Total weight: 9
= / Total value: 35

39

Some notation

ltem =
Weight W2
Value V2

Capacity: W

40

Recipe for applying Dynamic Programming

* Step 1: Identify optimal substructure. -

* Step 2: Find a for the value of
the optimal solution.

* Step 3: Use dynamic programming to find the value
of the optimal solution.

* Step 4: If needed, keep track of some additional
info so that the algorithm from Step 3 can find the
actual solution.

 Step 5: If needed, code this up like a reasonable
person.

41

Optimal substructure

e Sub-problems:
* Unbounded Knapsack with a smaller knapsack.
e K[x] = value you can fit in a knapsack of capaci

First solve the

problem for Then larger Then larger

small knapsacks knapsacks knapsacks

item i

Optimal substructure

e Suppose this is an optimal solution for capacity x:

Weight w;
Value v Capacity x
* Then this optimal for capacity x - w;: ~ Vvaluev

R Sl

1 minute think =
1 minute pair+share

’ Capacity x — w;
Value V - v, 43

item i

Optimal substructure

e Suppose this is an optimal solution for capacity x:

Weight w;

value v Capacity X

* Then this optimal for capacity x - w;: ~ Vvaluev

R
. =

If | could do better than the second solution,
then adding a turtle to that improvement
would improve the first solution.

Capacity x — w;,

Value V - v, "

Recipe for applying Dynamic Programming

* Step 1: Identify optimal substructure. %
* Step 2: Find a for the value o

the optimal solution.

* Step 3: Use dynamic programming to find the value
of the optimal solution.

* Step 4: If needed, keep track of some additional
info so that the algorithm from Step 3 can find the
actual solution.

 Step 5: If needed, code this up like a reasonable
person.

45

Recursive relationship

* Let K[x] be the optimal value for capacity x.

+h}

Optimal way to The value of
fill the smaller item i.
knapsack

K[x] = max; {

The maximum is over
all i so that w; < x.

K[x] = max, { K[x —w] + v }

* (And K[x] = 0 if the maximum is empty).

* Thatis, if therearenoisothatw; < x
46

Recipe for applying Dynamic Programming

* Step 1: Identify optimal substructure.

* Step 2: Find a for the value of
the optimal solution. {

* Step 3: Use dynamic programming to find the value
of the optimal solution.

* Step 4: If needed, keep track of some additional
info so that the algorithm from Step 3 can find the
actual solution.

 Step 5: If needed, code this up like a reasonable
person.

47

Let’s write a bottom-up DP algorithm

* UnboundedKnapsack(W, n, weights, values):
e K[0] =0
e forx=1, .. W:
e K[x] =0
e fori=1, .., n:
o ifw; < x:
* K|x] = max{ K|x]|,K[x —w;| +v; }
e return K[W]

Running time: O(nW)

Why does this work?

= max; { K[x—w;] + v, } Because our recursive relationship makés sense.

Can we do better?

* Writing down W takes log(W) bits.
* Writing down all n weights takes at most nlog(W) bits.

* Input size: nlog(W).
 Maybe we could have an algorithm that runs in time
O(nlog(W)) instead of O(nW)?

* Open problem!
e (But probably the answer is no...otherwise P = NP)

49

Recipe for applying Dynamic Programming

* Step 1: Identify optimal substructure.

* Step 2: Find a for the value of
the optimal solution.

* Step 3: Use dynamic programming to find the value

of the optimal solution. [

* Step 4: If needed, keep track of some additional
info so that the algorithm from Step 3 can find the
actual solution.

 Step 5: If needed, code this up like a reasonable
person.

50

Let’s write a bottom-up DP algorithm

* UnboundedKnapsack(W, n, weights, values):
e K[0] =0
e forx=1, .. W:
e K[x] =0
e fori=1, .., n:
o ifw; < x:
* K|x] = max{ K|x]|,K[x —w;| +v; }
e return K[W]

K[x] = max; { &
. 8

= max; { K[x —w;] + v;}

51

Let’s write a bottom-up DP algorithm

* UnboundedKnapsack(W, n, weights, values):
e K[0] =0 ’
* ITEMS[0] = @
e forx=1, .. W:
e K[x] =0
e fori=1, .., n:
o ifw; < x:
* K|x] = max{ K|x],K[x —w;]| + v; }

* If K[x] was updated: ’
* ITEMS|[x] = ITEMS[x —w;] U {item i}

e return ITEMS[W]

KIx] =maxi{ 5=
IR

= max; { K[x —w;] +v;} 52

A~

ITEMS

UnboundedKnapsack(W, n, weights, values):

« K[0]=0
« ITEMS[0] = ®
e forx=1,.. W:
« K[x]=0
e fori=1,..,n:
e ifw; < x:

* K[x] =max{K[x],K[x —w;] +v;}
* If K[x] was updated:
« ITEMS|X] = ITEMS[x — w;] U { item i }

return ITEMS[W]

ltem: h =

Weight: 1
Value: 1 4 6

=)

Capacﬁiy: 4

e UnboundedKnapsack(W, n, weights, values):
« K[0]=0
« ITEMS[0] = @
e forx=1,.. W:

Example i

e fori=1,..,n:
° Ile < Xx:
1 2 3 4 * K[x] =max{K[x],K[x —w;] +v;}

A~

* If K[x] was updated:
« ITEMS[X] = ITEMS[x —w;] U {item i }
1 * return ITEMS[W]

ITEMS

ltem: h =

Weight:

1
Value: 1 4 6

TEMS[1] = ITEMS[0] + Vil

=)

Capacity: 4

A~

ITEMS

TEMS[2] = ITEMS[1] + il

UnboundedKnapsack(W, n, weights, values):

« K[0]=0
« ITEMS[0] = ®
e forx=1,.. W:
« K[x]=0
e fori=1,..,n:
e ifw; < x:

* K[x] =max{K[x],K[x —w;] +v;}
* If K[x] was updated:
e ITEMS[x] = ITEMS[x — wi] U { item i }
* return ITEMS[W]

ltem: h =

Weight: 1
Value: 1 4 6

=)

Capacity: 4

A~

ITEMS

ITEMS[2] = ITEMS[0] +

UnboundedKnapsack(W, n, weights, values):

« K[0]=0
« ITEMS[0] = ®
e forx=1,.. W:
« K[x]=0
e fori=1,..n:
e ifw; < x:
* K[x] =max{K[x],K[x —w;] +v;}
* If K[x] was updated:
« ITEMS[x] = ITEMS[x — w;] U {item i }
* return ITEMS[W]

ltem:
Weight: 1 2 3
Value: 1 4 6

=)

Capacity: 4

e UnboundedKnapsack(W, n, weights, values):
« K[0]=0
« ITEMS[0] = @
e forx=1,.. W:

Example i

e fori=1,..,n:
° Ile < Xx:
1 2 3 4 * K[x] =max{K[x],K[x —w;] +v;}

A~

* If K[x] was updated:
« ITEMS[X] = ITEMS[x —w;] U {item i }
1 4 5 * return ITEMS[W]

ITEMS

)Y f .
ltem: h ©

Weight:

1
Value: 1 4 6

TEMS[3] = ITEMS[2] + ¥k

=)

Capacity: 4

A~

ITEMS

ITEMS[3] = ITEMS[0] + @iy

UnboundedKnapsack(W, n, weights, values):

« K[0]=0
« ITEMS[0] = ®
e forx=1,.. W:
« K[x]=0
e fori=1,..,n:
e ifw; < x:

* K[x] =max{K[x],K[x —w;] +v;}
* If K[x] was updated:
e ITEMS[x] = ITEMS[x — wi] U { item i }
* return ITEMS[W]

ltem: h =

Weight: 1
Value: 1 4 6

=)

Capacity: 4

A~

ITEMS

ITEMS[4] = ITEMS[3] +

UnboundedKnapsack(W, n, weights, values):
« K[0]=0
« ITEMS[0] = @
e forx=1,.. W:
« K[x]=0
e fori=1,..n:
e ifw; < x:
* Klx] =max{K[x],K[x —w;| +v;}
e If K[x] was updated:
e ITEMS[x] = ITEMS[x — wi] U { item i }
* return ITEMS[W]

ltem: h =

Weight:
Value:

Capacity: 4

A~

ITEMS

ITEMS[4] = ITEMS[2] + y

UnboundedKnapsack(W, n, weights, values):

« K[0]=0
« ITEMS[0] = ®
e forx=1,.. W:
« K[x]=0
e fori=1,..,n:
e ifw; < x:

* K[x] =max{K[x],K[x —w;] +v;}
* If K[x] was updated:
e ITEMS[x] = ITEMS[x — wi] U { item i }
* return ITEMS[W]

ltem: h =

Weight: 1
Value: 1 4 6

=)

Capacity: 4

Recipe for applying Dynamic Programming

* Step 1: Identify optimal substructure.

* Step 2: Find a for the value of
the optimal solution.

* Step 3: Use dynamic programming to find the value
of the optimal solution.

* Step 4: If needed, keep track of some additional
info so that the algorithm from Step 3 can find the

actual solution. {
 Step 5: If needed, code this up like a reasonable
person.
(Pass)

61

What have we learned?

* We can solve unbounded knapsack in time O(nW).
* If there are n items and our knapsack has capacity W.

* We again went through the steps to create DP
solution:

* We kept a one-dimensional table, creating smaller
problems by making the knapsack smaller.

62

Weight: 6 2 4
Value: 20 8 14

- @ e @

11
35

* Unbounded Knapsack:
* Suppose | have infinite copies of all of the items.
 What’s the most valuable way to fill the knapsack?

g i \ Total weight: 10
/ / = & Total value: 42

» * 0/1 Knapsack:

* Suppose | have only one copy of each item.
 What'’s the most valuable way to fill the knapsack?

\; b f Total weight: 9
= / Total value: 35

63

Recipe for applying Dynamic Programming

* Step 1: Identify optimal substructure. -

* Step 2: Find a for the value of
the optimal solution.

* Step 3: Use dynamic programming to find the value
of the optimal solution.

* Step 4: If needed, keep track of some additional
info so that the algorithm from Step 3 can find the
actual solution.

 Step 5: If needed, code this up like a reasonable
person.

64

Optimal substructure: try 1

e Sub-problems:
* Unbounded Knapsack with a smaller knapsack.

First solve the
problem for

Then larger Then larger
small knapsacks knapsacks knapsacks

65

This won’t quite work...

* We are only allowed one copy of each item.

* The sub-problem needs to “know” what items
we’ve used and what we haven’t.

| can’t use
any turtles...

66

Optimal substructure: try 2

e Sub-problems:

First solve the
problem with
few items

Then more
items

Then yet
more
items

Our sub-problems:

* Indexed by x and |

K[x,j] = optimal solution for a knapsack of
size x using only the first j items.

68

Relationship between sub-problems

* Want to write K[x,j] in terms of smaller sub-problems.

K[x,j] = optimal solution for a knapsack of
size x using only the first j items. 69

TwoO cases h item |

* Case 1: Optimal solution for j items does not use item j.
* Case 2: Optimal solution for j items does use item j.

K[x,j] = optimal solution for a knapsack of
size x using only the first j items. 70

Two cases S e

* Case 1: Optimal solution for j items does not use item j.

Capacity x
Value V
Use only the first j items

First j items

What lower-indexed
problem should we solve
to solve this problem?

& -

71

item j

TwoO cases

* Case 1: Optimal solution for j items does not use item j.

Capacity x
Value V
Use only the first j items

First j items

* Then this is an optimal solution for -1 item

S.

e S

AW 5

Caaéity X
Value V .
First j-1 items Use only the first j-1 item:s.

item j

TwoO cases

* Case 2: Optimal solution for j items uses item j.

Weight w; a1l
Value v, Capacity x
Value V
First j items Use only the first j items

What lower-indexed
problem should we solve
to solve this problem?

G

73

item j

TwoO cases

* Case 2: Optimal solution for j items uses item j.

Weight w;
Value v, Capacity x
Value V
First j items Use only the first j items

* Then this is an optimal solution for j-1 items and a

smaller knapsack: -
g

Capacity x — w;
Value V —v;

First -1 items Use only the first j-14items.

Recipe for applying Dynamic Programming

* Step 1: Identify optimal substructure. %
* Step 2: Find a for the value o

the optimal solution.

* Step 3: Use dynamic programming to find the value
of the optimal solution.

* Step 4: If needed, keep track of some additional
info so that the algorithm from Step 3 can find the
actual solution.

 Step 5: If needed, code this up like a reasonable
person.

75

Recursive relationship

* Let K[x,j] be the optimal value for:

* capacity x,
e with j items.

K[x,j] = max{ K[x, j-1],

Case 1

* (And K[x,0] = 0 and K[O,j] = 0).

76

Recipe for applying Dynamic Programming

* Step 1: Identify optimal substructure.
* Step 2: Find a for the value of

the optimal solution. ,

* Step 3: Use dynamic programming to find the value
of the optimal solution.

* Step 4: If needed, keep track of some additional
info so that the algorithm from Step 3 can find the
actual solution.

 Step 5: If needed, code this up like a reasonable
person.

77

Bottom-up DP algorithm

e Zero-One-Knapsack(W, n, w, v):
e K[x,0] =0 forall x=0,.... W
e K[O,i]=0foralli=0,...,n
e forx=1,...,W:
e forj=1,..,n:
* K[x,j] = K[x, j-1]
«ifw, < x:
* K[x,J] = max{ K[x,j], }
e return K|\W,n]

Case 1

Running time O(pW)

* Zero-One-Knapsack(W, n, w, v):
* K[x,0]=0forallx=0,..W
 K[0,i]=0foralli=0,...,n

Example O et

¢ K[XIJ] = K[XI J_l]

e jifw <x:
x=0 x=1 x=2 x=3 * Kl) = maxd Kl
Kx —wj, j-1] +v; }
-0 0 0 0 0 return K[\W,n]
J:
0
1 . =1
. 0
L e
. 0
@ . h =3

ltem:
current relevant Weight: 1 2 3
entry previous entry Value: 1 4 6 Capacity: 3

* Zero-One-Knapsack(W, n, w, v):
* K[x,0]=0forallx=0,..W
 K[0,i]=0foralli=0,...,n

Example O et

¢ K[XIJ] = K[XI J_l]

e ifw, <x:
x=0 x=1 x=2 x=3 ¢ KIx,j] = max{ Kix,Jl,
Kx —wj, j-1] +v; }
-0 0 0 0 0 return K[\W,n]
J:
0 0
1 } =1
. 0
J w2
. 0
(5 1= h J=3

ltem:
current relevant Weight: 1 2 3
entry previous entry Value: 1 4 6 Capacity: 3

e Zero-One-Knapsack(W, n, w, v):
K[x,0] =0 forall x=0,...,.W
K[0,i] =0foralli=0,..,n
forx=1,..W:
Example ot <1,
* K[x,j] = K[x, j-1]
o ifw,<x
x=0 x=1 x=2 x=3 * KIx,j] = max{ K[x,]l,

Kx —wj, j-1] +v; }

=0 0 0 0 0 * return K[\W,n]
0 1
W o (e
— 0
V=2
0

ltem:

current relevant Weight: 1 2 3
entry previous entry Value: 1

e Zero-One-Knapsack(W, n, w, v):
K[x,0] =0 forall x=0,...,.W
K[0,i] =0foralli=0,..,n
forx=1,..W:
Example ot <1,
* K[x,j] = K[x, j-1]
o ifw,<x
x=0 x=1 x=2 x=3 * KIx,j] = max{ K[x,]l,

Kx —wj, j-1] +v; }

o
o
o
o
.

return K[\W,n]

ltem:

current relevant Weight: 1 2 3
entry previous entry Value: 1

Example

current
entry

x=0 x=1 x=2 x=3
0 0 0 0
j=0

0 1

0 1

0 1

ltem:

relevant Weight:
previous entry Value:

Zero-One-Knapsack(W, n, w, v):
* K[x,0]=0forallx=0,..W
 K[0,i]=0foralli=0,...,n
e forx=1,..W:
e forj=1,..,n:
* K[x,jl = K[x, j-1]
o ifw,<x
© KDx,j] = max{ K[x,j],
Kx —wj, j-1] +v; }

* return K[\W,n]

=)

Capacity: 3

current
entry

x=0 x=1 X=2 X=3
=0 0 0 0 0
0 1 0
o
0 |1
T
0 1
)Y

relevant
previous entry

ltem:

Weight:
Value:

Zero-One-Knapsack(W, n, w, v):
* K[x,0]=0forallx=0,..W
 K[0,i]=0foralli=0,...,n
e forx=1,..W:
e forj=1,..,n:
* K[x,jl = K[x, j-1]
o ifw,<x
© KD jl = max{ K[x,j],
Kx —wj, j-1] +v; }

* return K[\W,n]

current
entry

x=0 x=1 X=2 X=3
=0 0 0 0 0
0 1 1
|
0 |1
T
0 1
)Y

relevant
previous entry

ltem:

Weight:
Value:

Zero-One-Knapsack(W, n, w, v):
* K[x,0]=0forallx=0,..W
 K[0,i]=0foralli=0,...,n
e forx=1,..W:
e forj=1,..,n:
* K[x,jl = K[x, j-1]
o ifw,<x
© KD jl = max{ K[x,j],
Kx —wj, j-1] +v; }

* return K[\W,n]

current
entry

x=0 x=1 X=2 X=3
=0 0 0 0 0
0 1 1
|
0 1 1
LR
0 1
)Y

relevant
previous entry

ltem:

Weight:
Value:

Zero-One-Knapsack(W, n, w, v):
* K[x,0]=0forallx=0,..W
 K[0,i]=0foralli=0,...,n
e forx=1,..W:
e forj=1,..,n:
* K[x,jl = K[x, j-1]
o ifw,<x
© KD jl = max{ K[x,j],
Kx —wj, j-1] +v; }

* return K[\W,n]

current
entry

x=0 x=1 X=2 X=3
=0 0 0 0 0

0 1 1
|

0 1 4
o

0 1
)Y

relevant
previous entry

ltem:

Weight:
Value:

Zero-One-Knapsack(W, n, w, v):
* K[x,0]=0forallx=0,..W
 K[0,i]=0foralli=0,...,n
e forx=1,..W:
e forj=1,..,n:
* K[x,jl = K[x, j-1]
o ifw,<x
© KD jl = max{ K[x,j],
Kx —wj, j-1] +v; }

* return K[\W,n]

current
entry

x=0 x=1 x=2 x=3
0 0 0 0
j=0
0 1 1
0 1 4
) I
0 1 4
@)
ltem:
relevant Weight:

previous entry

Value:

Zero-One-Knapsack(W, n, w, v):
* K[x,0]=0forallx=0,..W
 K[0,i]=0foralli=0,...,n
e forx=1,..W:
e forj=1,..,n:
* K[x,jl = K[x, j-1]
o ifw,<x
© KD jl = max{ K[x,j],
Kx —wj, j-1] +v; }

* return K[\W,n]

current
entry

x=0 x=1 X=2 x=3
0 0 0 0
j=0
0 1 1 0
0 1 4.
0 1 A
|
ltem:
relevant Weight:

previous entry

Value:

Zero-One-Knapsack(W, n, w, v):
* K[x,0]=0forallx=0,..W
 K[0,i]=0foralli=0,...,n
e forx=1,..W:
e forj=1,..,n:
* K[x,jl = K[x, j-1]
o ifw,<x
© KD jl = max{ K[x,j],
Kx —wj, j-1] +v; }

* return K[\W,n]

current
entry

x=0 x=1 X=2 X=3
=0 0 0 0 0
0 1 1 1
LI
0o |1 | 4
|
v 11 4
|

relevant
previous entry

ltem:

Weight:
Value:

Zero-One-Knapsack(W, n, w, v):
* K[x,0]=0forallx=0,..W
 K[0,i]=0foralli=0,...,n
e forx=1,..W:
e forj=1,..,n:
* K[x,jl = K[x, j-1]
o ifw,<x
© KD jl = max{ K[x,j],
Kx —wj, j-1] +v; }

* return K[\W,n]

current
entry

x=0 x=1 X=2 X=3
=0 0 0 0 0
0 1 1 1
3R
0 1 4 | 1
0 1t | 4
|

relevant
previous entry

ltem:

Weight:
Value:

Zero-One-Knapsack(W, n, w, v):
* K[x,0]=0forallx=0,..W
 K[0,i]=0foralli=0,...,n
e forx=1,..W:
e forj=1,..,n:
* K[x,jl = K[x, j-1]
o ifw,<x
© KD jl = max{ K[x,j],
Kx —wj, j-1] +v; }

* return K[\W,n]

current
entry

x=0 x=1 x=2 x=3
j=0 0 0 0 0
0o |1 |1 |1
L3 YR
h & Y ®
P
) I

relevant
previous entry

ltem:

Weight:
Value:

Zero-One-Knapsack(W, n, w, v):
* K[x,0]=0forallx=0,..W
 K[0,i]=0foralli=0,...,n
e forx=1,..W:
e forj=1,..,n:
* K[x,jl = K[x, j-1]
o ifw,<x
© KD jl = max{ K[x,j],
Kx —wj, j-1] +v; }

* return K[W'n]

current
entry

x=0 x=1 x=2 x=3
of P] °
0 1 1 1
- el
0 1 4 1.5
h ' Y
O |1 | 4 |.°2
Wl =

relevant
previous entry

ltem:

Weight:
Value:

Zero-One-Knapsack(W, n, w, v):
K[x,0] =0 forall x=0,...,.W
K[0,i] =0foralli=0,..,n
forx=1,..W:
e forj=1,..,n:
* K[x,jl=KIx, j-1]
o ifw,<x
© KD jl = max{ K[x,j],
Kx —wj, j-1] +v; }

return K[\W,n]

Example

current
entry

x=0 x=1 x=2 x=3
=0 0 0 0 0
0 | 1
L
0 |1
T
0 1
)Y

relevant
previous entry

ltem:

Weight:
Value:

Zero-One-Knapsack(W, n, w, v):
K[x,0] =0 forall x=0,...,.W
K[0,i] =0foralli=0,..,n

forx=1,..W:

e forj=1,..,n:
¢ K[XIJ] = K[XI J'l]
i if WJ S X:

return K[\W,n]

KIx,j] = max{ K[x,j],
Kx —wj, j-1] +v; }

Capacity: 3

Example

current
entry

x=0 x=1 x=2 x=3

0 0 0

0 1 1 1
LT

0 1 4 .5
h -, hg

0 | 1 | 4 | 6
i (e

relevant

previous entry

ltem:

Weight:
Value:

Zero-One-Knapsack(W, n, w, v):
* K[x,0]=0forallx=0,..W
 K[0,i]=0foralli=0,...,n
e forx=1,..W:
e forj=1,..,n:
* K[x,jl = K[x, j-1]
o ifw,<x
© KDx,j] = max{ K[x,j],
Kx —wj, j-1] +v; }

* return K[\W,n]

So the optimal solution is to
put one watermelon in your
knapsack!

Recipe for applying Dynamic Programming

* Step 1: Identify optimal substructure.

* Step 2: Find a for the value of
the optimal solution.

* Step 3: Use dynamic programming to find the value

of the optimal solution. ,
* Step 4: If needed, keep track of some additional

info so that the algorithm from Step 3 can find the
actual solution.

 Step 5: If needed, code this up like a reasonable

PEerson. You do this one!
(We did it on the slide in the previous
example, just not in the pseudocode!)%®

What have we learned?

e We can solve 0/1 knapsack in time O(nW).
* If there are n items and our knapsack has capacity W.

* We again went through the steps to create DP
solution:

* We kept a two-dimensional table, creating smaller
problems by restricting the set of allowable items.

97

Question

e How did we know which substructure to use in
which variant of knapsack?

Answer in retrospect:

This one made sense for
unbounded knapsack
because it doesn’t have
any memory of what
items have been used.

VS.

In 0/1 knapsack, we
can only use each item
once, so it makes sense

to leave out one item
at a time.

Operational Answer: try some stuff, see what works! 98

Example 3: Independent Set

if we still have time

An independent set
is a set of vertices
so that no pair has
an edge between
them.

* Given a graph with
weights on the
vertices...

e Whatis the

independent set with
the largest weigght?

Actually this problem is NP-complete.

So we are unlikely to find an efficient algorithm

e But if we also assume that the graph is a tree...

0

Atreeisa
connected
graph with no
cycles.

G

=~

Problem:

find a maximal independent set in a tree (with vertex weights)?

Recipe for applying Dynamic Programming

* Step 1: Identify optimal substructure. -

* Step 2: Find a for the value of
the optimal solution

* Step 3: Use dynamic programming to find the value
of the optimal solution

* Step 4: If needed, keep track of some additional
info so that the algorithm from Step 3 can find the
actual solution.

 Step 5: If needed, code this up like a reasonable
person.

101

Optimal substructure

e Subtrees are a natural candidate.
e There are two cases: ‘

1. The root of this tree is notin a

maximal independent set.

(U
A

102

Case 1;

the root is not in an maximal independent set

e Use the optimal solution ‘
from these smaller problems. -
" S - \
\ e ‘ N ‘ \
’ \ I \
7 \ I ‘ \
’ \
”~ \ : ‘\
//’ \‘ 1 \
/ \ i \
/7 v ‘\
U4 \ 1
/ \ 1 \
/ 1] \
] [1
i) \
I ‘ 11 \
| I 1
1 1 | \
\ I g 1
\\ ,l \ 'I
\\\ _______________ Y \\~ 05 g

Case 2:

the root is in an maximal independent set

 Then its children can’t be.

* Below that, use the optimal
solution from these smaller

subproblems.

\ N ’
4)| 4 \ \ /] \
/ I 1 \ / \
I I I
1 \] \
I i I
[\ ! \
1 1 ! v ! 1
k v 1Y i I |
<) \ / \ 104 J

Recipe for applying Dynamic Programming

* Step 1: Identify optimal substructure. %
* Step 2: Find a for the value o

the optimal solution.

* Step 3: Use dynamic programming to find the value
of the optimal solution

* Step 4: If needed, keep track of some additional
info so that the algorithm from Step 3 can find the
actual solution.

 Step 5: If needed, code this up like a reasonable
person.

105

Recursive formulation: try 1

* Let A[u] be the weight of a maximal independent set
in the tree rooted at u.

o Alu] =

ZvEu.children Alv]

max

weight(u) + ZvEu.grandChildren

When we implement this, how do
we keep track of this term?

C

Recursive formulation: try 2

Keep two arrays!

* Let A[u] be the weight of a maximal independent set
in the tree rooted at u.

* Let B[u] =), Alv]

veu.children

ZvEu.ChildI‘en Alv]
e Alu] = max

weight(u) + ZvEu.children

Recipe for applying Dynamic Programming

* Step 1: Identify optimal substructure.
* Step 2: Find a for the value of

the optimal solution. ,

* Step 3: Use dynamic programming to find the value
of the optimal solution.

* Step 4: If needed, keep track of some additional
info so that the algorithm from Step 3 can find the
actual solution.

 Step 5: If needed, code this up like a reasonable
person.

108

A top-down DP algorithm

* MIS_subtree(u): ity
e ifuis a leaf:
e Alu] = weight(u) the re
 B[u]=0 €alfs,

e else:

e for vin u.children:
* MIS subtree(v)

* Alu] = max{2 _ hildrenAlV], weight(u) + }

Running time?
M |S(T) * We visit each vertex once, and at
. every vertex we do O(1) work:
MIS_subtree(T.root) * Make a recursive call
* return A[T.root] * look stuff up in tables

* Running timeis O(|V]) .,

Why is this different from divide-and-conquer?

That’s always worked for us with tree problems before...

* MIS_subtree(u):

o . d
* ifuis a leaf: except Wec,”é’;f}e M bseudoon
: , it 0
* return weight(u) ~ are jyst callin Ched the table angy
* else: "Stead of oo MIS‘S“bt”ee(V)
: Oking Up Afv] or B[
* returnmax{), _ hildren MIS_subtree(v), v].
weight(u) + Zvea.grandchildren MIS_subtree(v) }

« MIS(T):

e return MIS_subtree(T.root)

110

Why is this different from divide-and-conquer?

That’s always worked for us with tree problems before...

How often would we ask ’
about the subtree rooted
here?

Once for this node
and once for

But we then ask . . a ‘ ‘

about this node

twice, and here. \ ‘ ‘

This will blow up exponentially
without using dynamic

programming to take advantage ’ ‘ ‘ ‘ ’ ’ ’ ’

of overlapping subproblems.

Recipe for applying Dynamic Programming

* Step 1: Identify optimal substructure.

* Step 2: Find a for the value of
the optimal solution.

* Step 3: Use dynamic programming to find the value

of the optimal solution. ,
* Step 4: If needed, keep track of some additional

info so that the algorithm from Step 3 can find the
actual solution.

 Step 5: If needed, code this up like a reasonable

person.
You do this one!
112

What have we learned?

* We can find maximal independent sets in trees in
time O(|V|) using dynamic programming!

* For this example, it was natural to implement our
DP algorithm in a top-down way.

Recap

* Today we saw examples of how to come up with
dynamic programming algorithmes.
* Longest Common Subsequence
e Knapsack two ways
maximal independent set in trees.

* There is a recipe for dynamic programming
algorithms.

114

Recipe for applying Dynamic Programming

* Step 1: Identify optimal substructure.

* Step 2: Find a for the value of
the optimal solution.

* Step 3: Use dynamic programming to find the value
of the optimal solution.

* Step 4: If needed, keep track of some additional
info so that the algorithm from Step 3 can find the
actual solution.

 Step 5: If needed, code this up like a reasonable
person.

115

-

Recap

' SOBORINGIN
* Today we saw examples of how to come up with dynamic
programming algorithms.
* Longest Common Subsequence

e Knapsack two ways
maximal independent set in trees.

* There is a recipe for dynamic programming algorithms.

* Sometimes coming up with the right substructure takes
some creativity
* You got some practice on HW6 and you’ll get more on HW7! ©

* For even more practice check out additional examples/practice
problems in Algorithms llluminated or CLRS or section!

116

Next week

* Greedy algorithms!

Before next time

* Pre-lecture exercise: Greed is good!

117

