
  

Welcome to CS166!

● Course information handout available up 
front.

● Today:
● Course overview.
● Why study data structures?
● The range minimum query problem.
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Required Reading

● Introduction to 
Algorithms, Third 
Edition by Cormen, 
Leiserson, Rivest, and 
Stein.

● You'll want the third 
edition for this 
course.

● Available in the 
bookstore; several 
copies on hold at the 
Engineering Library.



  

Prerequisites

● CS161 (Design and Analysis of Algorithms)
● We'll assume familiarity with asymptotic notation, 

correctness proofs, algorithmic strategies (e.g. 
divide-and-conquer), classical algorithms, 
recurrence relations, etc.

● CS107 (Computer Organization and Systems)
● We'll assume comfort working from the 

command-line, designing and testing nontrivial 
programs, and manipulating bitwise representations 
of data. You should have some knowledge of the 
memory hierarchy.

● Not sure whether you're in the right place? Please feel 
free to ask!



  

Grading Policies



  

50% Assignments
25% Midterm
25% Final Project

Grading Policies



  

Axess: “Enrollment Limited”

● Because this is a new course, we're limiting 
enrollment in CS166 to 100.

● If you are interested in taking the course, please 
sign up on Axess as soon as possible so that we 
can get an approximate headcount.

● If enrollment is under 100, then everything will 
work as a normal course.

● If enrollment exceeds 100, we'll send out an 
application. Sorry for the inconvenience!



  

Why Study Data Structures?



  

Why Study Data Structures?

● Explore the intersection between 
theory and practice.

● Learn new approaches to modeling 
and solving problems.

● Expand your sense of what can be 
done efficiently.



  

Range Minimum Queries
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The RMQ Problem

● The Range Minimum Query (RMQ) 
problem is the following:

Given a fixed array A and two indices 
i ≤ j, what is the smallest element out of 

A[i], A[i + 1], …, A[j – 1], A[j]?

31 58 97 93



  

A Trivial Solution

● There's a simple O(n)-time algorithm for 
evaluating RMQA(i, j): just iterate across the 
elements between i and j, inclusive, and take 
the minimum!

● Why is this problem at all algorithmically 
interesting?

● Suppose that the array A is fixed and we'll 
make k queries on it.

● Can we do better than the naïve algorithm?



  

An Observation

● In an array of length n, there are only Θ(n2) possible 
queries.

● Why?

5 subarrays of 
length 1

4 subarrays of 
length 2

3 subarrays of 
length 3

2 subarrays of 
length 4

1 subarray of 
length 5



  

A Different Approach

● There are only Θ(n2) possible RMQs in an array of 
length n.

● If we precompute all of them, we can answer RMQ in 
time O(1) per query.
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Building the Table

● One simple approach: for each entry in 
the table, iterate over the range in 
question and find the minimum value.

● How efficient is this?
● Number of entries: Θ(n2).
● Time to evaluate each entry: O(n).
● Time required: O(n3).

● The runtime is O(n3) using this approach. 
Is it also Θ(n3)?
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Each entry in yellow requires at 
least n / 2 = Θ(n) work to evaluate.

There are roughly n2 / 8 = Θ(n2) 
entries here.

Total work required: Θ(n3)

Each entry in yellow requires at 
least n / 2 = Θ(n) work to evaluate.

There are roughly n2 / 8 = Θ(n2) 
entries here.

Total work required: Θ(n3)
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A Different Approach

● Naïvely precomputing the table is inefficient.

● Can we do better?

● Claim: Can precompute all subarrays in time Θ(n2) 
using dynamic programming.
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Some Notation

● We'll say that an RMQ data structure has time 
complexity ⟨p(n), q(n)⟩ if
● preprocessing takes time at most p(n) and
● queries take time at most q(n).

● We now have two RMQ data structures:
● ⟨O(1), O(n)⟩ with no preprocessing.
● ⟨O(n2), O(1)⟩ with full preprocessing.

● These are two extremes on a curve of tradeoffs: 
no preprocessing versus full preprocessing.

● Question: Is there a “golden mean” between 
these extremes?



  

Another Approach: Block Decomposition
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31 41 59 33 83 2731 27

A Block-Based Approach

● Split the input into O(n / b) blocks of 
some “block size” b.
● Here, b = 3.

● Compute the minimum value in each 
block.

31 27



  

Analyzing the Approach

● Let's analyze this approach in terms of n and b.
● Preprocessing time:

● O(b) work on O(n / b) blocks to find minimums.
● Total work: O(n).

● Time to query RMQA(i, j):

● O(1) work to find block indices (divide by block size).
● O(b) work to scan inside i and j's blocks.
● O(n / b) work looking at block minimums between i and j.
● Total work: O(b + n / b).
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Intuiting O(b + n / b)

● As b increases:
● The b term rises (more elements to scan within 

each block).
● The n / b term drops (fewer blocks to look at).

● As b decreases:
● The b term drops (fewer elements to scan within 

a block).
● The n / b term rises (more blocks to look at).

● Is there an optimal choice of b given these 
constraints?



  

Optimizing b

● What choice of b minimizes b + n / b?

● Start by taking the derivative:

● Setting the derivative to zero:

● Asymptotically optimal runtime is when b = n1/2.

● In that case, the runtime is

O(b + n / b) = O(n1/2 + n / n1/2) = O(n1/2 + n1/2) = O(n1/2)

d
db

(b+n/b) = 1−
n
b2

1−n/b2 = 0
1 = n/b2

b2 = n
b = √n



  

Summary of Approaches

● Three solutions so far:
● No preprocessing: ⟨O(1), O(n)⟩.
● Full preprocessing: ⟨O(n2), O(1)⟩.
● Block partition: ⟨O(n), O(n1/2)⟩.

● Modest preprocessing yields modest 
performance increases.

● Question: Can we do better?



  

A Second Approach: Sparse Tables



  

An Intuition

● The ⟨O(n2), O(1)⟩ solution gives fast 
queries because every range we might 
look up has already been precomputed.

● This solution is slow overall because we 
have to compute the minimum of every 
possible range.

● Question: Can we still get O(1) queries 
without preprocessing all possible 
ranges?
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An Observation



  

The Intuition

● It's still possible to answer any query in time O(1) 
without precomputing RMQ over all ranges.

● If we precompute the answers over too many 
ranges, the preprocessing time will be too large.

● If we precompute the answers over too few ranges, 
the query time won't be O(1).

● Goal: Precompute RMQ over a set of ranges such 
that

● There are o(n2) total ranges, but
● there are enough ranges to support O(1) query 

times.



  

Some Observations



  

The Approach

● For each index i, compute RMQ for ranges 
starting at i of size 1, 2, 4, 8, 16, …, 2k as long 
as they fit in the array.
● Gives both large and small ranges starting at 

any point in the array.
● Only O(log n) ranges computed for each array 

element.
● Total number of ranges: O(n log n).

● Claim: Any range in the array can be formed 
as the union of two of these ranges.



  

Creating Ranges
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Creating Ranges
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Doing a Query

● To answer RMQA(i, j):

● Find the largest k such that 2k ≤ j – i + 1.
– With the right preprocessing, this can be done in 

time O(1); you'll figure out how in the problem 
set!

● The range [i, j] can be formed as the overlap 
of the ranges [i, i + 2k – 1] and [j – 2k + 1, j].

● Each range can be looked up in time O(1).
● Total time: O(1).
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Precomputing the Ranges

● There are O(n log n) ranges to precompute.

● Using dynamic programming, we can compute 
all of them in time O(n log n).
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Sparse Tables

● This data structure is called a sparse 
table.

● Gives an ⟨O(n log n), O(1)⟩ solution to 
RMQ.

● Asymptotically better than precomputing 
all possible ranges!



  

The Story So Far

● We now have the following solutions for 
RMQ:
● Precompute all: ⟨O(n2), O(1)⟩.
● Precompute none: ⟨O(1), O(n)⟩.
● Blocking: ⟨O(n), O(n1/2)⟩.
● Sparse table: ⟨O(n log n), O(1)⟩.

● Can we do better?



  

A Third Approach: Hybrid Strategies



  

Blocking Revisited
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Blocking Revisited

31 26 23 62 27

31 41 59 26 53 58 97 93 23 84 62 64 33 83 2731 41 59 26 53 58 97 93 23 84 62 64 33 83 27

31 26 23 62 27

This is just RMQ on 
the block minimums!

This is just RMQ on 
the block minimums!



  

Blocking Revisited

31 26 23 62 27

31 41 59 26 53 58 97 93 23 84 62 64 33 83 2731 41 59 26 53 58 97 93 23 84 62 64 33 83 27

31 26 23 62 27

This is just RMQ 
inside the blocks!

This is just RMQ 
inside the blocks!



  

The Setup

● Here's a new possible route for solving RMQ:
● Split the input into blocks of some block size b.
● For each of the O(n / b) blocks, compute the 

minimum.
● Construct an RMQ structure on the block 

minimums.
● Construct RMQ structures on each block.
● Combine the RMQ answers to solve RMQ overall.

● This approach of segmenting a structure into a 
high-level structure and many low-level structures 
is sometimes called a macro/micro 
decomposition.



  

Combinations and Permutations

● The macro/micro decomposition isn't a single 
data structure; it's a framework for data 
structures.

● We get to choose
● the block size,
● which RMQ structure to use on top, and
● which RMQ structure to use for the blocks.

● Summary and block RMQ structures don't have 
to be the same type of RMQ data structure – we 
can combine different structures together to 
get different results.



  

The Framework

● Suppose we use a ⟨p₁(n), q₁(n)⟩-time RMQ solution 
for the block minimums and a ⟨p₂(n), q₂(n)⟩-time 
RMQ solution within each block.

● Let the block size be b.

● In the hybrid structure, the preprocessing time is

O(n + p₁(n / b) + (n / b) p₂(b))

● The query time is

O(q₁(n / b) + q₂(b))

31 26 23 62 27
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A Sanity Check

● The ⟨O(n), O(n1/2)⟩ block-based structure from earlier uses 
this framework with the ⟨O(1), O(n)⟩ no-preprocessing 
RMQ structure and b = n1/2.

● According to our formulas, the preprocessing time should 
be

    =   =  O(n + p₁(n / b) + (n / b) p₂(b))
    =    = O(n + 1 + n / b)
    =   == O(n)

● The query time should be

    =   == O(q₁(n / b) + q₂(b))
    =   == O(n / b + b)
    =   == O(n1/2)

● Looks good so far!
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An Observation

● A sparse table takes time O(n log n) to construct 
on an array of n elements.

● With block size b, there are O(n / b) total blocks.

● Time to construct a sparse table over the block 
minimums: O((n / b) log (n / b)).

● Since log (n / b) = O(log n), the time to build the 
sparse table is at most O((n / b) log n).

● Cute trick: If b = Θ(log n), the time to construct a 
sparse table over the minimums is

O((n / b) log n) = O((n / log n) log n) = O(n)



  

One Possible Hybrid

● Set the block size to log n.

● Use a sparse table for the top-level structure.

● Use the “no preprocessing” structure for each block.

● Preprocessing time:

   = O(n + p₁(n / b) + (n / b) p₂(b))
   = O(n + n + n / log n)
   = O(n)

● Query time:

   = O(q₁(n / b) + q₂(b))
   = O(1 + log n)
   = O(log n)

● An ⟨O(n), O(log n)⟩ solution!

For Reference
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Another Hybrid
● Let's suppose we use the ⟨O(n log n), O(1)⟩ sparse table 

for both the top and bottom RMQ structures with a 
block size of log n.

● The preprocessing time is

   = O(n + p₁(n / b) + (n / b) p₂(b))
   = O(n + n + (n / log n) b log b)
   = O(n + (n / log n) log n log log n)

= O(n log log n)

● The query time is

   = O(q₁(n / b) + q₂(b))
   = O(1)

● We have an ⟨O(n log log n), O(1)⟩
solution to RMQ!

For Reference
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One Last Hybrid
● Suppose we use a sparse table for the top structure 

and the ⟨O(n), O(log n)⟩ solution for the bottom 
structure. Let's choose b = log n.

● The preprocessing time is

   = O(n + p₁(n / b) + (n / b) p₂(b))
   = O(n + n + (n / log n) b)
   = O(n + n + (n / log n) log n)

= O(n)

● The query time is

   = O(q₁(n / b) + q₂(b))
   = O(1 + log log n)
   = O(log log n)

● We have an ⟨O(n), O(log log n)⟩
solution to RMQ!

For Reference
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Where We Stand

● We've seen a bunch of RMQ structures 
today:
● No preprocessing: ⟨O(1), O(n)⟩
● Full preprocessing: ⟨O(n2), O(1)⟩
● Block partition: ⟨O(n), O(n1/2)⟩ 
● Sparse table: ⟨O(n log n), O(1)⟩
● Hybrid 1: ⟨O(n), O(log n)⟩
● Hybrid 2: ⟨O(n log log n), O(1)⟩ 
● Hybrid 3: ⟨O(n), O(log log n)⟩



  

Is there an ⟨O(n), O(1)⟩ solution to RMQ?

Yes!



  

Next Time

● Cartesian Trees
● A data structure closely related to RMQ.

● The Method of Four Russians
● A technique for shaving off log factors.

● The Fischer-Heun Structure
● A deceptively simple, asymptotically optimal 

RMQ structure.
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