

Welcome to CS166!

● Course information handout available up
front.

● Today:
● Course overview.
● Why study data structures?
● The range minimum query problem.

Course Staff

Keith Schwarz (htiek@cs.stanford.edu)

Kyle Brogle (broglek@stanford.edu)
Daniel Hollingshead (dhollingshead@stanford.edu)

Nick Isaacs (nisaacs@stanford.edu)
Aparna Krishnan (aparnak@stanford.edu)

Sen Wu (senwu@stanford.edu)

Course Staff Mailing List:
cs166-spr1314-staff@lists.stanford.edu

mailto:htiek@cs.stanford.edu
mailto:broglek@stanford.edu
mailto:dhollingshead@stanford.edu
mailto:nisaacs@stanford.edu
mailto:aparnak@stanford.edu
mailto:senwu@stanford.edu
mailto:cs166-spr1314-staff@lists.stanford.edu

http://cs166.stanford.edu

The Course Website

http://cs166.stanford.edu/

Required Reading

● Introduction to
Algorithms, Third
Edition by Cormen,
Leiserson, Rivest, and
Stein.

● You'll want the third
edition for this
course.

● Available in the
bookstore; several
copies on hold at the
Engineering Library.

Prerequisites

● CS161 (Design and Analysis of Algorithms)
● We'll assume familiarity with asymptotic notation,

correctness proofs, algorithmic strategies (e.g.
divide-and-conquer), classical algorithms,
recurrence relations, etc.

● CS107 (Computer Organization and Systems)
● We'll assume comfort working from the

command-line, designing and testing nontrivial
programs, and manipulating bitwise representations
of data. You should have some knowledge of the
memory hierarchy.

● Not sure whether you're in the right place? Please feel
free to ask!

Grading Policies

50% Assignments
25% Midterm
25% Final Project

Grading Policies

Axess: “Enrollment Limited”

● Because this is a new course, we're limiting
enrollment in CS166 to 100.

● If you are interested in taking the course, please
sign up on Axess as soon as possible so that we
can get an approximate headcount.

● If enrollment is under 100, then everything will
work as a normal course.

● If enrollment exceeds 100, we'll send out an
application. Sorry for the inconvenience!

Why Study Data Structures?

Why Study Data Structures?

● Explore the intersection between
theory and practice.

● Learn new approaches to modeling
and solving problems.

● Expand your sense of what can be
done efficiently.

Range Minimum Queries

41 59 26 5331 41 59 26 53 58 97 93

The RMQ Problem

● The Range Minimum Query (RMQ)
problem is the following:

Given a fixed array A and two indices
i ≤ j, what is the smallest element out of

A[i], A[i + 1], …, A[j – 1], A[j]?

31 58 97 93

A Trivial Solution

● There's a simple O(n)-time algorithm for
evaluating RMQA(i, j): just iterate across the
elements between i and j, inclusive, and take
the minimum!

● Why is this problem at all algorithmically
interesting?

● Suppose that the array A is fixed and we'll
make k queries on it.

● Can we do better than the naïve algorithm?

An Observation

● In an array of length n, there are only Θ(n2) possible
queries.

● Why?

5 subarrays of
length 1

4 subarrays of
length 2

3 subarrays of
length 3

2 subarrays of
length 4

1 subarray of
length 5

A Different Approach

● There are only Θ(n2) possible RMQs in an array of
length n.

● If we precompute all of them, we can answer RMQ in
time O(1) per query.

16 18 33 98

0 1 2 3

18

0 1 2 3

0

1

2

3

Building the Table

● One simple approach: for each entry in
the table, iterate over the range in
question and find the minimum value.

● How efficient is this?
● Number of entries: Θ(n2).
● Time to evaluate each entry: O(n).
● Time required: O(n3).

● The runtime is O(n3) using this approach.
Is it also Θ(n3)?

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

Each entry in yellow requires at
least n / 2 = Θ(n) work to evaluate.

There are roughly n2 / 8 = Θ(n2)
entries here.

Total work required: Θ(n3)

Each entry in yellow requires at
least n / 2 = Θ(n) work to evaluate.

There are roughly n2 / 8 = Θ(n2)
entries here.

Total work required: Θ(n3)

18

16

18 18

33

18

33

16 1616

33

98

33

98

1818

1616 ★

A Different Approach

● Naïvely precomputing the table is inefficient.

● Can we do better?

● Claim: Can precompute all subarrays in time Θ(n2)
using dynamic programming.

16 18 33 98

0 1 2 3

0 1 2 3

0

1

2

3

Some Notation

● We'll say that an RMQ data structure has time
complexity ⟨p(n), q(n)⟩ if
● preprocessing takes time at most p(n) and
● queries take time at most q(n).

● We now have two RMQ data structures:
● ⟨O(1), O(n)⟩ with no preprocessing.
● ⟨O(n2), O(1)⟩ with full preprocessing.

● These are two extremes on a curve of tradeoffs:
no preprocessing versus full preprocessing.

● Question: Is there a “golden mean” between
these extremes?

Another Approach: Block Decomposition

26 23 62

26 53 58 97 93 23 84 62 6426 53 58 97 93 23 84 62 64

26 23 62

33 8341 59

31 27

31 41 59 33 83 2731 27

A Block-Based Approach

● Split the input into O(n / b) blocks of
some “block size” b.
● Here, b = 3.

● Compute the minimum value in each
block.

31 27

Analyzing the Approach

● Let's analyze this approach in terms of n and b.
● Preprocessing time:

● O(b) work on O(n / b) blocks to find minimums.
● Total work: O(n).

● Time to query RMQA(i, j):

● O(1) work to find block indices (divide by block size).
● O(b) work to scan inside i and j's blocks.
● O(n / b) work looking at block minimums between i and j.
● Total work: O(b + n / b).

26 23 62

26 53 58 97 93 23 84 62 6426 53 58 97 93 23 84 62 64

26 23 62

33 8341 59

31 27

31 41 59 33 83 2731 27

31 27

Intuiting O(b + n / b)

● As b increases:
● The b term rises (more elements to scan within

each block).
● The n / b term drops (fewer blocks to look at).

● As b decreases:
● The b term drops (fewer elements to scan within

a block).
● The n / b term rises (more blocks to look at).

● Is there an optimal choice of b given these
constraints?

Optimizing b

● What choice of b minimizes b + n / b?

● Start by taking the derivative:

● Setting the derivative to zero:

● Asymptotically optimal runtime is when b = n1/2.

● In that case, the runtime is

O(b + n / b) = O(n1/2 + n / n1/2) = O(n1/2 + n1/2) = O(n1/2)

d
db

(b+n/b) = 1−
n
b2

1−n/b2 = 0
1 = n/b2

b2 = n
b = √n

Summary of Approaches

● Three solutions so far:
● No preprocessing: ⟨O(1), O(n)⟩.
● Full preprocessing: ⟨O(n2), O(1)⟩.
● Block partition: ⟨O(n), O(n1/2)⟩.

● Modest preprocessing yields modest
performance increases.

● Question: Can we do better?

A Second Approach: Sparse Tables

An Intuition

● The ⟨O(n2), O(1)⟩ solution gives fast
queries because every range we might
look up has already been precomputed.

● This solution is slow overall because we
have to compute the minimum of every
possible range.

● Question: Can we still get O(1) queries
without preprocessing all possible
ranges?

31 31 31 26

41 41 26 26

59 26 26 26 ★

26 26 26 26

53 53 53 53

58 58 58

97 93

93

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

31

0 1 2 3 4 5 6 7

41 59 26 53 58 97 93

An Observation

The Intuition

● It's still possible to answer any query in time O(1)
without precomputing RMQ over all ranges.

● If we precompute the answers over too many
ranges, the preprocessing time will be too large.

● If we precompute the answers over too few ranges,
the query time won't be O(1).

● Goal: Precompute RMQ over a set of ranges such
that

● There are o(n2) total ranges, but
● there are enough ranges to support O(1) query

times.

Some Observations

The Approach

● For each index i, compute RMQ for ranges
starting at i of size 1, 2, 4, 8, 16, …, 2k as long
as they fit in the array.
● Gives both large and small ranges starting at

any point in the array.
● Only O(log n) ranges computed for each array

element.
● Total number of ranges: O(n log n).

● Claim: Any range in the array can be formed
as the union of two of these ranges.

Creating Ranges

18

16

16

Creating Ranges

7

4

4

Doing a Query

● To answer RMQA(i, j):

● Find the largest k such that 2k ≤ j – i + 1.
– With the right preprocessing, this can be done in

time O(1); you'll figure out how in the problem
set!

● The range [i, j] can be formed as the overlap
of the ranges [i, i + 2k – 1] and [j – 2k + 1, j].

● Each range can be looked up in time O(1).
● Total time: O(1).

2626

31

41

59

4141

59

41

31 3131

53

26

58

97

93

53

26

58

97

93

★

Precomputing the Ranges

● There are O(n log n) ranges to precompute.

● Using dynamic programming, we can compute
all of them in time O(n log n).

31 41 59 26 53 58 97 93

26

53

58

93

0

1

2

3

4

5

6

7
0 1 2 3 4 5 6 7

20 21 22 23

Sparse Tables

● This data structure is called a sparse
table.

● Gives an ⟨O(n log n), O(1)⟩ solution to
RMQ.

● Asymptotically better than precomputing
all possible ranges!

The Story So Far

● We now have the following solutions for
RMQ:
● Precompute all: ⟨O(n2), O(1)⟩.
● Precompute none: ⟨O(1), O(n)⟩.
● Blocking: ⟨O(n), O(n1/2)⟩.
● Sparse table: ⟨O(n log n), O(1)⟩.

● Can we do better?

A Third Approach: Hybrid Strategies

Blocking Revisited

31 26 23 62 27

31 41 59 26 53 58 97 93 23 84 62 64 33 83 2731 41 59 26 53 58 97 93 23 84 62 64 33 83 27

31 26 23 62 27

Blocking Revisited

31 26 23 62 27

31 41 59 26 53 58 97 93 23 84 62 64 33 83 2731 41 59 26 53 58 97 93 23 84 62 64 33 83 27

31 26 23 62 27

This is just RMQ on
the block minimums!

This is just RMQ on
the block minimums!

Blocking Revisited

31 26 23 62 27

31 41 59 26 53 58 97 93 23 84 62 64 33 83 2731 41 59 26 53 58 97 93 23 84 62 64 33 83 27

31 26 23 62 27

This is just RMQ
inside the blocks!

This is just RMQ
inside the blocks!

The Setup

● Here's a new possible route for solving RMQ:
● Split the input into blocks of some block size b.
● For each of the O(n / b) blocks, compute the

minimum.
● Construct an RMQ structure on the block

minimums.
● Construct RMQ structures on each block.
● Combine the RMQ answers to solve RMQ overall.

● This approach of segmenting a structure into a
high-level structure and many low-level structures
is sometimes called a macro/micro
decomposition.

Combinations and Permutations

● The macro/micro decomposition isn't a single
data structure; it's a framework for data
structures.

● We get to choose
● the block size,
● which RMQ structure to use on top, and
● which RMQ structure to use for the blocks.

● Summary and block RMQ structures don't have
to be the same type of RMQ data structure – we
can combine different structures together to
get different results.

The Framework

● Suppose we use a ⟨p₁(n), q₁(n)⟩-time RMQ solution
for the block minimums and a ⟨p₂(n), q₂(n)⟩-time
RMQ solution within each block.

● Let the block size be b.

● In the hybrid structure, the preprocessing time is

O(n + p₁(n / b) + (n / b) p₂(b))

● The query time is

O(q₁(n / b) + q₂(b))

31 26 23 62 27

31 41 59 26 53 58 97 93 23 84 62 64 33 83 2731 41 59 26 53 58 97 93 23 84 62 64 33 83 27

31 26 23 62 27

A Sanity Check

● The ⟨O(n), O(n1/2)⟩ block-based structure from earlier uses
this framework with the ⟨O(1), O(n)⟩ no-preprocessing
RMQ structure and b = n1/2.

● According to our formulas, the preprocessing time should
be

 = = O(n + p₁(n / b) + (n / b) p₂(b))
 = = O(n + 1 + n / b)
 = == O(n)

● The query time should be

 = == O(q₁(n / b) + q₂(b))
 = == O(n / b + b)
 = == O(n1/2)

● Looks good so far!

For Reference

p₁(n) = 1
q₁(n) = n

p₂(n) = 1
q₂(n) = n

b = n1/2

For Reference

p₁(n) = 1
q₁(n) = n

p₂(n) = 1
q₂(n) = n

b = n1/2

For Reference

p₁(n) = 1
q₁(n) = n

p₂(n) = 1
q₂(n) = n

b = n1/2

For Reference

p₁(n) = 1
q₁(n) = n

p₂(n) = 1
q₂(n) = n

b = n1/2

An Observation

● A sparse table takes time O(n log n) to construct
on an array of n elements.

● With block size b, there are O(n / b) total blocks.

● Time to construct a sparse table over the block
minimums: O((n / b) log (n / b)).

● Since log (n / b) = O(log n), the time to build the
sparse table is at most O((n / b) log n).

● Cute trick: If b = Θ(log n), the time to construct a
sparse table over the minimums is

O((n / b) log n) = O((n / log n) log n) = O(n)

One Possible Hybrid

● Set the block size to log n.

● Use a sparse table for the top-level structure.

● Use the “no preprocessing” structure for each block.

● Preprocessing time:

 = O(n + p₁(n / b) + (n / b) p₂(b))
 = O(n + n + n / log n)
 = O(n)

● Query time:

 = O(q₁(n / b) + q₂(b))
 = O(1 + log n)
 = O(log n)

● An ⟨O(n), O(log n)⟩ solution!

For Reference

p₁(n) = n log n
q₁(n) = 1

p₂(n) = 1
q₂(n) = n

b = log n

For Reference

p₁(n) = n log n
q₁(n) = 1

p₂(n) = 1
q₂(n) = n

b = log n

Another Hybrid
● Let's suppose we use the ⟨O(n log n), O(1)⟩ sparse table

for both the top and bottom RMQ structures with a
block size of log n.

● The preprocessing time is

 = O(n + p₁(n / b) + (n / b) p₂(b))
 = O(n + n + (n / log n) b log b)
 = O(n + (n / log n) log n log log n)

= O(n log log n)

● The query time is

 = O(q₁(n / b) + q₂(b))
 = O(1)

● We have an ⟨O(n log log n), O(1)⟩
solution to RMQ!

For Reference

p₁(n) = n log n
q₁(n) = 1

p₂(n) = n log n
q₂(n) = 1

b = log n

For Reference

p₁(n) = n log n
q₁(n) = 1

p₂(n) = n log n
q₂(n) = 1

b = log n

One Last Hybrid
● Suppose we use a sparse table for the top structure

and the ⟨O(n), O(log n)⟩ solution for the bottom
structure. Let's choose b = log n.

● The preprocessing time is

 = O(n + p₁(n / b) + (n / b) p₂(b))
 = O(n + n + (n / log n) b)
 = O(n + n + (n / log n) log n)

= O(n)

● The query time is

 = O(q₁(n / b) + q₂(b))
 = O(1 + log log n)
 = O(log log n)

● We have an ⟨O(n), O(log log n)⟩
solution to RMQ!

For Reference

p₁(n) = n log n
q₁(n) = 1

p₂(n) = n
q₂(n) = log n

b = log n

For Reference

p₁(n) = n log n
q₁(n) = 1

p₂(n) = n
q₂(n) = log n

b = log n

Where We Stand

● We've seen a bunch of RMQ structures
today:
● No preprocessing: ⟨O(1), O(n)⟩
● Full preprocessing: ⟨O(n2), O(1)⟩
● Block partition: ⟨O(n), O(n1/2)⟩
● Sparse table: ⟨O(n log n), O(1)⟩
● Hybrid 1: ⟨O(n), O(log n)⟩
● Hybrid 2: ⟨O(n log log n), O(1)⟩
● Hybrid 3: ⟨O(n), O(log log n)⟩

Is there an ⟨O(n), O(1)⟩ solution to RMQ?

Yes!

Next Time

● Cartesian Trees
● A data structure closely related to RMQ.

● The Method of Four Russians
● A technique for shaving off log factors.

● The Fischer-Heun Structure
● A deceptively simple, asymptotically optimal

RMQ structure.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52

