

Lecture 13

More dynamic programming!

Longest Common Subsequences, Knapsack, and
(if time) independent sets in trees.

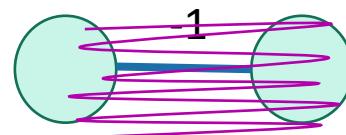
Announcements

- HW6 due Wednesday!
- HW7 out Wednesday!
- FAQ: What's the best way to prepare for the final?
 - Practice problems!
 - If Section/HW aren't enough for you, there are plenty in Algorithms Illuminated and in CLRS (which is available for free via the Stanford library).
 - We'll also be posting multiple practice finals soon.
 - When you are reading the book or (re)watching lectures or section, try to guess what comes next.
 - If we state a lemma, close the book or pause the video, and try to prove the lemma.
 - If we've seen the intuition for an algorithm, try to write down pseudocode.
 - Try the HW on your own before collaborating.

Question from last time

- Does Bellman-Ford/Floyd-Warshall work on undirected graphs?
 - Yes, just do:

- What about negative edge weights? Does that mean we just can't handle negative edge weights in undirected graphs?
 - That's right.



I can still walk back and forth forever, and shortest paths might not be defined!

Last time

Dynamic Programming!

- Not coding in an action movie.

Last time

Dynamic Programming!

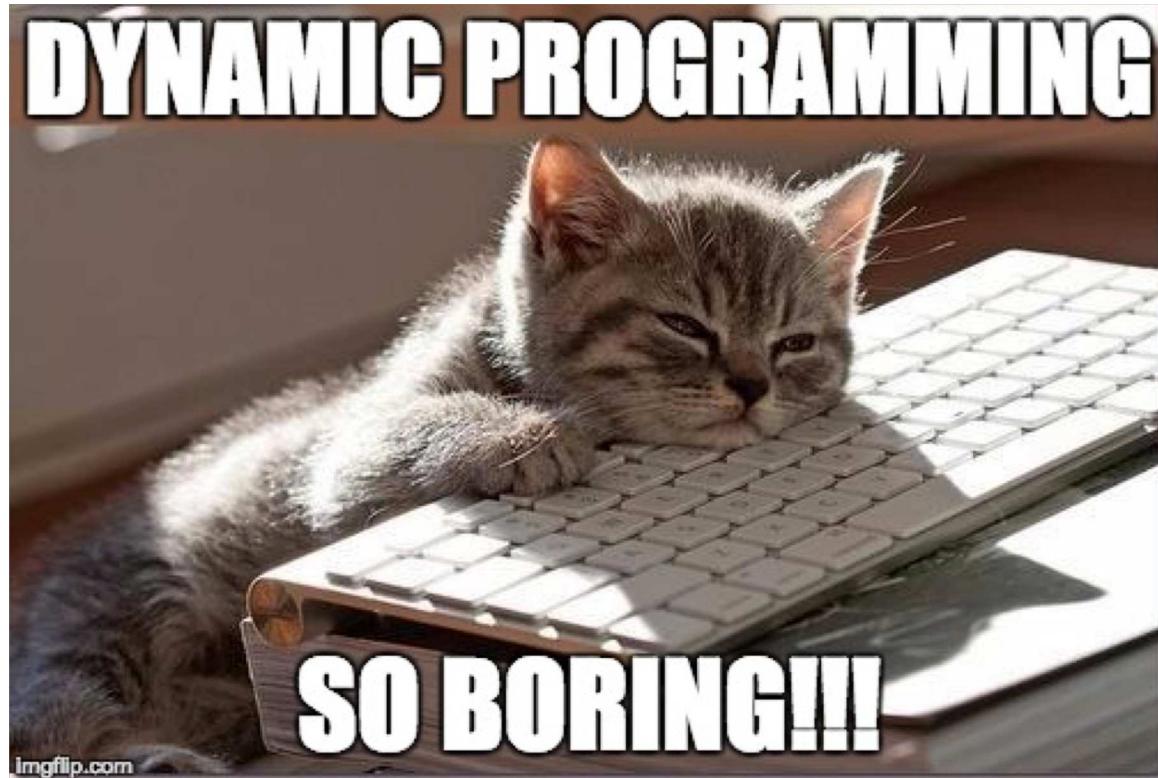
- Dynamic programming is an **algorithm design paradigm**.
- Basic idea:
 - Identify **optimal sub-structure**
 - Optimum to the big problem is built out of optima of small sub-problems
 - Take advantage of **overlapping sub-problems**
 - Only solve each sub-problem once, then use it again and again
 - Keep track of the solutions to sub-problems in a table as you build to the final solution.

Today

- Examples of dynamic programming:
 1. Longest common subsequence
 2. Knapsack problem
 - Two versions!
 3. Independent sets in trees
 - If we have time...
 - (If not the slides will be there as a reference)
- Yet more examples of DP in Algorithms Illuminated!
 - Weighted Independent Set in Paths
 - Sequence Alignment
 - Optimal Binary Search Trees

The goal of this lecture

- For you to get **really bored** of dynamic programming



Longest Common Subsequence

- How similar are these two species?

DNA:

AGCCCTAAGGGTACCTAGCTT

DNA:

GACAGCCTACAAGCGTTAGCTT

Longest Common Subsequence

- How similar are these two species?

DNA:

AGCCCTAA**GGG**GCTACCTAGCTT

DNA:

GAC**AGCCTA**CAAGCG**TTAGCTT**G

- Pretty similar, their DNA has a long common subsequence:

AGCCTAAGCTTAGCTT

Longest Common Subsequence

- Subsequence:
 - BDFH is a **subsequence** of ABCDEFGH
- If X and Y are sequences, a **common subsequence** is a sequence which is a subsequence of both.
 - BDFH is a **common subsequence** of ABCDEFGH and of ABDFGHI
- A **longest common subsequence**...
 - ...is a common subsequence that is longest.
 - The **longest common subsequence** of ABCDEFGH and ABDFGHI is ABDFGH.

We sometimes want to find these

- Applications in **bioinformatics**

- The unix command **diff**
- Merging in version control
 - **svn, git, etc...**

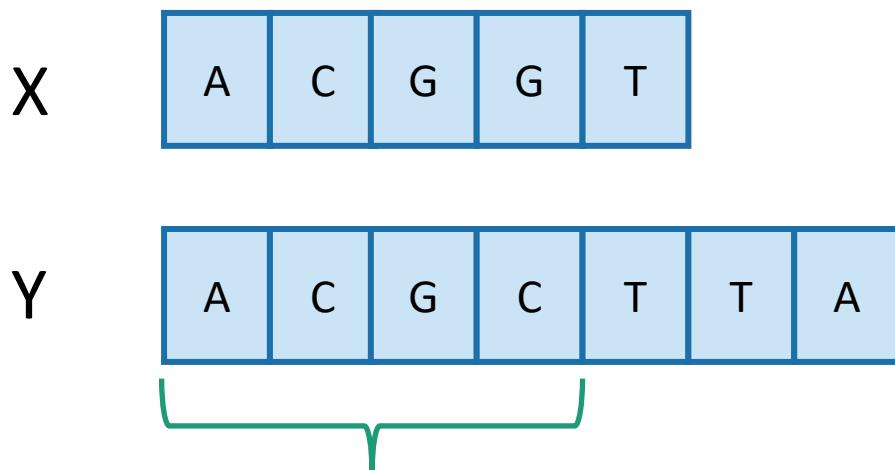
```
[DN0a22a660:~ mary$ cat file1
A
B
C
D
E
F
G
H
[DN0a22a660:~ mary$ cat file2
A
B
D
F
G
H
I
[DN0a22a660:~ mary$ diff file1 file2
3d2
< C
5d3
< E
8a7
> I
DN0a22a660:~ mary$ ]
```

Recipe for applying Dynamic Programming

- **Step 1:** Identify optimal substructure.
- **Step 2:** Find a **recursive formulation** for the length of the longest common subsequence.
- **Step 3:** Use **dynamic programming** to find the length of the longest common subsequence.
- **Step 4:** If needed, keep track of some additional info so that the algorithm from Step 3 can **find the actual LCS**.
- **Step 5:** If needed, **code this up like a reasonable person**.

Step 1: Optimal substructure

Prefixes:



Notation: denote this prefix $ACGC$ by Y_4

- Our sub-problems will be finding LCS's of prefixes to X and Y.
- Let $C[i,j] = \text{length_of_LCS}(X_i, Y_j)$

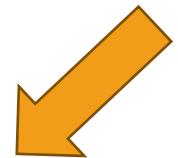
Examples: $C[2,3] = 2$
 $C[4,4] = 3$

Optimal substructure ctd.

- Subproblem:
 - finding LCS's of prefixes of X and Y.
- Why is this a good choice?
 - As we will see, there's some relationship between LCS's of prefixes and LCS's of the whole things.
 - These subproblems overlap a lot.

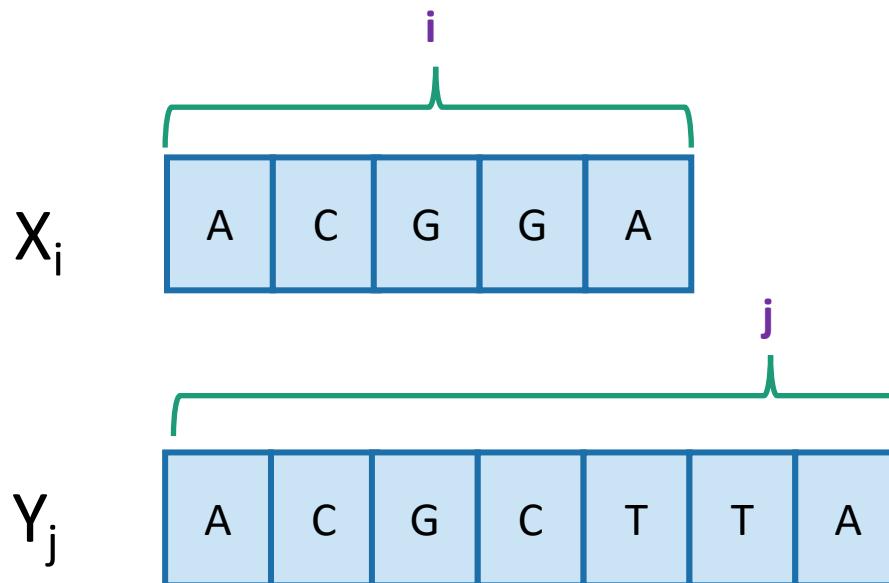
Recipe for applying Dynamic Programming

- **Step 1:** Identify optimal substructure.
- **Step 2:** Find a **recursive formulation** for the length of the longest common subsequence.
- **Step 3:** Use **dynamic programming** to find the length of the longest common subsequence.
- **Step 4:** If needed, keep track of some additional info so that the algorithm from Step 3 can **find the actual LCS**.
- **Step 5:** If needed, **code this up like a reasonable person**.



Goal

- Write $C[i,j]$ in terms of the solutions to smaller sub-problems

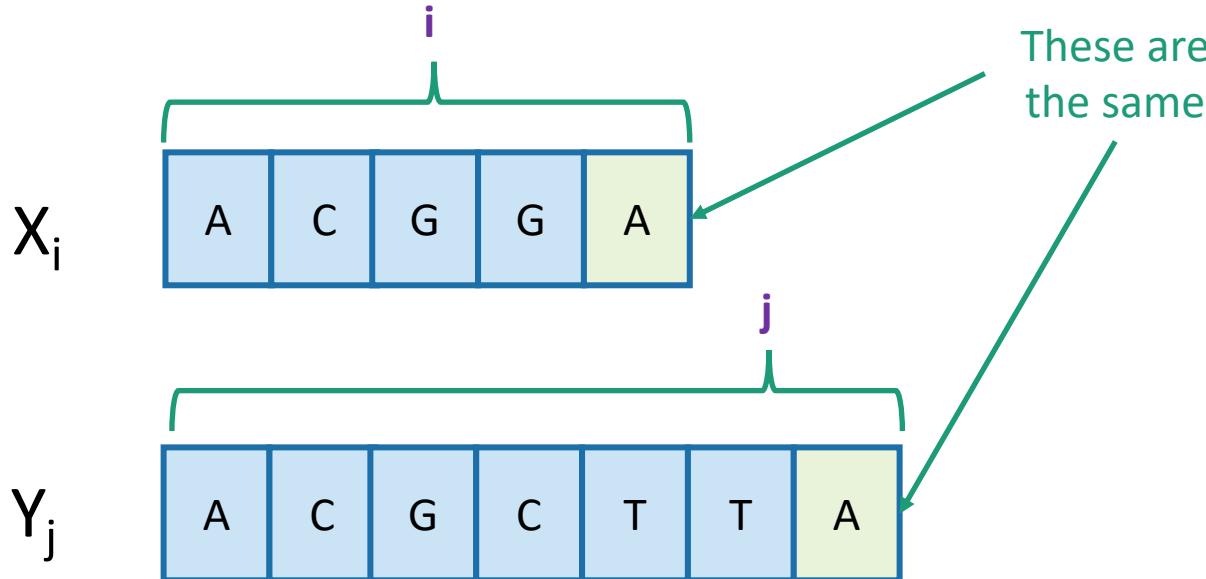


$$C[i,j] = \text{length_of_LCS}(X_i, Y_j)$$

Two cases

Case 1: $X[i] = Y[j]$

- Our sub-problems will be finding LCS's of prefixes to X and Y.
- Let $C[i,j] = \text{length_of_LCS}(X_i, Y_j)$

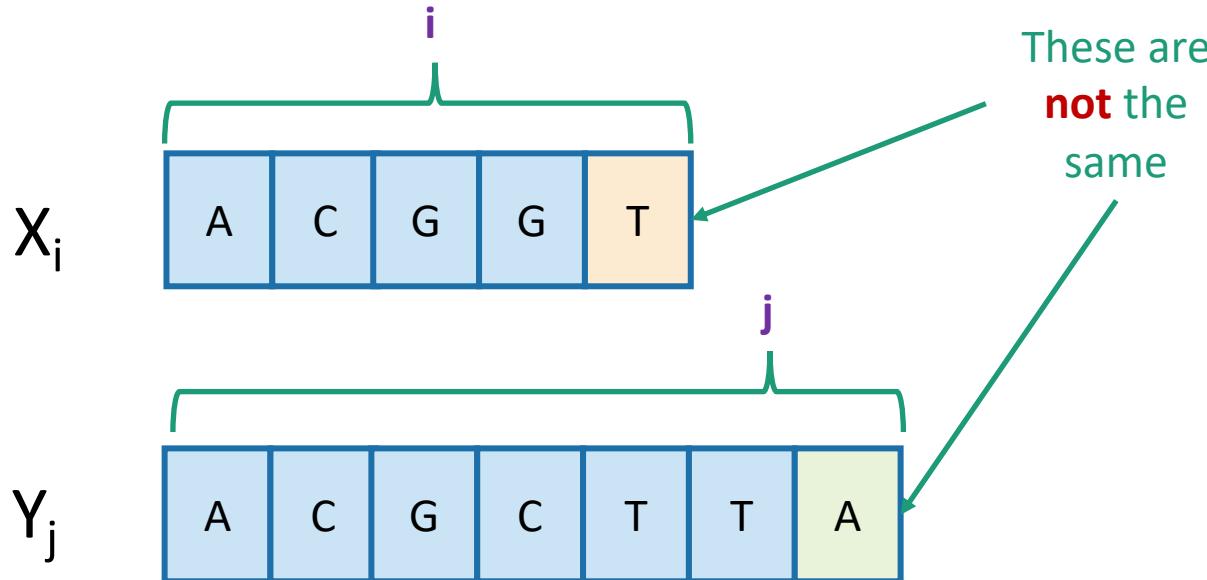


- Then $C[i,j] = 1 + C[i-1,j-1]$.
 - because $\text{LCS}(X_i, Y_j) = \text{LCS}(X_{i-1}, Y_{j-1})$ followed by A

Two cases

Case 2: $X[i] \neq Y[j]$

- Our sub-problems will be finding LCS's of prefixes to X and Y.
- Let $C[i,j] = \text{length_of_LCS}(X_i, Y_j)$

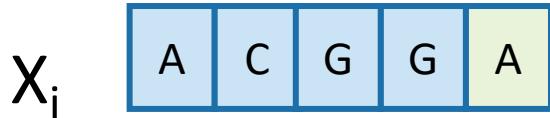
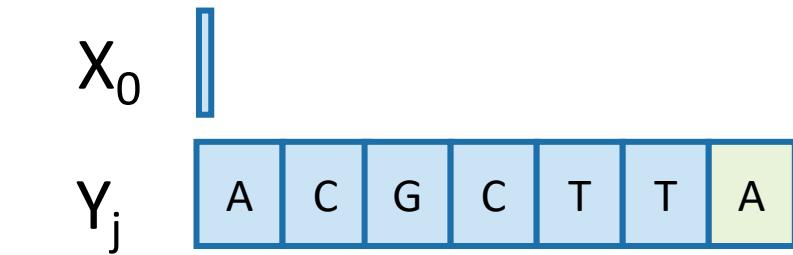


- Then $C[i,j] = \max\{ C[i-1,j], C[i,j-1] \}$.
 - either $\text{LCS}(X_i, Y_j) = \text{LCS}(X_{i-1}, Y_j)$ and T is not involved,
 - or $\text{LCS}(X_i, Y_j) = \text{LCS}(X_i, Y_{j-1})$ and A is not involved,
 - (maybe both are not involved, that's covered by the "or").

Recursive formulation of the optimal solution

$$\bullet \quad C[i, j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ \max\{ C[i, j - 1], C[i - 1, j] \} & \text{if } X[i] = Y[j] \text{ and } i, j > 0 \\ C[i - 1, j - 1] + 1 & \text{if } X[i] \neq Y[j] \text{ and } i, j > 0 \end{cases}$$

Case 1

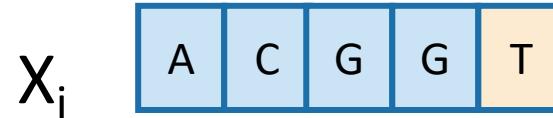


if $i = 0$ or $j = 0$

if $X[i] = Y[j]$ and $i, j > 0$

if $X[i] \neq Y[j]$ and $i, j > 0$

Case 2



Recipe for applying Dynamic Programming

- **Step 1:** Identify optimal substructure.
- **Step 2:** Find a **recursive formulation** for the length of the longest common subsequence.
- **Step 3:** Use **dynamic programming** to find the length of the longest common subsequence.
- **Step 4:** If needed, keep track of some additional info so that the algorithm from Step 3 can **find the actual LCS**.
- **Step 5:** If needed, **code this up like a reasonable person**.

LCS DP

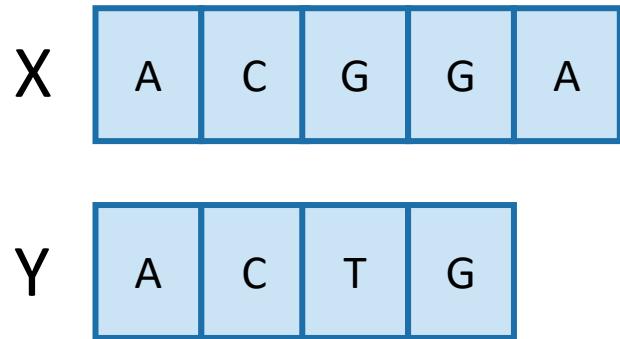
- **LCS(X, Y):**

- $C[i,0] = C[0,j] = 0$ for all $i = 0, \dots, m, j=0, \dots, n$.
- **For** $i = 1, \dots, m$ and $j = 1, \dots, n$:
 - **If** $X[i] = Y[j]$:
 - $C[i,j] = C[i-1,j-1] + 1$
 - **Else**:
 - $C[i,j] = \max\{ C[i,j-1], C[i-1,j] \}$
- Return $C[m,n]$

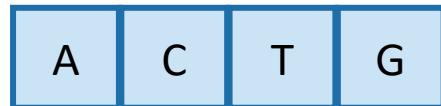
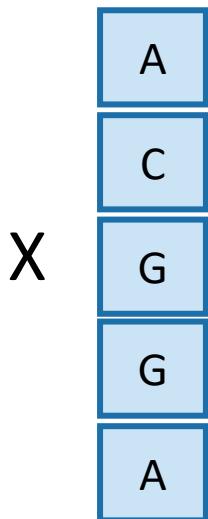
*Running time:
 $O(nm)$*

$$C[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ C[i-1,j-1] + 1 & \text{if } X[i] = Y[j] \text{ and } i, j > 0 \\ \max\{ C[i,j-1], C[i-1,j] \} & \text{if } X[i] \neq Y[j] \text{ and } i, j > 0 \end{cases}$$

Example



Y



0	0	0	0	0
0				
0				
0				
0				
0				

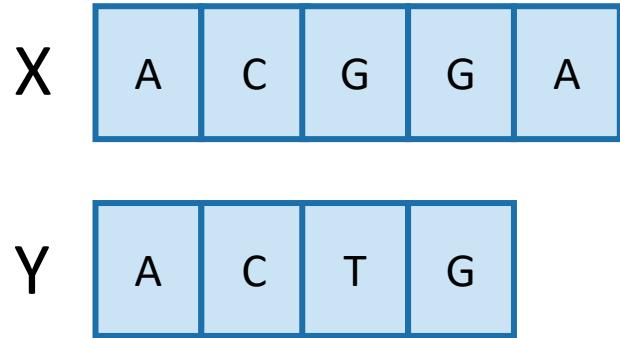
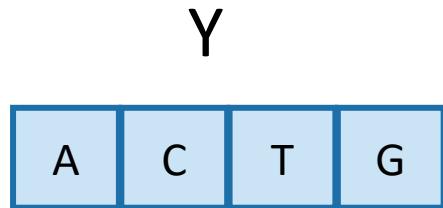
$$C[i, j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ C[i - 1, j - 1] + 1 & \text{if } X[i] = Y[j] \text{ and } i, j > 0 \\ \max\{C[i, j - 1], C[i - 1, j]\} & \text{if } X[i] \neq Y[j] \text{ and } i, j > 0 \end{cases}$$

if $i = 0$ or $j = 0$

if $X[i] = Y[j]$ and $i, j > 0$

if $X[i] \neq Y[j]$ and $i, j > 0$

Example

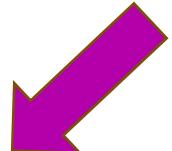


0	0	0	0	0
0	1	1	1	1
0	1	2	2	2
0	1	2	2	3
0	1	2	2	3
0	1	2	2	3

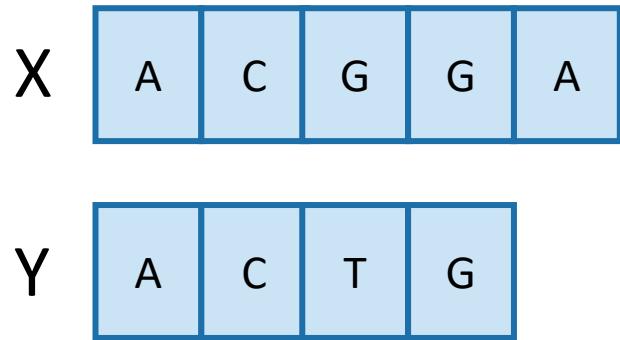
So the LCM of X and Y has length 3.

$$C[i, j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ C[i - 1, j - 1] + 1 & \text{if } X[i] = Y[j] \text{ and } i, j > 0 \\ \max\{C[i, j - 1], C[i - 1, j]\} & \text{if } X[i] \neq Y[j] \text{ and } i, j > 0 \end{cases}$$

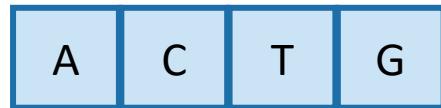
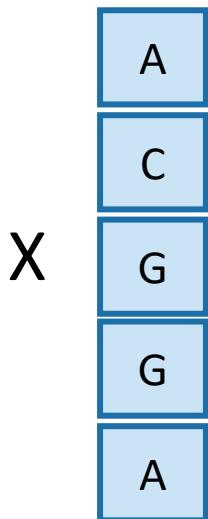
Recipe for applying Dynamic Programming

- **Step 1:** Identify optimal substructure.
- **Step 2:** Find a **recursive formulation** for the length of the longest common subsequence.
- **Step 3:** Use **dynamic programming** to find the length of the longest common subsequence.
- **Step 4:** If needed, keep track of some additional info so that the algorithm from Step 3 can **find the actual LCS**. 
- **Step 5:** If needed, code this up like a reasonable person.

Example



Y



0	0	0	0	0
0				
0				
0				
0				
0				

$$C[i, j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ C[i - 1, j - 1] + 1 & \text{if } X[i] = Y[j] \text{ and } i, j > 0 \\ \max\{C[i, j - 1], C[i - 1, j]\} & \text{if } X[i] \neq Y[j] \text{ and } i, j > 0 \end{cases}$$

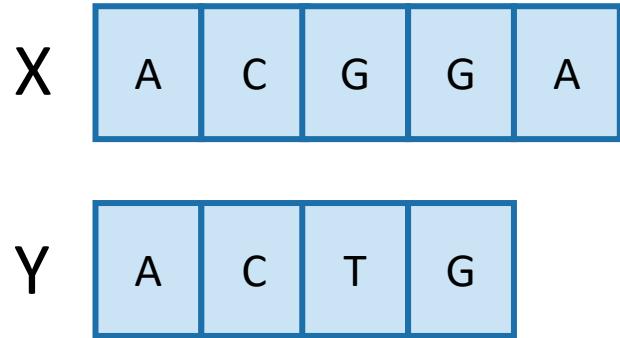
if $i = 0$ or $j = 0$

if $X[i] = Y[j]$ and $i, j > 0$

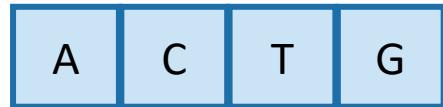
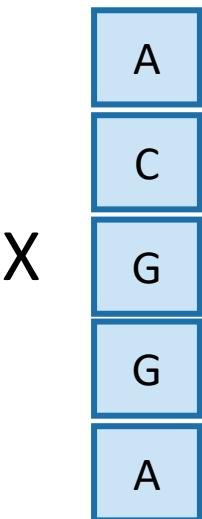
if $X[i] \neq Y[j]$ and $i, j > 0$

25

Example



Y



0	0	0	0	0
0	1	1	1	1
0	1	2	2	2
0	1	2	2	3
0	1	2	2	3
0	1	2	2	3

$$C[i, j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ C[i - 1, j - 1] + 1 & \text{if } X[i] = Y[j] \text{ and } i, j > 0 \\ \max\{ C[i, j - 1], C[i - 1, j] \} & \text{if } X[i] \neq Y[j] \text{ and } i, j > 0 \end{cases}$$

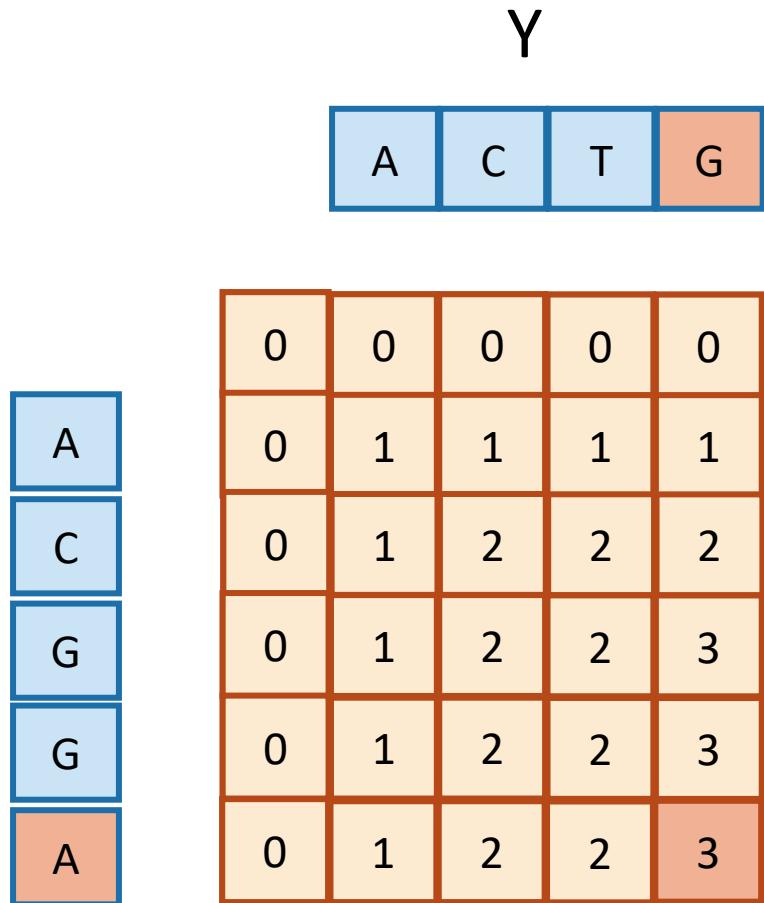
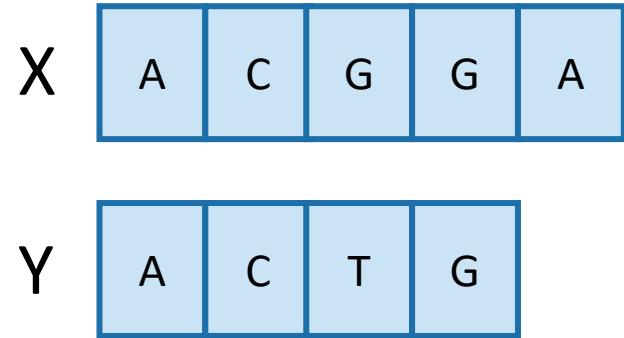
if $i = 0$ or $j = 0$

if $X[i] = Y[j]$ and $i, j > 0$

if $X[i] \neq Y[j]$ and $i, j > 0$

²⁶

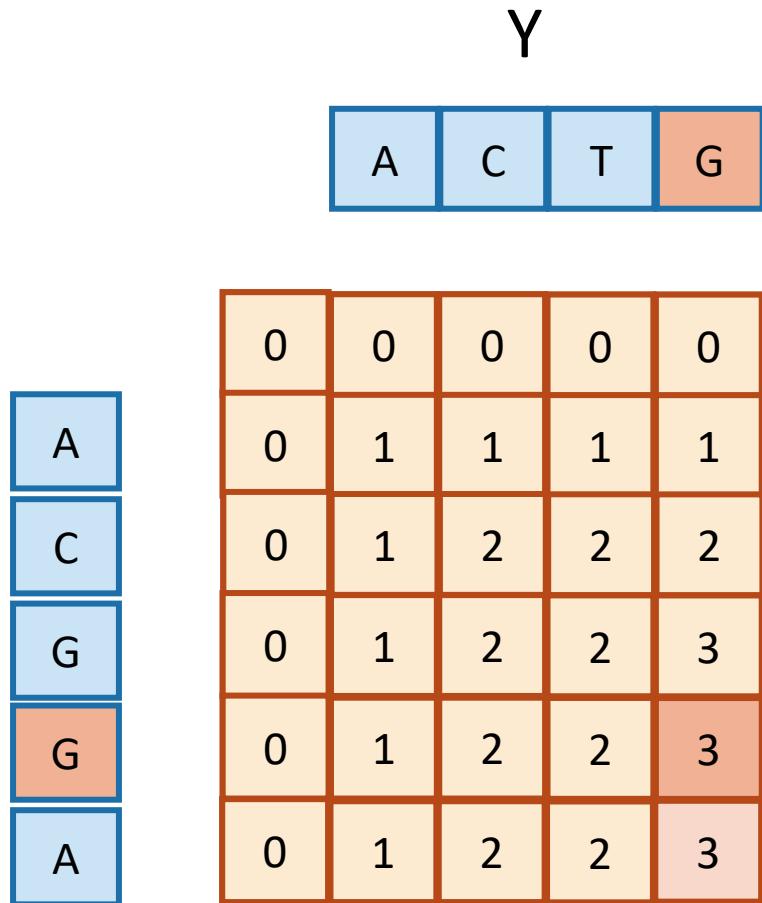
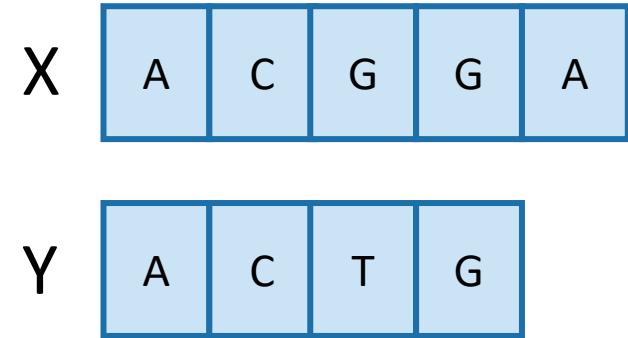
Example



- Once we've filled this in, we can work backwards.

$$C[i, j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ C[i - 1, j - 1] + 1 & \text{if } X[i] = Y[j] \text{ and } i, j > 0 \\ \max\{C[i, j - 1], C[i - 1, j]\} & \text{if } X[i] \neq Y[j] \text{ and } i, j > 0 \end{cases}$$

Example



- Once we've filled this in, we can work backwards.

That 3 must have come from the 3 above it.

$$C[i, j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ C[i - 1, j - 1] + 1 & \text{if } X[i] = Y[j] \text{ and } i, j > 0 \\ \max\{C[i, j - 1], C[i - 1, j]\} & \text{if } X[i] \neq Y[j] \text{ and } i, j > 0 \end{cases}$$

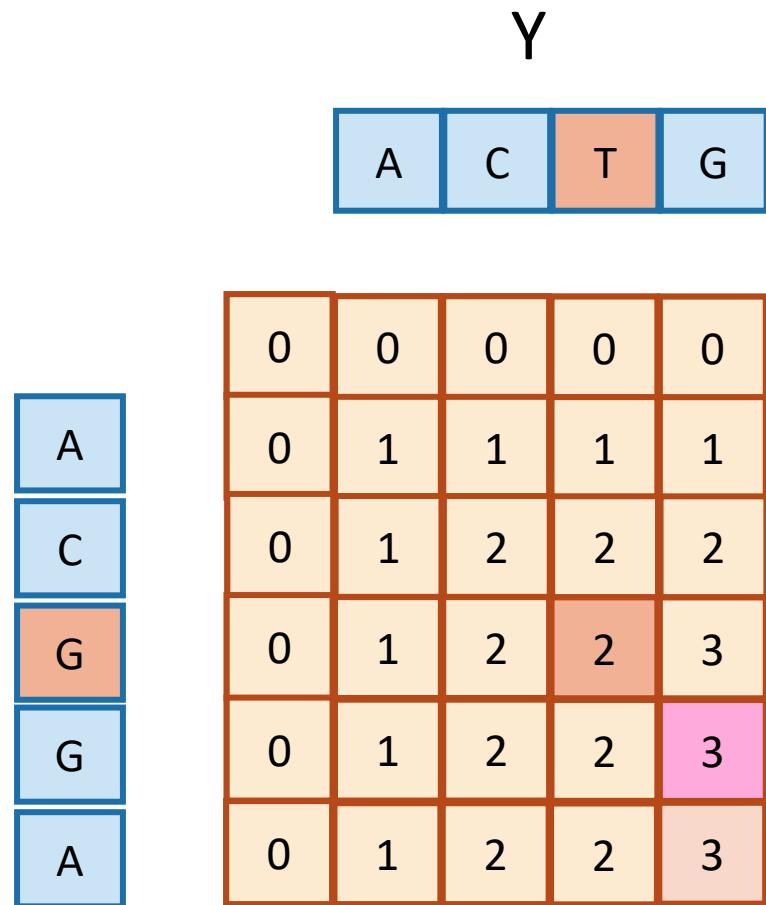
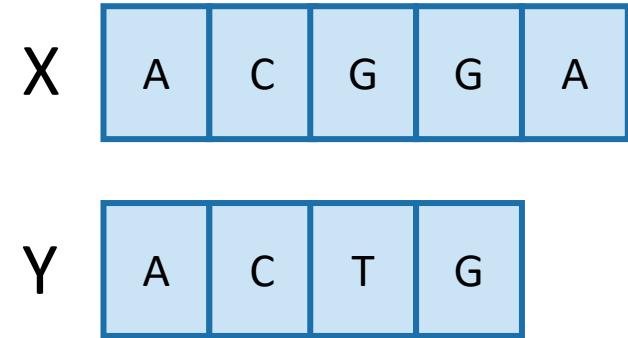
if $i = 0$ or $j = 0$

if $X[i] = Y[j]$ and $i, j > 0$

if $X[i] \neq Y[j]$ and $i, j > 0$

28

Example

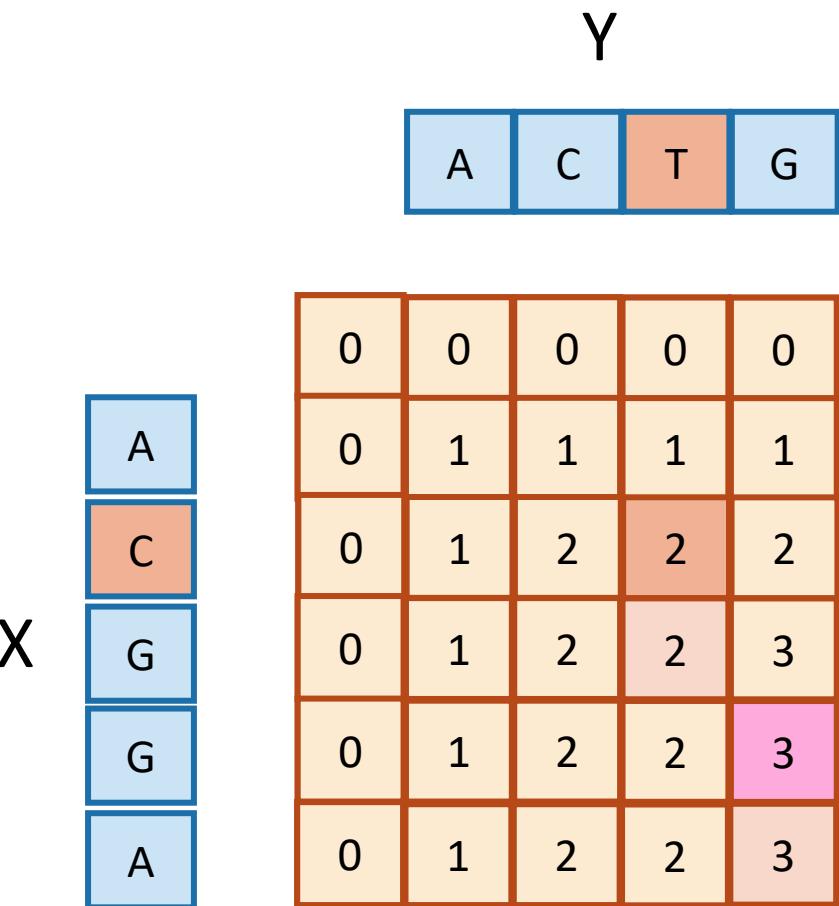
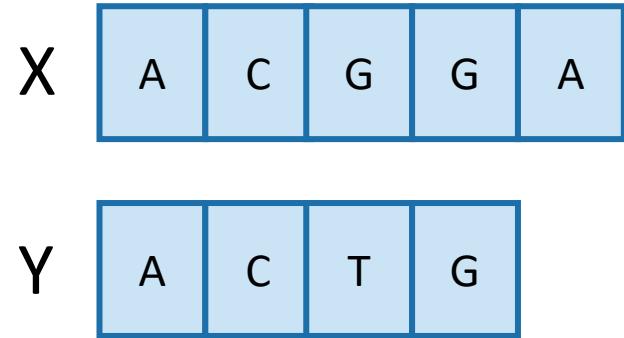


- Once we've filled this in, we can work backwards.
- A diagonal jump means that we found an element of the LCS!

This 3 came from that 2 – we found a match!

$$C[i, j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ C[i - 1, j - 1] + 1 & \text{if } X[i] = Y[j] \text{ and } i, j > 0 \\ \max\{C[i, j - 1], C[i - 1, j]\} & \text{if } X[i] \neq Y[j] \text{ and } i, j > 0 \end{cases}$$

Example



- Once we've filled this in, we can work backwards.
- A diagonal jump means that we found an element of the LCS!

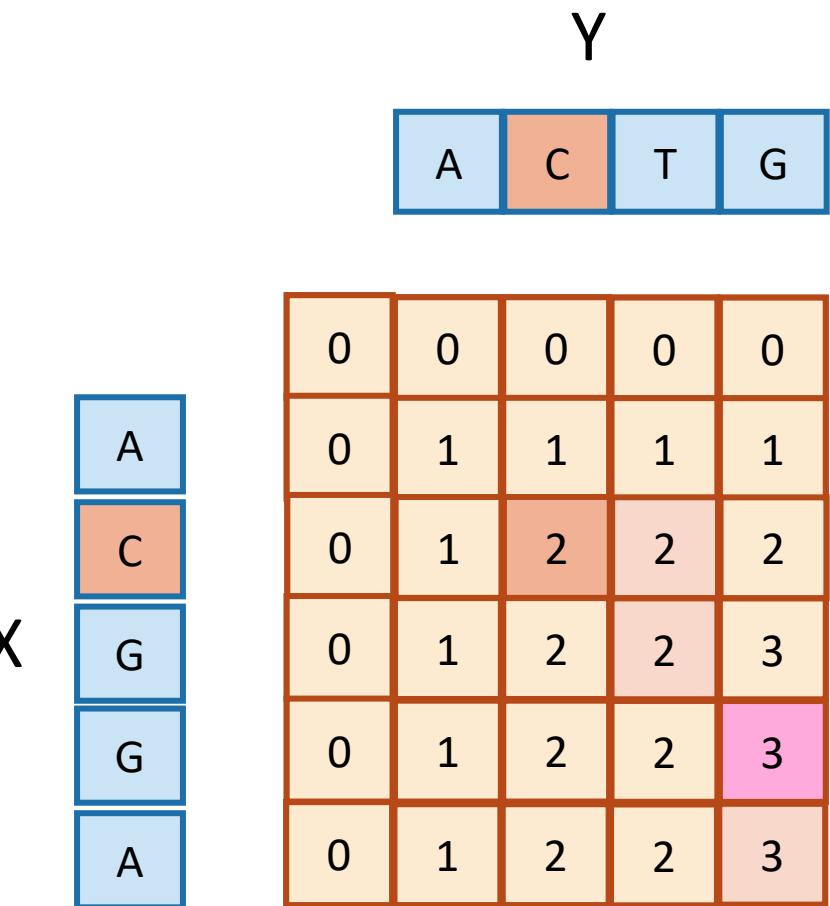
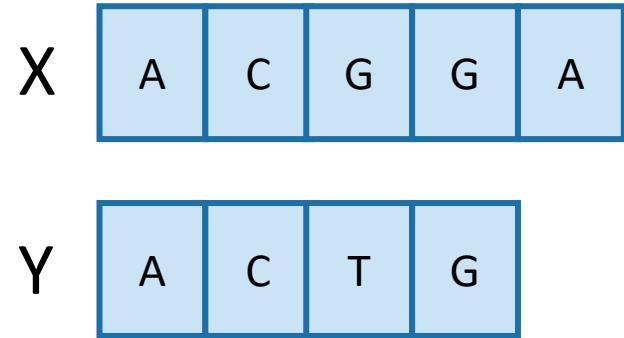
That 2 may as well have come from this other 2.

G

$$C[i, j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ C[i - 1, j - 1] + 1 & \text{if } X[i] = Y[j] \text{ and } i, j > 0 \\ \max\{C[i, j - 1], C[i - 1, j]\} & \text{if } X[i] \neq Y[j] \text{ and } i, j > 0 \end{cases}$$

30

Example



- Once we've filled this in, we can work backwards.
- A diagonal jump means that we found an element of the LCS!

G

$$C[i, j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ C[i - 1, j - 1] + 1 & \text{if } X[i] = Y[j] \text{ and } i, j > 0 \\ \max\{C[i, j - 1], C[i - 1, j]\} & \text{if } X[i] \neq Y[j] \text{ and } i, j > 0 \end{cases}$$

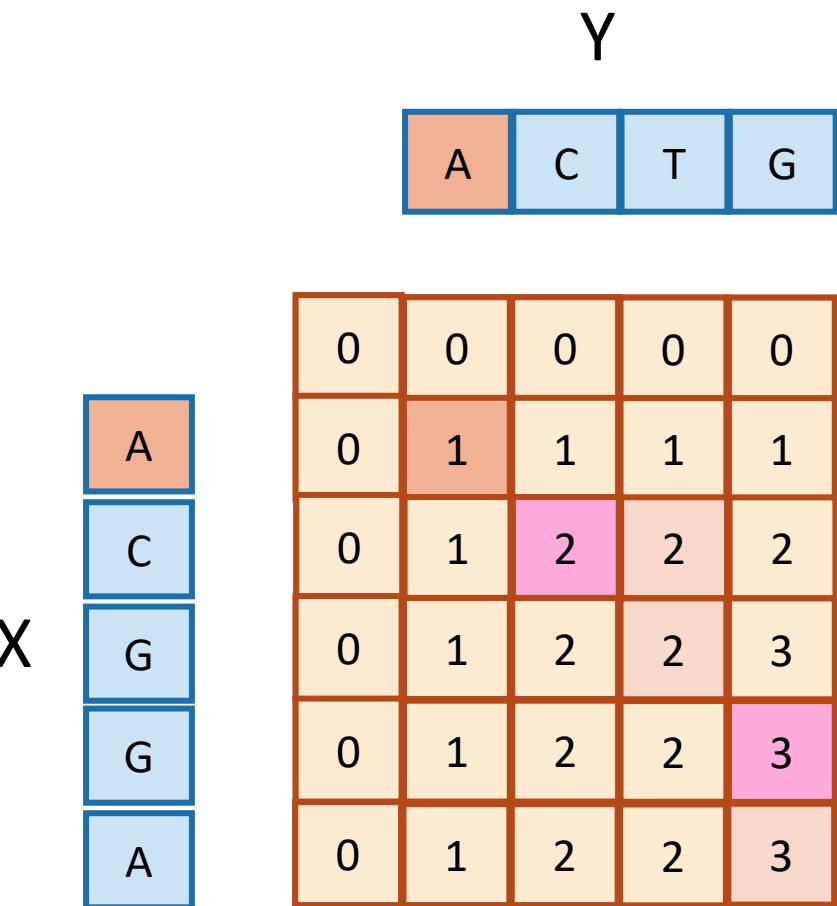
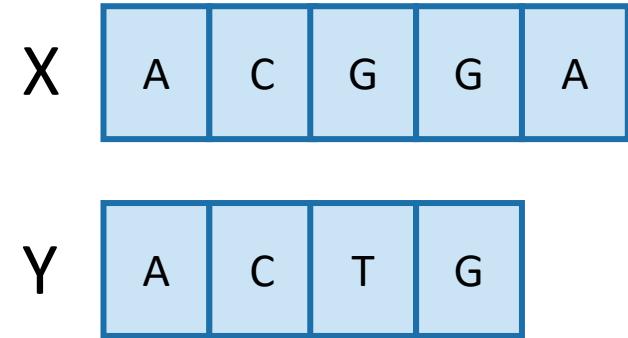
if $i = 0$ or $j = 0$

if $X[i] = Y[j]$ and $i, j > 0$

if $X[i] \neq Y[j]$ and $i, j > 0$

³¹

Example

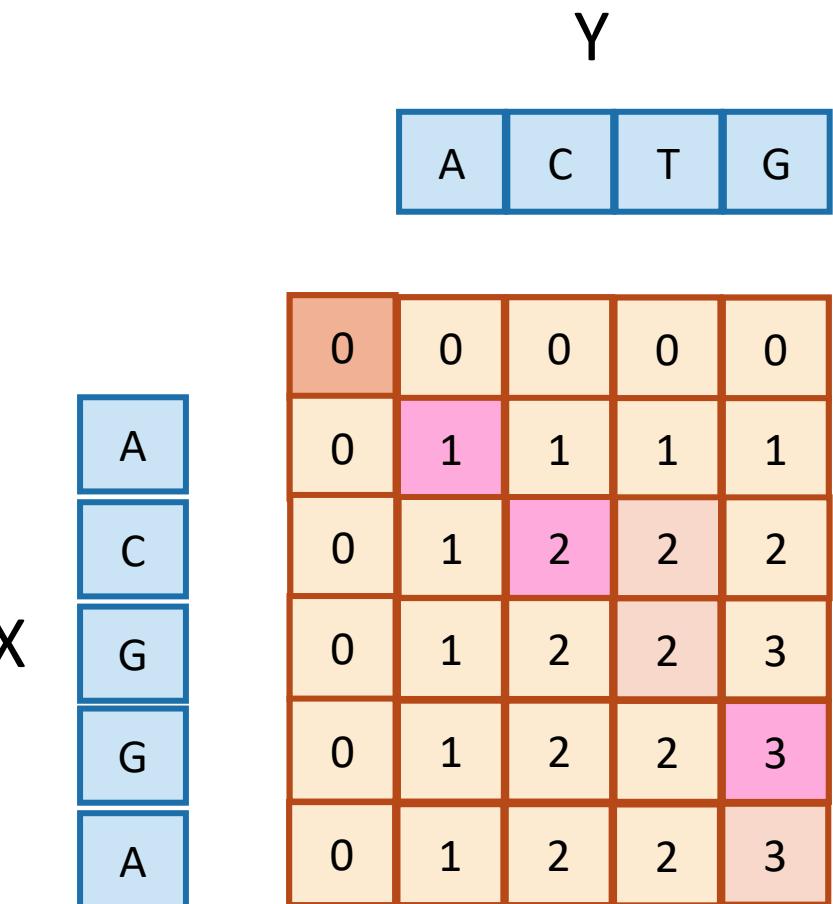
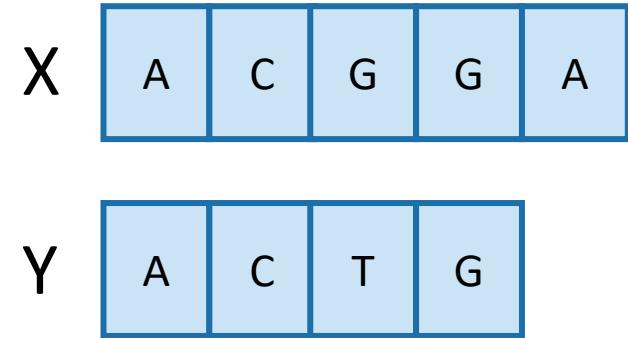


- Once we've filled this in, we can work backwards.
- A diagonal jump means that we found an element of the LCS!

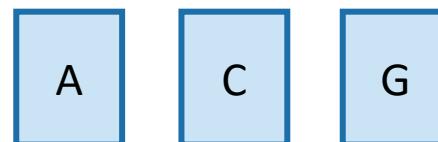
C G

$$C[i, j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ C[i - 1, j - 1] + 1 & \text{if } X[i] = Y[j] \text{ and } i, j > 0 \\ \max\{C[i, j - 1], C[i - 1, j]\} & \text{if } X[i] \neq Y[j] \text{ and } i, j > 0 \end{cases}$$

Example



- Once we've filled this in, we can work backwards.
- A diagonal jump means that we found an element of the LCS!



This is the LCS!

$$C[i, j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ C[i - 1, j - 1] + 1 & \text{if } X[i] = Y[j] \text{ and } i, j > 0 \\ \max\{C[i, j - 1], C[i - 1, j]\} & \text{if } X[i] \neq Y[j] \text{ and } i, j > 0 \end{cases}$$

Finding an LCS

- Good exercise to write out pseudocode for what we just saw!
 - Or you can find it in CLRS.
- Takes time $O(mn)$ to fill the table
- Takes time $O(n + m)$ on top of that to recover the LCS
 - We walk up and left in an n -by- m array
 - We can only do that for $n + m$ steps.
- Altogether, we can find $\text{LCS}(X, Y)$ in time $O(mn)$.

Recipe for applying Dynamic Programming

- **Step 1:** Identify optimal substructure.
- **Step 2:** Find a **recursive formulation** for the length of the longest common subsequence.
- **Step 3:** Use **dynamic programming** to find the length of the longest common subsequence.
- **Step 4:** If needed, keep track of some additional info so that the algorithm from Step 3 can **find the actual LCS**.
- **Step 5:** If needed, **code this up like a reasonable person.**

Our approach actually isn't so bad

- If we are only interested in the length of the LCS we can do a bit better on space:
 - Since we go across the table one-row-at-a-time, we can only keep two rows if we want.
- If we want to recover the LCS, we need to keep the whole table.
- Can we do better than $O(mn)$ time?
 - A bit better.
 - By a log factor or so.
 - But doing much better (polynomially better) is an open problem!
 - If you can do it let me know :D

What have we learned?

- We can find $\text{LCS}(X, Y)$ in time $O(nm)$
 - if $|Y|=n$, $|X|=m$
- We went through the steps of coming up with a dynamic programming algorithm.
 - We kept a 2-dimensional table, breaking down the problem by decrementing the length of X and Y.

Example 2: Knapsack Problem

- We have n items with weights and values:

Item:					
Weight:	6	2	4	3	11
Value:	20	8	14	13	35

- And we have a knapsack:
 - it can only carry so much weight:

Capacity: 10

Capacity: 10

Item:

Weight: 6

2

4

3

11

Value: 20

8

14

13

35

• Unbounded Knapsack:

- Suppose I have **infinite copies** of all of the items.
- What's the **most valuable way to fill the knapsack?**

Total weight: 10
Total value: 42

• 0/1 Knapsack:

- Suppose I have **only one copy** of each item.
- What's the **most valuable way to fill the knapsack?**

Total weight: 9
Total value: 35

Some notation

Item:

Weight:

 w_1 w_2 w_3 \dots w_n

Value:

 v_1 v_2 v_3 v_n

Capacity: W

Recipe for applying Dynamic Programming

- **Step 1:** Identify optimal substructure.
- **Step 2:** Find a **recursive formulation** for the value of the optimal solution.
- **Step 3:** Use **dynamic programming** to find the value of the optimal solution.
- **Step 4:** If needed, keep track of some additional info so that the algorithm from Step 3 can **find the actual solution**.
- **Step 5:** If needed, **code this up like a reasonable person**.

Optimal substructure

- Sub-problems:
 - Unbounded Knapsack with a smaller knapsack.
 - $K[x]$ = value you can fit in a knapsack of capacity x

First solve the problem for small knapsacks

Then larger knapsacks

Then larger knapsacks

Optimal substructure

item i

- Suppose this is an optimal solution for capacity x :

Say that the
optimal solution
contains at least
one copy of item i.

Weight w_i
Value v_i

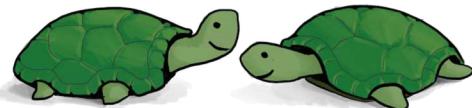
Capacity x
Value V

- Then this optimal for capacity $x - w_i$:

Capacity $x - w_i$
Value $V - v_i$

Why?

1 minute think
1 minute pair+share



Optimal substructure

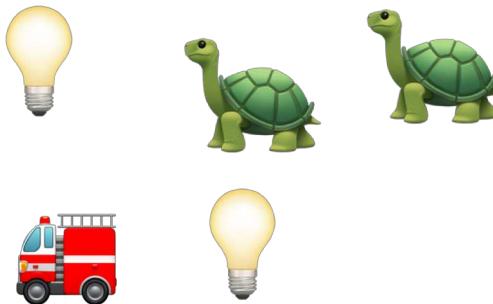
item i

- Suppose this is an optimal solution for capacity x :

Say that the
optimal solution
contains at least
one copy of item i.

Capacity x
Value V

- Then this optimal for capacity $x - w_i$:



Capacity $x - w_i$
Value $V - v_i$

If I could do better than the second solution,
then adding a turtle to that improvement
would improve the first solution.

Recipe for applying Dynamic Programming

- **Step 1:** Identify optimal substructure.
- **Step 2:** Find a recursive formulation for the value of the optimal solution.
- **Step 3:** Use dynamic programming to find the value of the optimal solution.
- **Step 4:** If needed, keep track of some additional info so that the algorithm from Step 3 can find the actual solution.
- **Step 5:** If needed, code this up like a reasonable person.

Recursive relationship

- Let $K[x]$ be the **optimal value** for capacity x .

$$K[x] = \max_i \{$$

+

The maximum is over
all i so that $w_i \leq x$.

Optimal way to
fill the smaller
knapsack

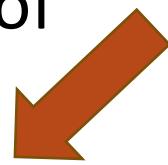
The value of
item i .

$$K[x] = \max_i \{ K[x - w_i] + v_i \}$$

- (And $K[x] = 0$ if the maximum is empty).
 - That is, if there are no i so that $w_i \leq x$

Recipe for applying Dynamic Programming

- **Step 1:** Identify optimal substructure.
- **Step 2:** Find a **recursive formulation** for the value of the optimal solution.
- **Step 3:** Use **dynamic programming** to find the value of the optimal solution.
- **Step 4:** If needed, keep track of some additional info so that the algorithm from Step 3 can **find the actual solution**.
- **Step 5:** If needed, **code this up like a reasonable person**.



Let's write a bottom-up DP algorithm

- **UnboundedKnapsack(W , n , weights , values):**
 - $K[0] = 0$
 - **for** $x = 1, \dots, W$:
 - $K[x] = 0$
 - **for** $i = 1, \dots, n$:
 - **if** $w_i \leq x$:
 - $K[x] = \max\{ K[x], K[x - w_i] + v_i \}$
 - **return** $K[W]$

Running time: $O(nW)$

$$\begin{aligned} K[x] &= \max_i \{ \text{backpack icon} + \text{tortoise icon} \} \\ &= \max_i \{ K[x - w_i] + v_i \} \end{aligned}$$

Why does this work?

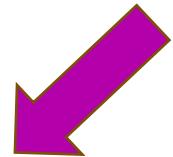
Because our recursive relationship makes ⁴⁸ sense.

Can we do better?

- Writing down W takes $\log(W)$ bits.
- Writing down all n weights takes at most $n\log(W)$ bits.
- Input size: $n\log(W)$.
 - Maybe we could have an algorithm that runs in time $O(n\log(W))$ instead of $O(nW)$?
 - Or even $O(n^{1000000} \log^{1000000}(W))$?
- Open problem!
 - (But probably the answer is **no**...otherwise $P = NP$)

Recipe for applying Dynamic Programming

- **Step 1:** Identify optimal substructure.
- **Step 2:** Find a recursive formulation for the value of the optimal solution.
- **Step 3:** Use dynamic programming to find the value of the optimal solution.
- **Step 4:** If needed, keep track of some additional info so that the algorithm from Step 3 can find the actual solution.
- **Step 5:** If needed, code this up like a reasonable person.



Let's write a bottom-up DP algorithm

- **UnboundedKnapsack(W , n , weights , values):**
 - $K[0] = 0$
 - **for** $x = 1, \dots, W$:
 - $K[x] = 0$
 - **for** $i = 1, \dots, n$:
 - **if** $w_i \leq x$:
 - $K[x] = \max\{ K[x], K[x - w_i] + v_i \}$
 - **return** $K[W]$

$$K[x] = \max_i \{ \text{backpack icon} + \text{tortoise icon} \}$$
$$= \max_i \{ K[x - w_i] + v_i \}$$

Let's write a bottom-up DP algorithm

- UnboundedKnapsack(W , n , weights , values):
 - $K[0] = 0$
 - $\text{ITEMS}[0] = \emptyset$
 - **for** $x = 1, \dots, W$:
 - $K[x] = 0$
 - **for** $i = 1, \dots, n$:
 - **if** $w_i \leq x$:
 - $K[x] = \max\{ K[x], K[x - w_i] + v_i \}$
 - If $K[x]$ was updated:
 - $\text{ITEMS}[x] = \text{ITEMS}[x - w_i] \cup \{ \text{item } i \}$
 - **return** $\text{ITEMS}[W]$

$$K[x] = \max_i \{ \text{backpack icon} + \text{tortoise icon} \}$$
$$= \max_i \{ K[x - w_i] + v_i \}$$

Example

	0	1	2	3	4
K	0				
ITEMS					

- **UnboundedKnapsack(W, n, weights, values):**
 - $K[0] = 0$
 - $ITEMS[0] = \emptyset$
 - **for** $x = 1, \dots, W:$
 - $K[x] = 0$
 - **for** $i = 1, \dots, n:$
 - **if** $w_i \leq x:$
 - $K[x] = \max\{ K[x], K[x - w_i] + v_i \}$
 - **If** $K[x]$ was updated:
 - $ITEMS[x] = ITEMS[x - w_i] \cup \{ \text{item } i \}$
 - **return** $ITEMS[W]$

Item:			
Weight:	1	2	3
Value:	1	4	6

Capacity: 4

Example

	0	1	2	3	4
K	0	1			
ITEMS					

ITEMS[1] = ITEMS[0] +

- UnboundedKnapsack(W, n, weights, values):
 - $K[0] = 0$
 - $ITEMS[0] = \emptyset$
 - **for** $x = 1, \dots, W$:
 - $K[x] = 0$
 - **for** $i = 1, \dots, n$:
 - **if** $w_i \leq x$:
 - $K[x] = \max\{ K[x], K[x - w_i] + v_i \}$
 - **If** $K[x]$ was updated:
 - $ITEMS[x] = ITEMS[x - w_i] \cup \{ \text{item } i \}$
 - **return** $ITEMS[W]$

Item:			
Weight:	1	2	3
Value:	1	4	6

Capacity: 4

Example

	0	1	2	3	4
K	0	1	2		
ITEMS			 		

ITEMS[2] = ITEMS[1] +

- UnboundedKnapsack(W, n, weights, values):
 - $K[0] = 0$
 - $ITEMS[0] = \emptyset$
 - **for** $x = 1, \dots, W$:
 - $K[x] = 0$
 - **for** $i = 1, \dots, n$:
 - **if** $w_i \leq x$:
 - $K[x] = \max\{ K[x], K[x - w_i] + v_i \}$
 - **If** $K[x]$ was updated:
 - $ITEMS[x] = ITEMS[x - w_i] \cup \{ \text{item } i \}$
 - **return** $ITEMS[W]$

Item:

Weight:

1

2

3

Value:

1

4

6

Capacity: 4

Example

	0	1	2	3	4
K	0	1	4		
ITEMS					

ITEMS[2] = ITEMS[0] +

- **UnboundedKnapsack(W, n, weights, values):**
 - $K[0] = 0$
 - $ITEMS[0] = \emptyset$
 - **for** $x = 1, \dots, W:$
 - $K[x] = 0$
 - **for** $i = 1, \dots, n:$
 - **if** $w_i \leq x:$
 - $K[x] = \max\{ K[x], K[x - w_i] + v_i \}$
 - **If** $K[x]$ was updated:
 - $ITEMS[x] = ITEMS[x - w_i] \cup \{ \text{item } i \}$
 - **return** $ITEMS[W]$

Item:			
Weight:	1	2	3
Value:	1	4	6

Capacity: 4

Example

	0	1	2	3	4	
K	0	1	4	5		
ITEMS						

ITEMS[3] = ITEMS[2] +

- UnboundedKnapsack(W , n , weights, values):
 - $K[0] = 0$
 - $ITEMS[0] = \emptyset$
 - **for** $x = 1, \dots, W$:
 - $K[x] = 0$
 - **for** $i = 1, \dots, n$:
 - **if** $w_i \leq x$:
 - $K[x] = \max\{ K[x], K[x - w_i] + v_i \}$
 - **If** $K[x]$ was updated:
 - $ITEMS[x] = ITEMS[x - w_i] \cup \{ \text{item } i \}$
 - **return** $ITEMS[W]$

Item:			
Weight:	1	2	3
Value:	1	4	6

Capacity: 4

Example

	0	1	2	3	4
K	0	1	4	6	
ITEMS					

ITEMS[3] = ITEMS[0] +

- UnboundedKnapsack(W , n , weights, values):
 - $K[0] = 0$
 - $ITEMS[0] = \emptyset$
 - **for** $x = 1, \dots, W$:
 - $K[x] = 0$
 - **for** $i = 1, \dots, n$:
 - **if** $w_i \leq x$:
 - $K[x] = \max\{ K[x], K[x - w_i] + v_i \}$
 - **If** $K[x]$ was updated:
 - $ITEMS[x] = ITEMS[x - w_i] \cup \{ \text{item } i \}$
 - **return** $ITEMS[W]$

Item:			
Weight:	1	2	3
Value:	1	4	6

Capacity: 4

Example

	0	1	2	3	4	
K	0	1	4	6	7	
ITEMS						

ITEMS[4] = ITEMS[3] +

- UnboundedKnapsack(W, n, weights, values):
 - $K[0] = 0$
 - $ITEMS[0] = \emptyset$
 - **for** $x = 1, \dots, W$:
 - $K[x] = 0$
 - **for** $i = 1, \dots, n$:
 - **if** $w_i \leq x$:
 - $K[x] = \max\{ K[x], K[x - w_i] + v_i \}$
 - **If** $K[x]$ was updated:
 - $ITEMS[x] = ITEMS[x - w_i] \cup \{ \text{item } i \}$
 - **return** $ITEMS[W]$

Item:

Weight:

1

2

3

Value:

1

4

6

Capacity: 4

Example

	0	1	2	3	4
K	0	1	4	6	8
ITEMS					

$ITEMS[4] = ITEMS[2] +$

- **UnboundedKnapsack(W, n, weights, values):**
 - $K[0] = 0$
 - $ITEMS[0] = \emptyset$
 - **for** $x = 1, \dots, W:$
 - $K[x] = 0$
 - **for** $i = 1, \dots, n:$
 - **if** $w_i \leq x:$
 - $K[x] = \max\{ K[x], K[x - w_i] + v_i \}$
 - **If** $K[x]$ was updated:
 - $ITEMS[x] = ITEMS[x - w_i] \cup \{ \text{item } i \}$
 - **return** $ITEMS[W]$

Item:

Weight:

1

2

3

Value:

1

4

6

Capacity: 4

Recipe for applying Dynamic Programming

- **Step 1:** Identify optimal substructure.
- **Step 2:** Find a **recursive formulation** for the value of the optimal solution.
- **Step 3:** Use **dynamic programming** to find the value of the optimal solution.
- **Step 4:** If needed, keep track of some additional info so that the algorithm from Step 3 can **find the actual solution**.
- **Step 5:** If needed, **code this up like a reasonable person**.

(Pass)

What have we learned?

- We can solve unbounded knapsack in time $O(nW)$.
 - If there are n items and our knapsack has capacity W .
- We again went through the steps to create DP solution:
 - We kept a one-dimensional table, creating smaller problems by making the knapsack smaller.

Capacity: 10

Item:

Weight: 6

2

4

3

11

Value: 20

8

14

13

35

- Unbounded Knapsack:

- Suppose I have **infinite copies** of all of the items.
- What's the **most valuable way to fill the knapsack?**

Total weight: 10

Total value: 42

- 0/1 Knapsack:

- Suppose I have **only one copy** of each item.
- What's the **most valuable way to fill the knapsack?**

Total weight: 9

Total value: 35

Recipe for applying Dynamic Programming

- **Step 1:** Identify optimal substructure.
- **Step 2:** Find a **recursive formulation** for the value of the optimal solution.
- **Step 3:** Use **dynamic programming** to find the value of the optimal solution.
- **Step 4:** If needed, keep track of some additional info so that the algorithm from Step 3 can **find the actual solution**.
- **Step 5:** If needed, **code this up like a reasonable person**.

Optimal substructure: try 1

- Sub-problems:
 - Unbounded Knapsack with a smaller knapsack.

First solve the problem for small knapsacks

Then larger knapsacks

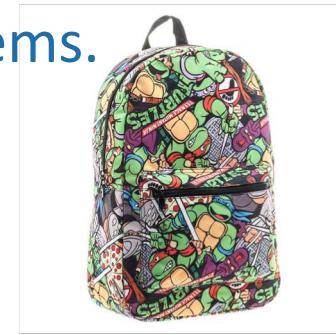
Then larger knapsacks

This won't quite work...

- We are only allowed **one copy of each item**.
- The sub-problem needs to “know” what items we’ve used and what we haven’t.

Optimal substructure: try 2

- Sub-problems:
 - 0/1 Knapsack with fewer items.



First solve the problem with few items

We'll still increase the size of the knapsacks.

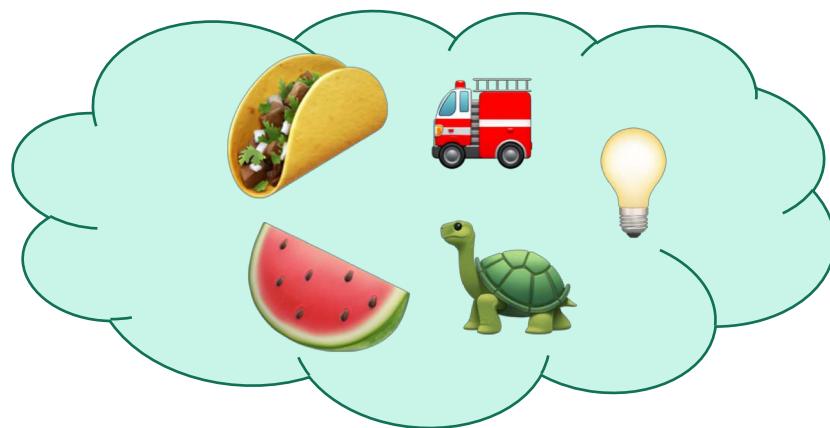
Then more items

(We'll keep a two-dimensional table).

Then yet more items

Our sub-problems:

- Indexed by x and j



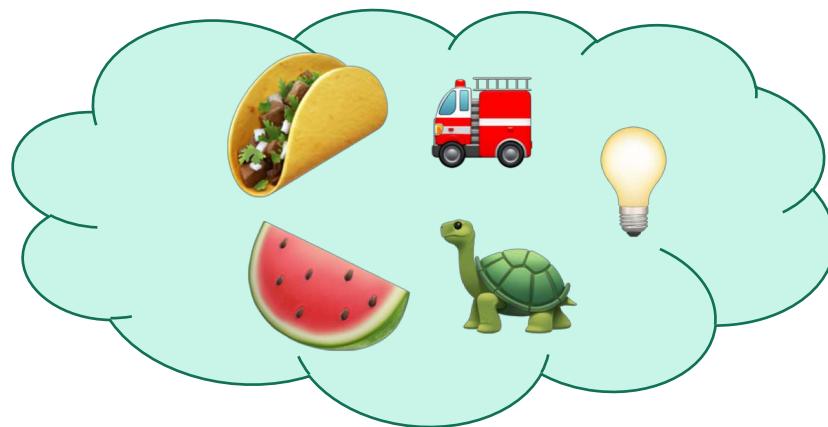
First j items

Capacity x

$K[x,j]$ = optimal solution for a knapsack of size x using only the first j items.

Relationship between sub-problems

- Want to write $K[x,j]$ in terms of smaller sub-problems.



First j items

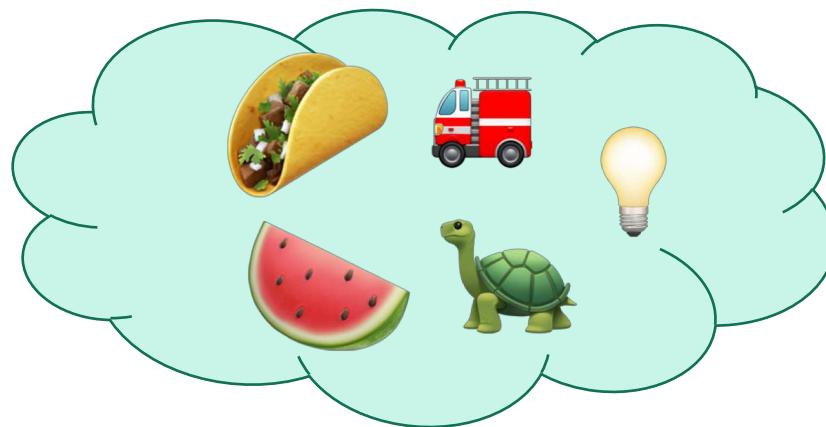
Capacity x

$K[x,j] =$ optimal solution for a knapsack of size x using only the first j items.

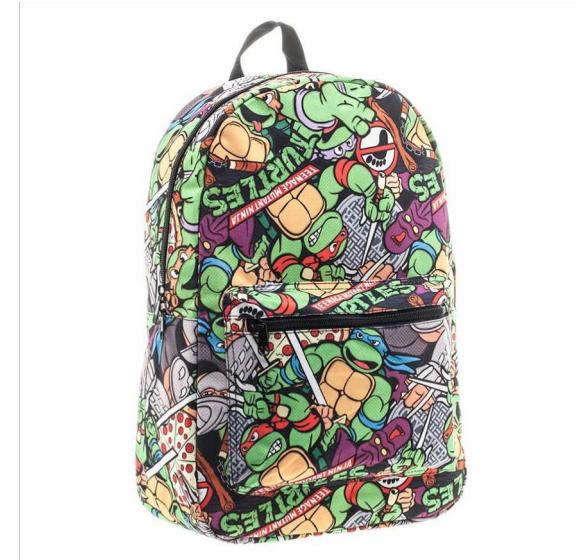
Two cases

item j

- **Case 1:** Optimal solution for j items does not use item j.
- **Case 2:** Optimal solution for j items does use item j.



First j items



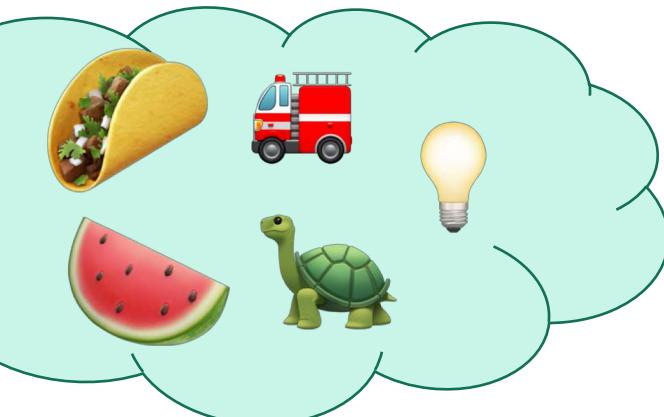
Capacity x

$K[x, j]$ = optimal solution for a knapsack of size x using only the first j items.

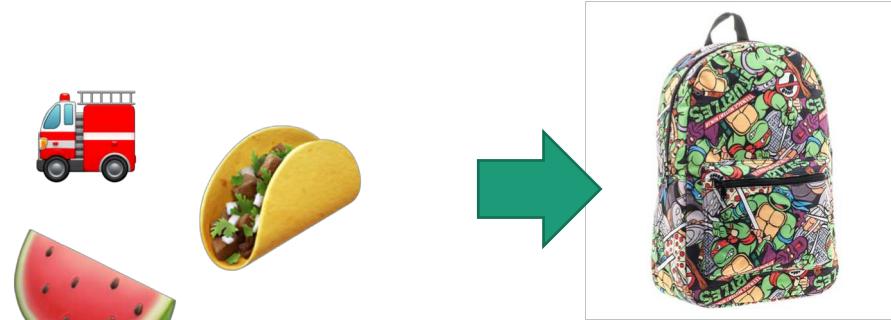
Two cases

item j

- **Case 1:** Optimal solution for j items does not use item j.

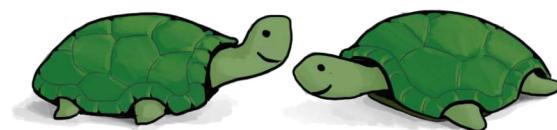


First j items



Capacity x
Value V
Use only the first j items

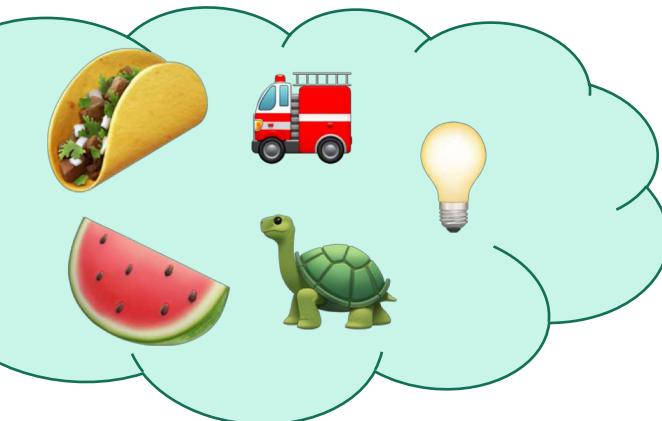
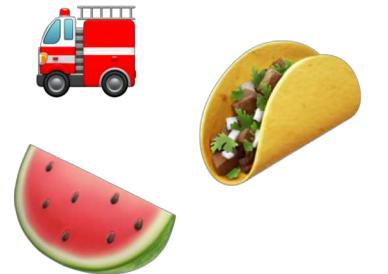
What lower-indexed
problem should we solve
to solve this problem?



Two cases

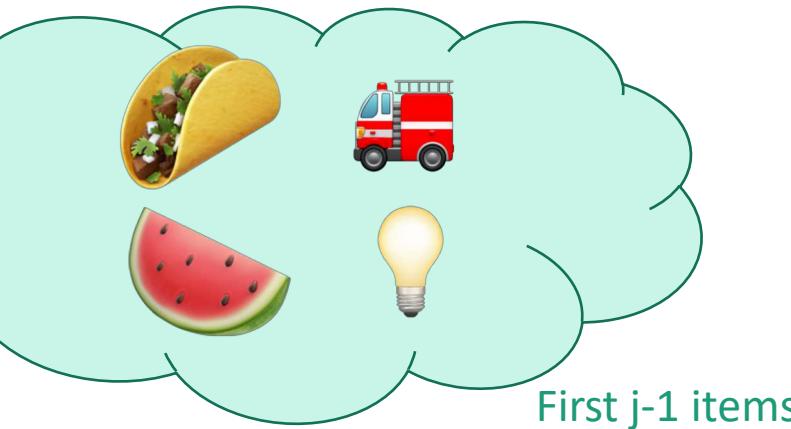
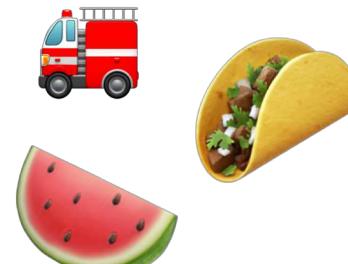
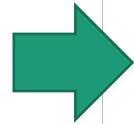
item j

- **Case 1:** Optimal solution for j items does not use item j.



Capacity x
Value V
Use only the first j items

- Then this is an optimal solution for $j-1$ items:

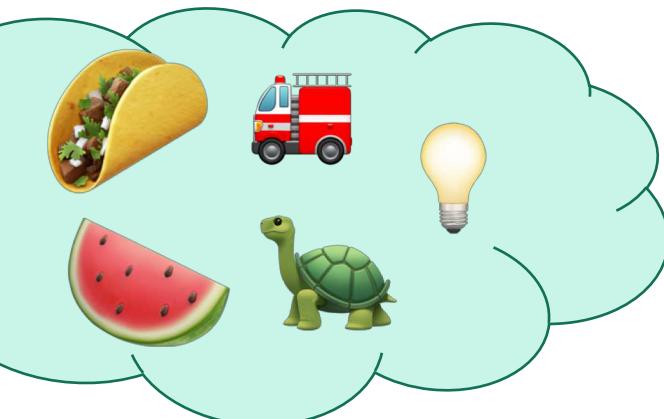


Capacity x
Value V
Use only the first $j-1$ items.

Two cases

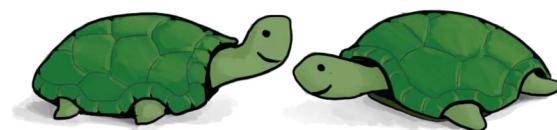
item j

- **Case 2:** Optimal solution for j items uses item j.



Capacity x
Value V
Use only the first j items

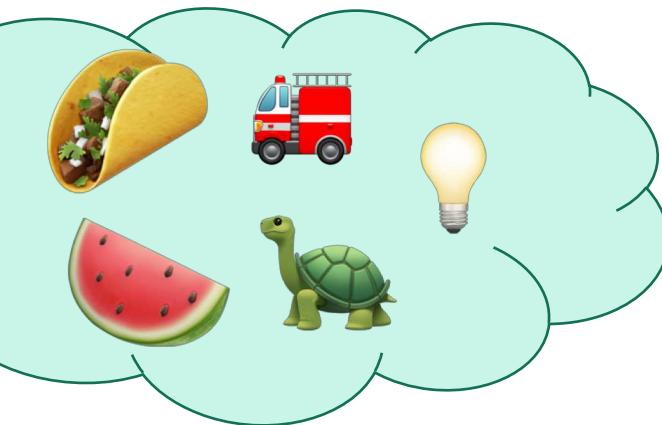
What lower-indexed
problem should we solve
to solve this problem?



Two cases

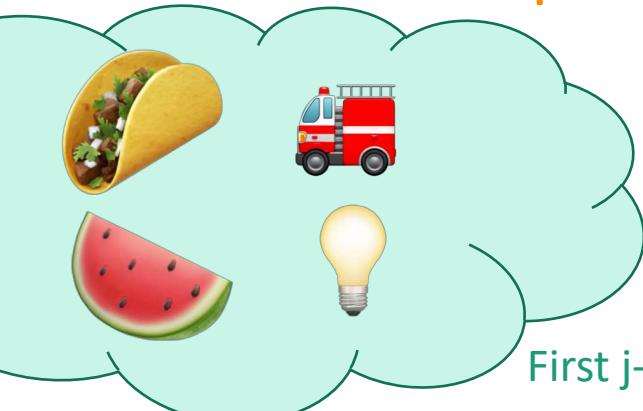
item j

- **Case 2:** Optimal solution for j items uses item j.



First j items

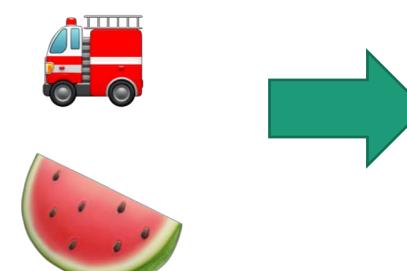
- Then this is an optimal solution for $j-1$ items and a smaller knapsack:



First $j-1$ items

Capacity x
Value V

Use only the first j items



Capacity $x - w_j$
Value $V - v_j$
Use only the first $j-1$ items.

Recipe for applying Dynamic Programming

- **Step 1:** Identify optimal substructure.
- **Step 2:** Find a recursive formulation for the value of the optimal solution.
- **Step 3:** Use dynamic programming to find the value of the optimal solution.
- **Step 4:** If needed, keep track of some additional info so that the algorithm from Step 3 can find the actual solution.
- **Step 5:** If needed, code this up like a reasonable person.

Recursive relationship

- Let $K[x, j]$ be the optimal value for:
 - capacity x ,
 - with j items.

$$K[x, j] = \max\{ K[x, j-1] , K[x - w_j, j-1] + v_j \}$$

Case 1

Case 2

- (And $K[x, 0] = 0$ and $K[0, j] = 0$).

Recipe for applying Dynamic Programming

- **Step 1:** Identify optimal substructure.
- **Step 2:** Find a **recursive formulation** for the value of the optimal solution.
- **Step 3:** Use **dynamic programming** to find the value of the optimal solution.
- **Step 4:** If needed, keep track of some additional info so that the algorithm from Step 3 can **find the actual solution**.
- **Step 5:** If needed, **code this up like a reasonable person**.

Bottom-up DP algorithm

- Zero-One-Knapsack(W, n, w, v):
 - $K[x,0] = 0$ for all $x = 0, \dots, W$
 - $K[0,i] = 0$ for all $i = 0, \dots, n$
 - **for** $x = 1, \dots, W$:
 - **for** $j = 1, \dots, n$:
 - $K[x,j] = K[x, j-1]$ Case 1
 - **if** $w_j \leq x$:
 - $K[x,j] = \max\{ K[x,j], K[x - w_j, j-1] + v_j \}$ Case 2
 - **return** $K[W,n]$

Running time $O(nW)$

Example

- Zero-One-Knapsack(W, n, w, v):
 - $K[x,0] = 0$ for all $x = 0, \dots, W$
 - $K[0,i] = 0$ for all $i = 0, \dots, n$
 - **for** $x = 1, \dots, W$:
 - **for** $j = 1, \dots, n$:
 - $K[x,j] = K[x, j-1]$
 - **if** $w_j \leq x$:
 - $K[x,j] = \max\{ K[x,j], K[x - w_j, j-1] + v_j \}$
 - **return** $K[W,n]$

	$x=0$	$x=1$	$x=2$	$x=3$
$j=0$	0	0	0	0
$j=1$	0			
$j=2$	0			
$j=3$	0			

current
entry

relevant
previous entry

Item:

Weight:

1

2

3

Capacity: 3

Value:

1

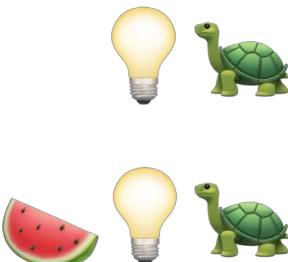
4

6

Example

- Zero-One-Knapsack(W, n, w, v):
 - $K[x,0] = 0$ for all $x = 0, \dots, W$
 - $K[0,i] = 0$ for all $i = 0, \dots, n$
 - **for** $x = 1, \dots, W$:
 - **for** $j = 1, \dots, n$:
 - $K[x,j] = K[x, j-1]$
 - **if** $w_j \leq x$:
 - $K[x,j] = \max\{ K[x,j], K[x - w_j, j-1] + v_j \}$
 - **return** $K[W,n]$

	$x=0$	$x=1$	$x=2$	$x=3$
$j=0$	0	0	0	0
$j=1$	0	0		
$j=2$	0			
$j=3$	0			



current
entry

relevant
previous entry

Item:

Weight:

1

2

3

Capacity: 3

Value:

1

4

30

Example

- Zero-One-Knapsack(W, n, w, v):
 - $K[x,0] = 0$ for all $x = 0, \dots, W$
 - $K[0,i] = 0$ for all $i = 0, \dots, n$
 - **for** $x = 1, \dots, W$:
 - **for** $j = 1, \dots, n$:
 - $K[x,j] = K[x, j-1]$
 - **if** $w_j \leq x$:
 - $K[x,j] = \max\{ K[x,j], K[x - w_j, j-1] + v_j \}$
 - **return** $K[W,n]$

	$x=0$	$x=1$	$x=2$	$x=3$
$j=0$	0	0	0	0
$j=1$	0	1		
$j=2$	0			
$j=3$	0			

current
entry

relevant
previous entry

Item:

Weight:

1

2

3

Capacity: 3

Value:

1

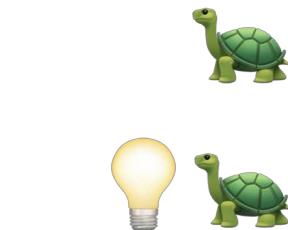
4

31

Example

- Zero-One-Knapsack(W, n, w, v):
 - $K[x,0] = 0$ for all $x = 0, \dots, W$
 - $K[0,i] = 0$ for all $i = 0, \dots, n$
 - **for** $x = 1, \dots, W$:
 - **for** $j = 1, \dots, n$:
 - $K[x,j] = K[x, j-1]$
 - **if** $w_j \leq x$:
 - $K[x,j] = \max\{ K[x,j], K[x - w_j, j-1] + v_j \}$
 - **return** $K[W,n]$

	$x=0$	$x=1$	$x=2$	$x=3$
$j=0$	0	0	0	0
$j=1$	0	1		
$j=2$	0	1		
$j=3$	0			



current
entry

relevant
previous entry

Item:

Weight:

1

2

3

Capacity: 3

Value:

1

4

31

Example

- Zero-One-Knapsack(W, n, w, v):
 - $K[x,0] = 0$ for all $x = 0, \dots, W$
 - $K[0,i] = 0$ for all $i = 0, \dots, n$
 - **for** $x = 1, \dots, W$:
 - **for** $j = 1, \dots, n$:
 - $K[x,j] = K[x, j-1]$
 - **if** $w_j \leq x$:
 - $K[x,j] = \max\{ K[x,j], K[x - w_j, j-1] + v_j \}$
 - **return** $K[W,n]$

	$x=0$	$x=1$	$x=2$	$x=3$
$j=0$	0	0	0	0
$j=1$	0	1		
$j=2$	0	1		
$j=3$	0	1		

current
entry

relevant
previous entry

Item:

Weight:

1

2

3

Capacity: 3

Value:

1

4

33

Example

	x=0	x=1	x=2	x=3
j=0	0	0	0	0
j=1	0	1	0	
j=2	0	1		
j=3	0	1		



current
entry

relevant
previous entry

Item:

Weight:

1

2

3

Capacity: 3

Value:

1

4

- Zero-One-Knapsack(W, n, w, v):
 - $K[x,0] = 0$ for all $x = 0, \dots, W$
 - $K[0,i] = 0$ for all $i = 0, \dots, n$
 - **for** $x = 1, \dots, W$:
 - **for** $j = 1, \dots, n$:
 - $K[x,j] = K[x, j-1]$
 - **if** $w_j \leq x$:
 - $K[x,j] = \max\{ K[x,j], K[x - w_j, j-1] + v_j \}$
 - **return** $K[W,n]$

Example

	x=0	x=1	x=2	x=3
j=0	0	0	0	0
j=1	0	1	1	
j=2	0	1		
j=3	0	1		

current
entry

relevant
previous entry

Item:

Weight:

1

2

3

Capacity: 3

Value:

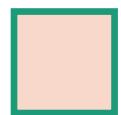
1

4

- Zero-One-Knapsack(W, n, w, v):
 - $K[x,0] = 0$ for all $x = 0, \dots, W$
 - $K[0,i] = 0$ for all $i = 0, \dots, n$
 - **for** $x = 1, \dots, W$:
 - **for** $j = 1, \dots, n$:
 - $K[x,j] = K[x, j-1]$
 - **if** $w_j \leq x$:
 - $K[x,j] = \max\{ K[x,j], K[x - w_j, j-1] + v_j \}$
 - **return** $K[W,n]$

Example

	x=0	x=1	x=2	x=3
j=0	0	0	0	0
j=1	0	1	1	
j=2	0	1	1	
j=3	0	1		



current
entry

relevant
previous entry

Item:

Weight:

1

2

3

Capacity: 3

Value:

1

4

- Zero-One-Knapsack(W, n, w, v):
 - $K[x,0] = 0$ for all $x = 0, \dots, W$
 - $K[0,i] = 0$ for all $i = 0, \dots, n$
 - **for** $x = 1, \dots, W$:
 - **for** $j = 1, \dots, n$:
 - $K[x,j] = K[x, j-1]$
 - **if** $w_j \leq x$:
 - $K[x,j] = \max\{ K[x,j], K[x - w_j, j-1] + v_j \}$
 - **return** $K[W,n]$

Example

	x=0	x=1	x=2	x=3
j=0	0	0	0	0
j=1	0	1	1	
j=2	0	1	4	
j=3	0	1		

current
entry

relevant
previous entry

Item:

Weight:

1

2

3

Capacity: 3

Value:

1

4

- Zero-One-Knapsack(W, n, w, v):
 - $K[x,0] = 0$ for all $x = 0, \dots, W$
 - $K[0,i] = 0$ for all $i = 0, \dots, n$
 - **for** $x = 1, \dots, W$:
 - **for** $j = 1, \dots, n$:
 - $K[x,j] = K[x, j-1]$
 - **if** $w_j \leq x$:
 - $K[x,j] = \max\{ K[x,j], K[x - w_j, j-1] + v_j \}$
 - **return** $K[W,n]$

Example

	x=0	x=1	x=2	x=3
j=0	0	0	0	0
j=1	0	1	1	
j=2	0	1	4	
j=3	0	1	4	

current entry

relevant previous entry

Item:

Weight:

1

2

3

Capacity: 3

Value:

1

4

- Zero-One-Knapsack(W, n, w, v):
 - $K[x,0] = 0$ for all $x = 0, \dots, W$
 - $K[0,i] = 0$ for all $i = 0, \dots, n$
 - **for** $x = 1, \dots, W$:
 - **for** $j = 1, \dots, n$:
 - $K[x,j] = K[x, j-1]$
 - **if** $w_j \leq x$:
 - $K[x,j] = \max\{ K[x,j], K[x - w_j, j-1] + v_j \}$
 - **return** $K[W,n]$

Example

	x=0	x=1	x=2	x=3
j=0	0	0	0	0
j=1	0	1	1	0
j=2	0	1	4	
j=3	0	1	4	

Example

	x=0	x=1	x=2	x=3
j=0	0	0	0	0
j=1	0	1	1	1
j=2	0	1	4	
j=3	0	1	4	



current
entry

relevant
previous entry

Item:

Weight:

1

2

3

Capacity: 3

Value:

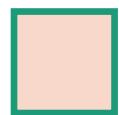
1

4

- Zero-One-Knapsack(W, n, w, v):
 - $K[x,0] = 0$ for all $x = 0, \dots, W$
 - $K[0,i] = 0$ for all $i = 0, \dots, n$
 - **for** $x = 1, \dots, W$:
 - **for** $j = 1, \dots, n$:
 - $K[x,j] = K[x, j-1]$
 - **if** $w_j \leq x$:
 - $K[x,j] = \max\{ K[x,j], K[x - w_j, j-1] + v_j \}$
 - **return** $K[W,n]$

Example

	x=0	x=1	x=2	x=3
j=0	0	0	0	0
j=1	0	1	1	1
j=2	0	1	4	1
j=3	0	1	4	



current
entry

relevant
previous entry

Item:

Weight:

1

2

3

Capacity: 3

Value:

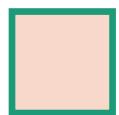
1

4

- Zero-One-Knapsack(W, n, w, v):
 - $K[x,0] = 0$ for all $x = 0, \dots, W$
 - $K[0,i] = 0$ for all $i = 0, \dots, n$
 - **for** $x = 1, \dots, W$:
 - **for** $j = 1, \dots, n$:
 - $K[x,j] = K[x, j-1]$
 - **if** $w_j \leq x$:
 - $K[x,j] = \max\{ K[x,j], K[x - w_j, j-1] + v_j \}$
 - **return** $K[W,n]$

Example

	x=0	x=1	x=2	x=3
j=0	0	0	0	0
j=1	0	1	1	1
j=2	0	1	4	5
j=3	0	1	4	



current
entry

relevant
previous entry

Item:

Weight:

1

2

3

Capacity: 3

Value:

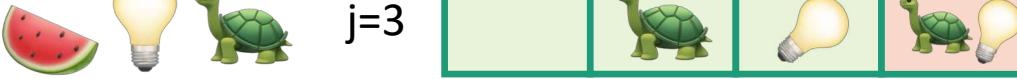
1

4

- Zero-One-Knapsack(W, n, w, v):
 - $K[x,0] = 0$ for all $x = 0, \dots, W$
 - $K[0,i] = 0$ for all $i = 0, \dots, n$
 - **for** $x = 1, \dots, W$:
 - **for** $j = 1, \dots, n$:
 - $K[x,j] = K[x, j-1]$
 - **if** $w_j \leq x$:
 - $K[x,j] = \max\{ K[x,j], K[x - w_j, j-1] + v_j \}$
 - **return** $K[W,n]$

Example

	x=0	x=1	x=2	x=3
j=0	0	0	0	0
j=1	0	1	1	1
j=2	0	1	4	5
j=3	0	1	4	5



 current entry
 relevant previous entry

Item:
 Weight: 1 2 3
 Value: 1 4 6
 Capacity: 3

- Zero-One-Knapsack(W, n, w, v):
 - $K[x,0] = 0$ for all $x = 0, \dots, W$
 - $K[0,i] = 0$ for all $i = 0, \dots, n$
 - **for** $x = 1, \dots, W$:
 - **for** $j = 1, \dots, n$:
 - $K[x,j] = K[x, j-1]$
 - **if** $w_j \leq x$:
 - $K[x,j] = \max\{ K[x,j], K[x - w_j, j-1] + v_j \}$
 - **return** $K[W,n]$

Example

	x=0	x=1	x=2	x=3
j=0	0	0	0	0
j=1	0	1	1	1
j=2	0	1	4	5
j=3	0	1	4	6

Items:



current entry



relevant previous entry

Item:

Weight:

1

2

3

Capacity: 3

Value:

1

4

- Zero-One-Knapsack(W, n, w, v):
 - $K[x,0] = 0$ for all $x = 0, \dots, W$
 - $K[0,i] = 0$ for all $i = 0, \dots, n$
 - **for** $x = 1, \dots, W$:
 - **for** $j = 1, \dots, n$:
 - $K[x,j] = K[x, j-1]$
 - **if** $w_j \leq x$:
 - $K[x,j] = \max\{ K[x,j], K[x - w_j, j-1] + v_j \}$
 - **return** $K[W,n]$

Example

	x=0	x=1	x=2	x=3
j=0	0	0	0	0
j=1	0	1	1	1
j=2	0	1	4	5
j=3	0	1	4	6

Items:

current
entry

relevant
previous entry

Item:

Weight:

1

2

3

Capacity: 3

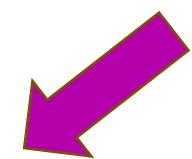
Value:

1

- Zero-One-Knapsack(W, n, w, v):
 - $K[x,0] = 0$ for all $x = 0, \dots, W$
 - $K[0,i] = 0$ for all $i = 0, \dots, n$
 - **for** $x = 1, \dots, W$:
 - **for** $j = 1, \dots, n$:
 - $K[x,j] = K[x, j-1]$
 - **if** $w_j \leq x$:
 - $K[x,j] = \max\{ K[x,j], K[x - w_j, j-1] + v_j \}$
 - **return** $K[W,n]$

So the optimal solution is to put one watermelon in your knapsack!

Recipe for applying Dynamic Programming

- **Step 1:** Identify optimal substructure.
- **Step 2:** Find a **recursive formulation** for the value of the optimal solution.
- **Step 3:** Use **dynamic programming** to find the value of the optimal solution.
- **Step 4:** If needed, keep track of some additional info so that the algorithm from Step 3 can **find the actual solution**. 
- **Step 5:** If needed, code this up like a reasonable person.

You do this one!

(We did it on the slide in the previous example, just not in the pseudocode!)⁹⁶



What have we learned?

- We can solve 0/1 knapsack in time $O(nW)$.
 - If there are n items and our knapsack has capacity W .
- We again went through the steps to create DP solution:
 - We kept a two-dimensional table, creating smaller problems by restricting the set of allowable items.

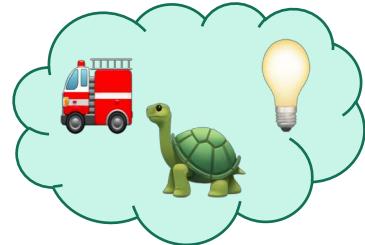
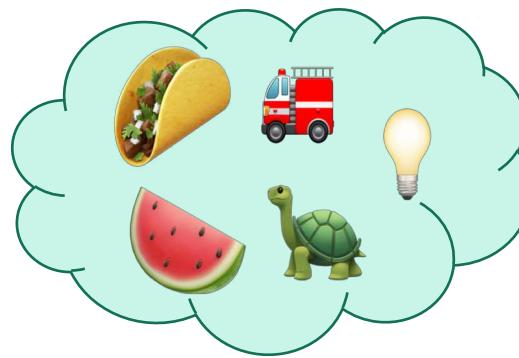
Question

- How did we know which substructure to use in which variant of knapsack?

Answer in retrospect:

This one made sense for unbounded knapsack because it doesn't have any memory of what items have been used.

VS.

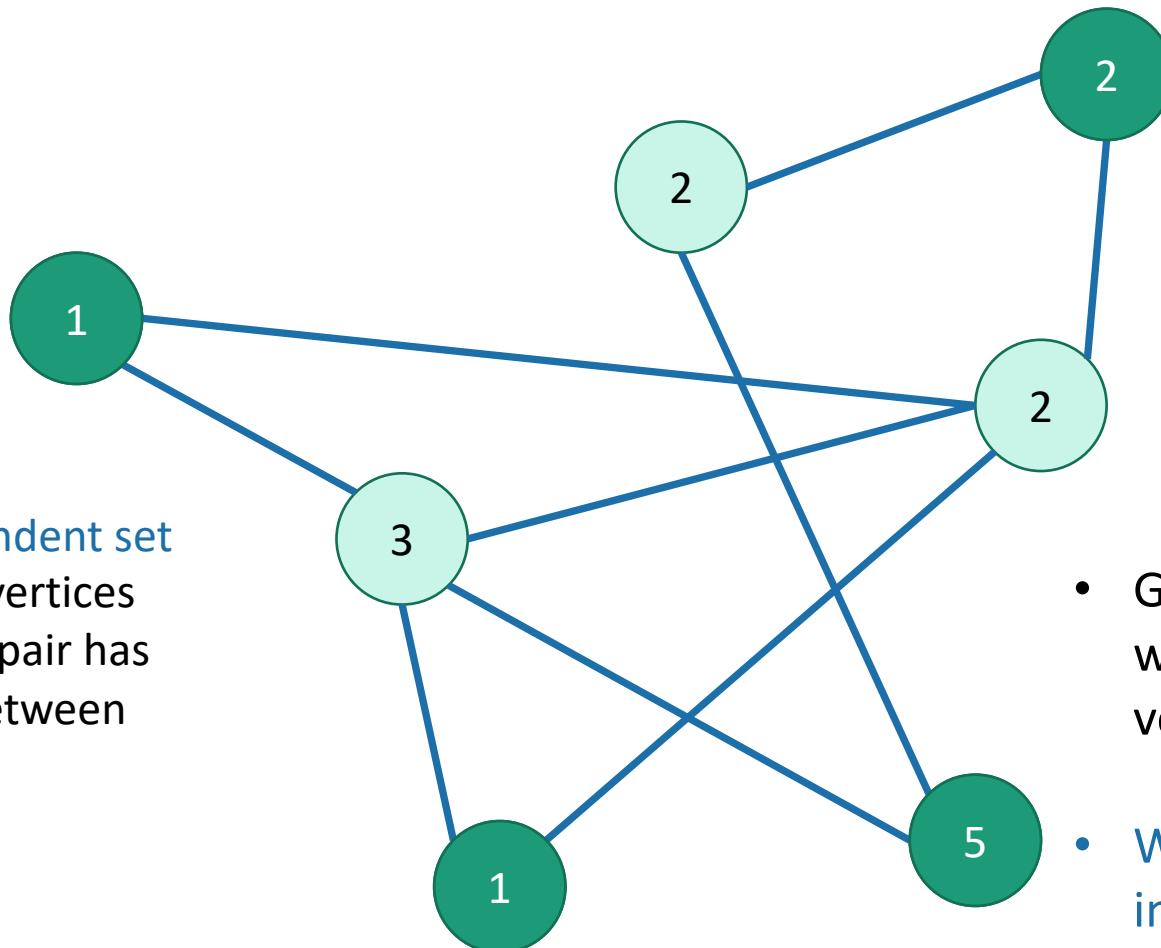


In 0/1 knapsack, we can only use each item once, so it makes sense to leave out one item at a time.

Operational Answer: try some stuff, see what works!

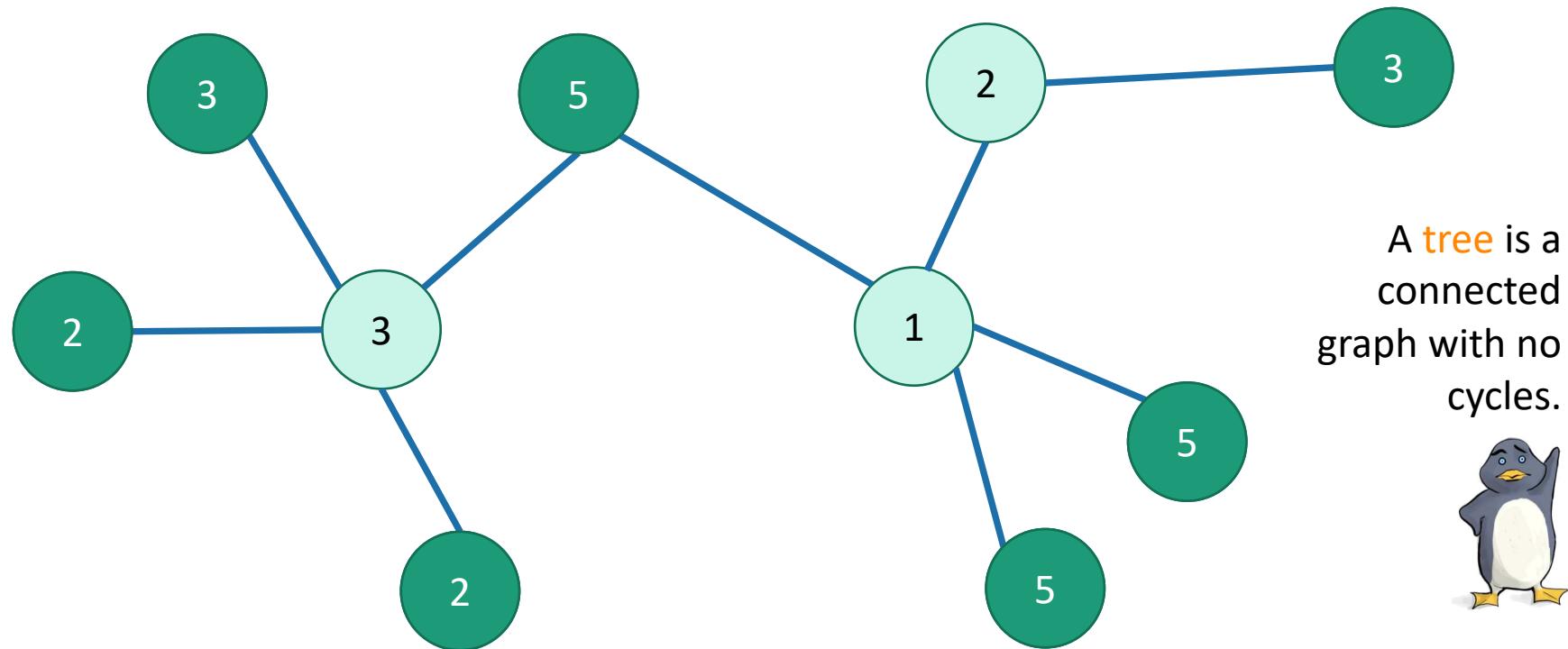
Example 3: Independent Set

if we still have time



Actually this problem is **NP-complete**.
So we are unlikely to find an efficient algorithm

- But if we also assume that the graph is a **tree**...



Problem:

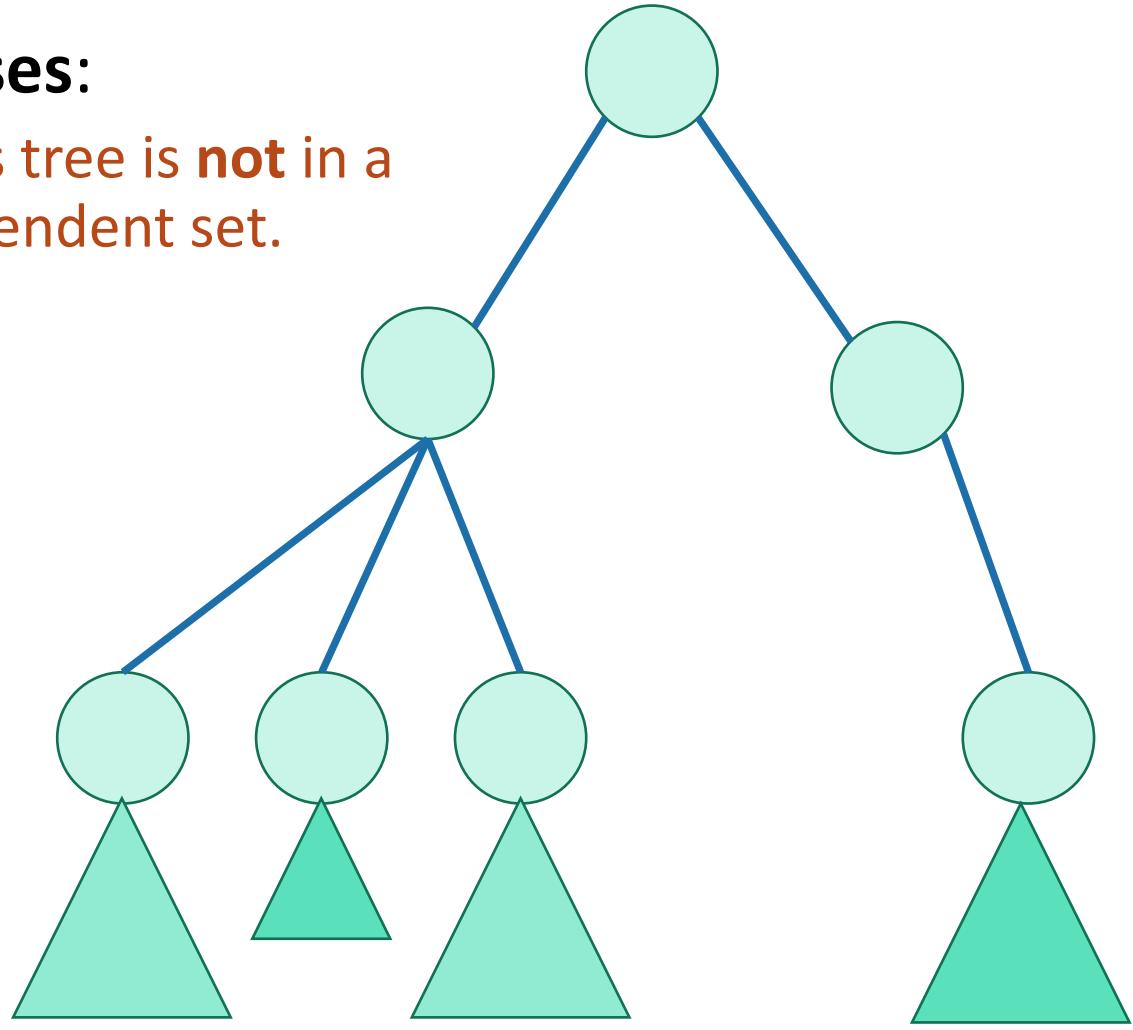
find a maximal independent set in a tree (with vertex weights).

Recipe for applying Dynamic Programming

- **Step 1:** Identify optimal substructure.
- **Step 2:** Find a **recursive formulation** for the value of the optimal solution
- **Step 3:** Use **dynamic programming** to find the value of the optimal solution
- **Step 4:** If needed, keep track of some additional info so that the algorithm from Step 3 can **find the actual solution**.
- **Step 5:** If needed, **code this up like a reasonable person**.

Optimal substructure

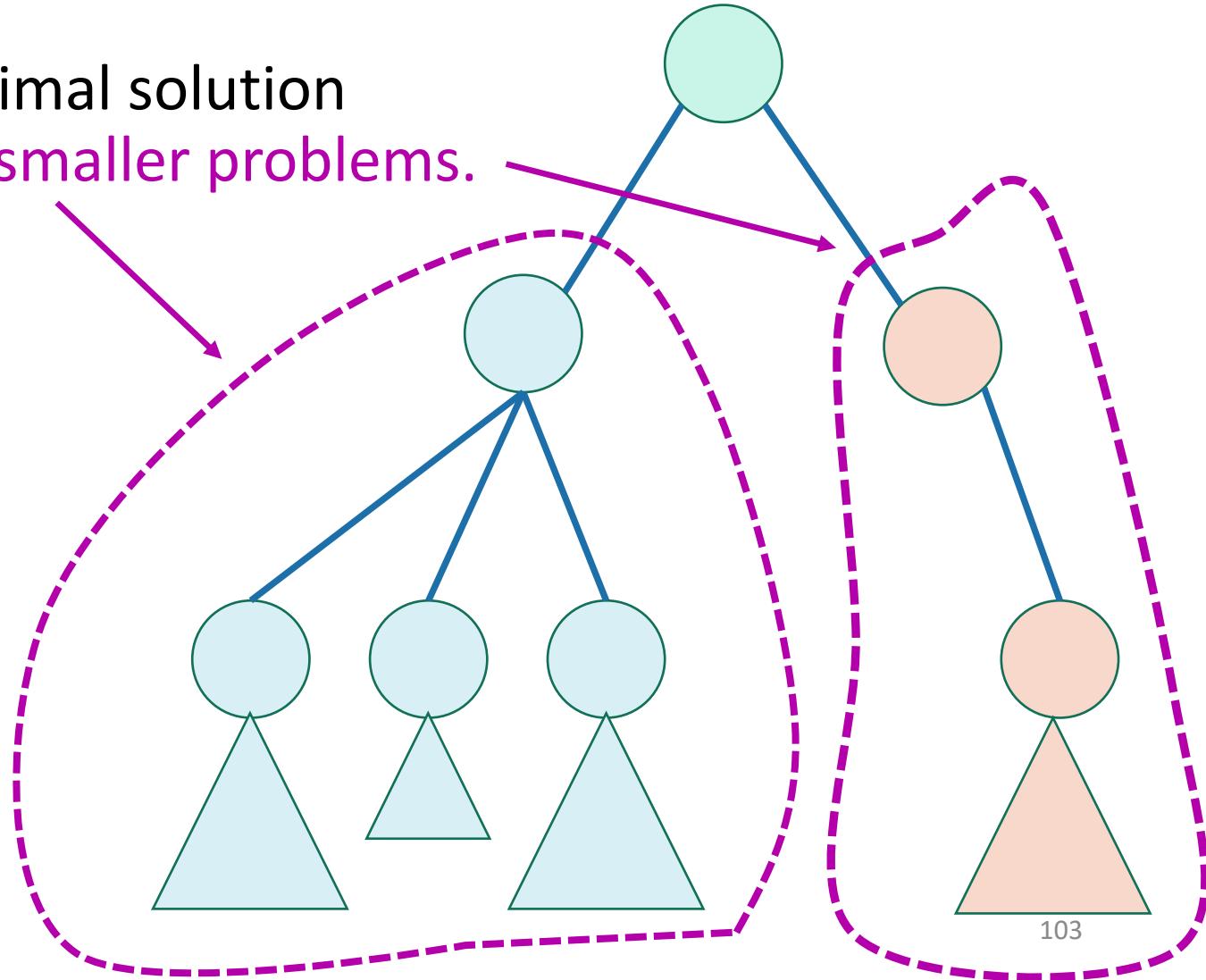
- Subtrees are a natural candidate.
- There are **two cases**:
 1. The root of this tree is **not** in a maximal independent set.
 2. Or it is.



Case 1:

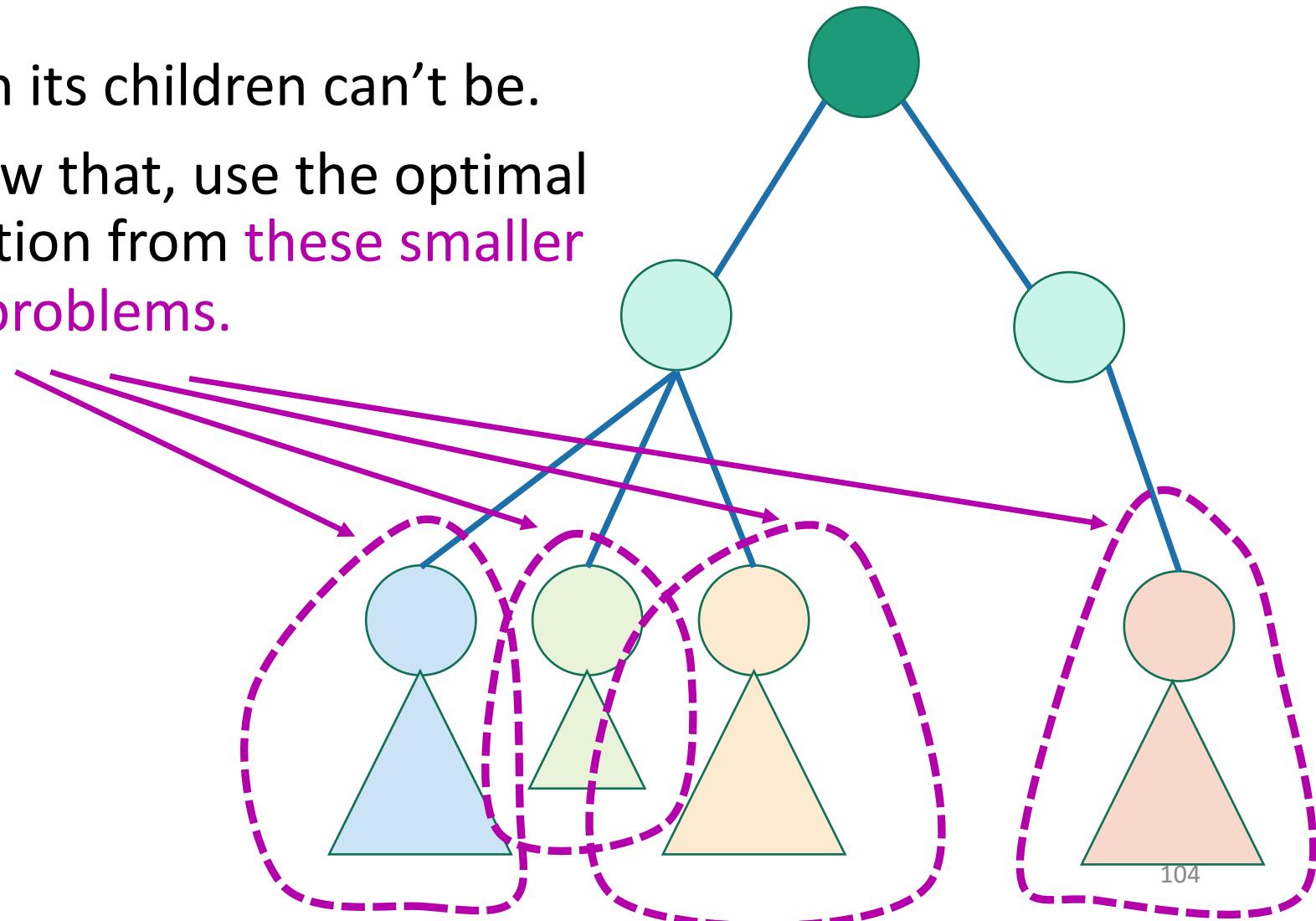
the root is not in an maximal independent set

- Use the optimal solution from **these smaller problems**.



Case 2: the root is in an maximal independent set

- Then its children can't be.
- Below that, use the optimal solution from **these smaller subproblems**.



Recipe for applying Dynamic Programming

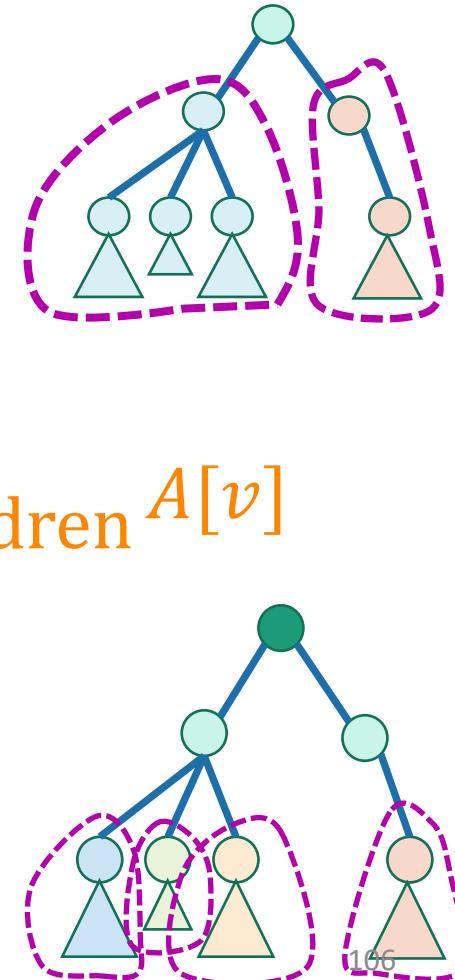
- **Step 1:** Identify optimal substructure.
- **Step 2:** Find a recursive formulation for the value of the optimal solution.
- **Step 3:** Use dynamic programming to find the value of the optimal solution
- **Step 4:** If needed, keep track of some additional info so that the algorithm from Step 3 can find the actual solution.
- **Step 5:** If needed, code this up like a reasonable person.

Recursive formulation: try 1

- Let $A[u]$ be the weight of a maximal independent set in the tree rooted at u .

- $$A[u] = \max \left\{ \begin{array}{l} \sum_{v \in u.\text{children}} A[v] \\ \text{weight}(u) + \sum_{v \in u.\text{grandchildren}} A[v] \end{array} \right.$$

When we implement this, how do we keep track of **this term**?

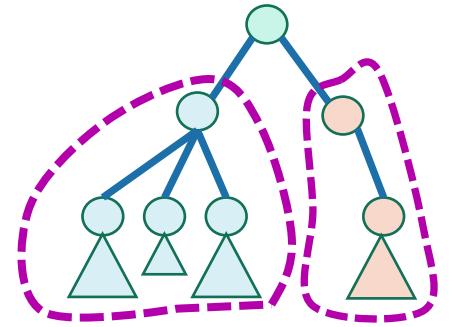
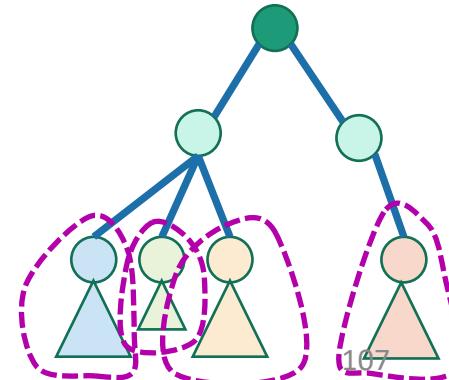


Recursive formulation: try 2

Keep two arrays!

- Let $A[u]$ be the weight of a maximal independent set in the tree rooted at u .
- Let $B[u] = \sum_{v \in u.\text{children}} A[v]$

$$\bullet A[u] = \max \left\{ \begin{array}{l} \sum_{v \in u.\text{children}} A[v] \\ \text{weight}(u) + \sum_{v \in u.\text{children}} B[v] \end{array} \right.$$



Recipe for applying Dynamic Programming

- **Step 1:** Identify optimal substructure.
- **Step 2:** Find a **recursive formulation** for the value of the optimal solution.
- **Step 3:** Use **dynamic programming** to find the value of the optimal solution.
- **Step 4:** If needed, keep track of some additional info so that the algorithm from Step 3 can **find the actual solution**.
- **Step 5:** If needed, **code this up like a reasonable person**.

A top-down DP algorithm

- MIS_subtree(u):
 - **if** u is a leaf:
 - $A[u] = \text{weight}(u)$
 - $B[u] = 0$
 - **else:**
 - **for** v in $u.\text{children}$:
 - MIS_subtree(v)
 - $A[u] = \max\{ \sum_{v \in u.\text{children}} A[v], \text{weight}(u) + \sum_{v \in u.\text{children}} B[v] \}$
 - $B[u] = \sum_{v \in u.\text{children}} A[v]$
- MIS(T):
 - MIS_subtree($T.\text{root}$)
 - **return** $A[T.\text{root}]$

Initialize global arrays A, B that we will use in all of the recursive calls.

Running time?

- We visit each vertex once, and at every vertex we do $O(1)$ work:
 - Make a recursive call
 - look stuff up in tables
- Running time is $O(|V|)$

Why is this different from divide-and-conquer?

That's always worked for us with tree problems before...

- **MIS_subtree(u):**

- **if** u is a leaf:
 - **return** $\text{weight}(u)$
 - **else:**
 - **return** $\max\{ \sum_{v \in u.\text{children}} \text{MIS_subtree}(v),$

This is exactly the same pseudocode, except we've ditched the table and are just calling MIS_subtree(v) instead of looking up $A[v]$ or $B[v]$.

$$\text{weight}(u) + \sum_{v \in u.\text{grandchildren}} \text{MIS_subtree}(v) \}$$

- **MIS(T):**

- **return** $\text{MIS_subtree}(T.\text{root})$

Why is this different from divide-and-conquer?

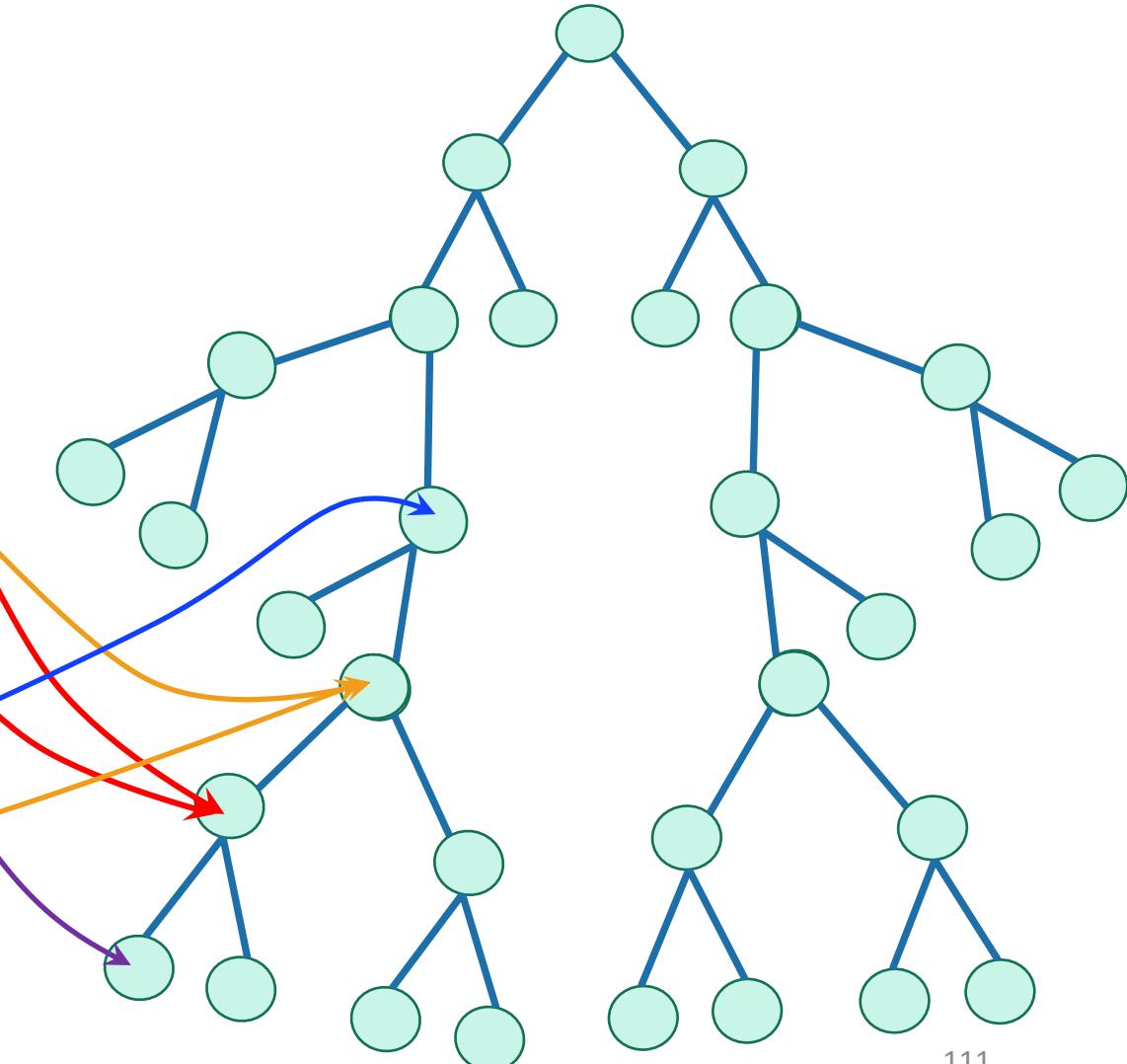
That's always worked for us with tree problems before...

How often would we ask
about the subtree rooted
here?

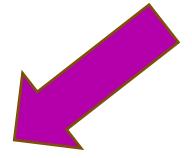
Once for **this node** —
and once for **this one**..

But we then ask
about **this node** —
twice, **here** and **here**.

This will blow up exponentially without using dynamic programming to take advantage of **overlapping subproblems**.



Recipe for applying Dynamic Programming

- **Step 1:** Identify optimal substructure.
- **Step 2:** Find a **recursive formulation** for the value of the optimal solution.
- **Step 3:** Use **dynamic programming** to find the value of the optimal solution.
- **Step 4:** If needed, keep track of some additional info so that the algorithm from Step 3 can **find the actual solution**. 
- **Step 5:** If needed, code this up like a reasonable person.

You do this one!

What have we learned?

- We can find maximal independent sets in trees in time $O(|V|)$ using dynamic programming!
- For this example, it was natural to implement our DP algorithm in a top-down way.

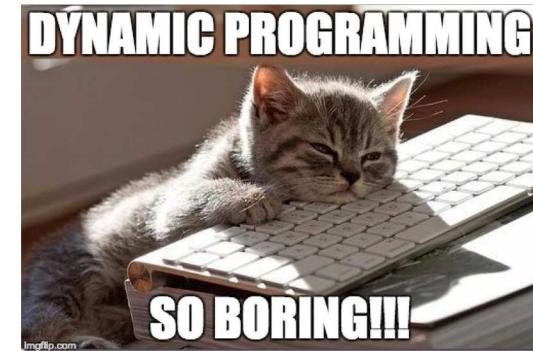
Recap

- Today we saw examples of how to come up with dynamic programming algorithms.
 - Longest Common Subsequence
 - Knapsack two ways
 - (If time) maximal independent set in trees.
- There is a **recipe** for dynamic programming algorithms.

Recipe for applying Dynamic Programming

- **Step 1:** Identify optimal substructure.
- **Step 2:** Find a **recursive formulation** for the value of the optimal solution.
- **Step 3:** Use **dynamic programming** to find the value of the optimal solution.
- **Step 4:** If needed, keep track of some additional info so that the algorithm from Step 3 can **find the actual solution**.
- **Step 5:** If needed, **code this up like a reasonable person**.

Recap



- Today we saw examples of how to come up with dynamic programming algorithms.
 - Longest Common Subsequence
 - Knapsack two ways
 - (If time) maximal independent set in trees.
- There is a **recipe** for dynamic programming algorithms.
- Sometimes coming up with the right substructure takes some creativity
 - You got some practice on HW6 and you'll get more on HW7! ☺
 - For even more practice check out additional examples/practice problems in Algorithms Illuminated or CLRS or section!

Next week

- Greedy algorithms!

Before next time

- Pre-lecture exercise: Greed is good!

