Welcome to CS166!

- Course information handout available up front.
- Today:
 - Course overview.
 - Why study data structures?
 - The range minimum query problem.

Course Staff

Keith Schwarz (htiek@cs.stanford.edu)

Kyle Brogle (broglek@stanford.edu) Daniel Hollingshead (dhollingshead@stanford.edu) Nick Isaacs (nisaacs@stanford.edu) Aparna Krishnan (aparnak@stanford.edu) Sen Wu (senwu@stanford.edu)

Course Staff Mailing List: cs166-spr1314-staff@lists.stanford.edu

The Course Website

http://cs166.stanford.edu

Required Reading

- Introduction to Algorithms, Third Edition by Cormen, Leiserson, Rivest, and Stein.
- You'll want the third edition for this course.
- Available in the bookstore; several copies on hold at the Engineering Library.

Prerequisites

- **CS161** (Design and Analysis of Algorithms)
 - We'll assume familiarity with asymptotic notation, correctness proofs, algorithmic strategies (e.g. divide-and-conquer), classical algorithms, recurrence relations, etc.
- **CS107** (Computer Organization and Systems)
 - We'll assume comfort working from the command-line, designing and testing nontrivial programs, and manipulating bitwise representations of data. You should have some knowledge of the memory hierarchy.
- Not sure whether you're in the right place? Please feel free to ask!

Grading Policies

Grading Policies

50% Assignments
25% Midterm
25% Final Project

Axess: "Enrollment Limited"

- Because this is a new course, we're limiting enrollment in CS166 to 100.
- If you are interested in taking the course, please sign up on Axess as soon as possible so that we can get an approximate headcount.
- If enrollment is under 100, then everything will work as a normal course.
- If enrollment exceeds 100, we'll send out an application. Sorry for the inconvenience!

Why Study Data Structures?

Why Study Data Structures?

- Explore the intersection between theory and practice.
- Learn new approaches to modeling and solving problems.
- Expand your sense of what can be done efficiently.

Range Minimum Queries

The RMQ Problem

• The **Range Minimum Query (RMQ)** problem is the following:

Given a fixed array A and two indices $i \leq j$, what is the smallest element out of A[i], A[i + 1], ..., A[j - 1], A[j]?

A Trivial Solution

- There's a simple O(n)-time algorithm for evaluating RMQ_A(i, j): just iterate across the elements between i and j, inclusive, and take the minimum!
- Why is this problem at all algorithmically interesting?
- Suppose that the array A is fixed and we'll make k queries on it.
- Can we do better than the naïve algorithm?

An Observation

• In an array of length n, there are only $\Theta(n^2)$ possible queries.

A Different Approach

- There are only $\Theta(n^2)$ possible RMQs in an array of length n.
- If we precompute all of them, we can answer RMQ in time O(1) per query.

Building the Table

- One simple approach: for each entry in the table, iterate over the range in question and find the minimum value.
- How efficient is this?
 - Number of entries: $\Theta(n^2)$.
 - Time to evaluate each entry: O(n).
 - Time required: $O(n^3)$.
- The runtime is $O(n^3)$ using this approach. Is it also $\Theta(n^3)$?

A Different Approach

- Naïvely precomputing the table is inefficient.
- Can we do better?
- Claim: Can precompute all subarrays in time $\Theta(n^2)$ using dynamic programming.

	0	1	2	3
0	16	16	16	*
1		18	18	18
2			33	33
3				98

Some Notation

- We'll say that an RMQ data structure has time complexity (p(n), q(n)) if
 - preprocessing takes time at most p(n) and
 - queries take time at most q(n).
- We now have two RMQ data structures:
 - (O(1), O(n)) with no preprocessing.
 - $(O(n^2), O(1))$ with full preprocessing.
- These are two extremes on a curve of tradeoffs: no preprocessing versus full preprocessing.
- **Question:** Is there a "golden mean" between these extremes?

Another Approach: **Block Decomposition**

A Block-Based Approach

- Split the input into O(n / b) blocks of some "block size" b.
 - Here, b = 3.
- Compute the minimum value in each block.

31		26			23				62		27			
31	41	59	26	53	58	97	93	23	84	62	64	33	83	27
					1	1		1				1		

Analyzing the Approach

- Let's analyze this approach in terms of *n* and *b*.
- Preprocessing time:
 - O(b) work on O(n / b) blocks to find minimums.
 - Total work: **O(***n***)**.
- Time to query $\text{RMQ}_A(i, j)$:
 - O(1) work to find block indices (divide by block size).
 - O(b) work to scan inside *i* and *j*'s blocks.
 - O(n / b) work looking at block minimums between *i* and *j*.
 - Total work: O(b + n / b).

31		26			23				62		27			
31	41	59	26	53	58	97	93	23	84	62	64	33	83	27
						1								

Intuiting O(b + n / b)

- As *b* increases:
 - The **b** term rises (more elements to scan within each block).
 - The *n* **/ b** term drops (fewer blocks to look at).
- As *b* decreases:
 - The **b** term drops (fewer elements to scan within a block).
 - The **n / b** term rises (more blocks to look at).
- Is there an optimal choice of *b* given these constraints?

Optimizing b

- What choice of *b* minimizes b + n / b?
- Start by taking the derivative: d

$$\frac{d}{db}(b+n/b) = 1 - \frac{n}{b^2}$$

• Setting the derivative to zero:

$$l-n/b^{2} = 0$$

$$1 = n/b^{2}$$

$$b^{2} = n$$

$$b = \sqrt{n}$$

- Asymptotically optimal runtime is when $b = n^{1/2}$.
- In that case, the runtime is $O(b + n / b) = O(n^{1/2} + n / n^{1/2}) = O(n^{1/2} + n^{1/2}) = O(n^{1/2})$

Summary of Approaches

- Three solutions so far:
 - No preprocessing: (O(1), O(n)).
 - Full preprocessing: $(O(n^2), O(1))$.
 - Block partition: $(O(n), O(n^{1/2}))$.
- Modest preprocessing yields modest performance increases.
- **Question:** Can we do better?

A Second Approach: **Sparse Tables**

An Intuition

- The (O(n²), O(1)) solution gives fast queries because every range we might look up has already been precomputed.
- This solution is slow overall because we have to compute the minimum of every possible range.
- **Question:** Can we still get O(1) queries without preprocessing all possible ranges?

An Observation

	0	1	2	3	4	5	6	7
0	31	31	31	26				
1		41	41	26	26			
2			59	26	26	26		*
3				26	26	26	26	
4					53	53	53	53
5						58	58	58
6							97	93
7								93

The Intuition

- It's still possible to answer any query in time O(1) without precomputing RMQ over all ranges.
- If we precompute the answers over too many ranges, the preprocessing time will be too large.
- If we precompute the answers over too few ranges, the query time won't be O(1).
- **Goal:** Precompute RMQ over a set of ranges such that
 - There are $o(n^2)$ total ranges, but
 - there are enough ranges to support O(1) query times.

Some Observations

The Approach

- For each index *i*, compute RMQ for ranges starting at *i* of size 1, 2, 4, 8, 16, ..., 2^k as long as they fit in the array.
 - Gives both large and small ranges starting at any point in the array.
 - Only O(log *n*) ranges computed for each array element.
 - Total number of ranges: O(n log n).
- **Claim:** Any range in the array can be formed as the union of two of these ranges.

Creating Ranges

Doing a Query

- To answer $\text{RMQ}_A(i, j)$:
 - Find the largest k such that $2^k \leq j i + 1$.
 - With the right preprocessing, this can be done in time O(1); you'll figure out how in the problem set!
 - The range [i, j] can be formed as the overlap of the ranges $[i, i + 2^k 1]$ and $[j 2^k + 1, j]$.
 - Each range can be looked up in time O(1).
 - Total time: **O(1)**.

Precomputing the Ranges

- There are $O(n \log n)$ ranges to precompute.
- Using dynamic programming, we can compute all of them in time O(*n* log *n*).

Sparse Tables

- This data structure is called a sparse table.
- Gives an (O(n log n), O(1)) solution to RMQ.
- Asymptotically better than precomputing all possible ranges!

The Story So Far

- We now have the following solutions for RMQ:
 - Precompute all: $(O(n^2), O(1))$.
 - Precompute none: (O(1), O(n)).
 - Blocking: $(O(n), O(n^{1/2}))$.
 - Sparse table: $(O(n \log n), O(1))$.
- Can we do better?

A Third Approach: Hybrid Strategies

Blocking Revisited

Blocking Revisited

This is just RMQ on the block minimums!

Blocking Revisited

The Setup

- Here's a new possible route for solving RMQ:
 - Split the input into blocks of some block size *b*.
 - For each of the O(n / b) blocks, compute the minimum.
 - Construct an RMQ structure on the block minimums.
 - Construct RMQ structures on each block.
 - Combine the RMQ answers to solve RMQ overall.
- This approach of segmenting a structure into a high-level structure and many low-level structures is sometimes called a macro/micro decomposition.

Combinations and Permutations

- The macro/micro decomposition isn't a single data structure; it's a *framework* for data structures.
- We get to choose
 - the block size,
 - which RMQ structure to use on top, and
 - which RMQ structure to use for the blocks.
- Summary and block RMQ structures don't have to be the same type of RMQ data structure – we can combine different structures together to get different results.

The Framework

- Suppose we use a $\langle p_1(n), q_1(n) \rangle$ -time RMQ solution for the block minimums and a $\langle p_2(n), q_2(n) \rangle$ -time RMQ solution within each block.
- Let the block size be *b*.
- In the hybrid structure, the preprocessing time is $O(n + p_1(n / b) + (n / b) p_2(b))$
- The query time is

$O(q_1(n / b) + q_2(b))$

	31		26			23			62			27		
31	41	59	26	53	58	97	93	23	84	62	64	33	83	27

A Sanity Check

- The $(O(n), O(n^{1/2}))$ block-based structure from earlier uses this framework with the (O(1), O(n)) no-preprocessing RMQ structure and $b = n^{1/2}$.
- According to our formulas, the preprocessing time should be

$$O(n + p_1(n / b) + (n / b) p_2(b))$$

= $O(n + 1 + n / b)$
= $O(n)$ For Reference

 $p_1(n) = 1$

 $q_1(n) = n$

 $p_2(n) = 1$

 $q_2(n) = n$

 $b = n^{1/2}$

• The query time should be

$$O(q_1(n / b) + q_2(b))$$

= $O(n / b + b)$
= $O(n^{1/2})$

• Looks good so far!

An Observation

- A sparse table takes time O(n log n) to construct on an array of n elements.
- With block size b, there are O(n / b) total blocks.
- Time to construct a sparse table over the block minimums: O((n / b) log (n / b)).
- Since log (n / b) = O(log n), the time to build the sparse table is at most O((n / b) log n).
- **Cute trick:** If $b = \Theta(\log n)$, the time to construct a sparse table over the minimums is

 $O((n / b) \log n) = O((n / \log n) \log n) = O(n)$

One Possible Hybrid

- Set the block size to log *n*.
- Use a sparse table for the top-level structure.
- Use the "no preprocessing" structure for each block.
- Preprocessing time:

 $O(n + p_1(n / b) + (n / b) p_2(b)) = O(n + n + n / \log n)$ = O(n) For the second secon

• Query time:

 $O(q_1(n / b) + q_2(b))$ = $O(1 + \log n)$ = $O(\log n)$

• An **(O(***n***), O(log** *n***))** solution!

- For Reference $p_1(n) = n \log n$ $q_1(n) = 1$
 - $p_2(n) = 1$ $q_2(n) = n$

$$b = \log n$$

Another Hybrid

- Let's suppose we use the (O(n log n), O(1)) sparse table for both the top and bottom RMQ structures with a block size of log n.
- The preprocessing time is

```
O(n + p_1(n / b) + (n / b) p_2(b)) = O(n + n + (n / \log n) b \log b) = O(n + (n / \log n) \log n \log \log n) = O(n \log \log n)
```

• The query time is

 $O(q_1(n / b) + q_2(b)) = O(1)$

 We have an (O(n log log n), O(1)) solution to RMQ!

For Reference

 $p_1(n) = n \log n$ $q_1(n) = 1$

```
p_2(n) = n \log nq_2(n) = 1
```

 $b = \log n$

One Last Hybrid

- Suppose we use a sparse table for the top structure and the $(O(n), O(\log n))$ solution for the bottom structure. Let's choose $b = \log n$.
- The preprocessing time is

$$O(n + p_1(n / b) + (n / b) p_2(b)) = O(n + n + (n / \log n) b) = O(n + n + (n / \log n) \log n) = O(n)$$

• The query time is

 $O(q_1(n / b) + q_2(b))$ = $O(1 + \log \log n)$ = $O(\log \log n)$

 We have an (O(n), O(log log n)) solution to RMQ! **For Reference**

 $p_1(n) = n \log n$ $q_1(n) = 1$

```
p_2(n) = nq_2(n) = \log n
```

```
b = \log n
```

Where We Stand

- We've seen a bunch of RMQ structures today:
 - No preprocessing: (O(1), O(n))
 - Full preprocessing: $(O(n^2), O(1))$
 - Block partition: $(O(n), O(n^{1/2}))$
 - Sparse table: $(O(n \log n), O(1))$
 - Hybrid 1: $(O(n), O(\log n))$
 - Hybrid 2: $(O(n \log \log n), O(1))$
 - Hybrid 3: $(O(n), O(\log \log n))$

Is there an (O(n), O(1)) solution to RMQ?

Yes!

Next Time

- Cartesian Trees
 - A data structure closely related to RMQ.
- The Method of Four Russians
 - A technique for shaving off log factors.
- The Fischer-Heun Structure
 - A deceptively simple, asymptotically optimal RMQ structure.