Welcome to CS166!

- Course information handout available up front.
- Today:
- Course overview.
- Why study data structures?
- The range minimum query problem.

Course Staff

Keith Schwarz (htiek@cs.stanford.edu)
Kyle Brogle (broglek@stanford.edu)
Daniel Hollingshead (dhollingshead@stanford.edu)
Nick Isaacs (nisaacs@stanford.edu)
Aparna Krishnan (aparnak@stanford.edu)
Sen Wu (senwu@stanford.edu)

Course Staff Mailing List: cs166-spr1314-staff@lists.stanford.edu

The Course Website

http://cs166.stanford.edu

Required Reading

- Introduction to Algorithms, Third Edition by Cormen, Leiserson, Rivest, and Stein.
- You'll want the third edition for this course.
- Available in the bookstore; several copies on hold at the Engineering Library.

Prerequisites

- CS161 (Design and Analysis of Algorithms)
- We'll assume familiarity with asymptotic notation, correctness proofs, algorithmic strategies (e.g. divide-and-conquer), classical algorithms, recurrence relations, etc.
- CS107 (Computer Organization and Systems)
- We'll assume comfort working from the command-line, designing and testing nontrivial programs, and manipulating bitwise representations of data. You should have some knowledge of the memory hierarchy.
- Not sure whether you're in the right place? Please feel free to ask!

Grading Policies

Grading Policies

■ 50\% Assignments
■ 25\% Midterm
\square 25\% Final Project

Axess: "Enrollment Limited"

- Because this is a new course, we're limiting enrollment in CS166 to 100.
- If you are interested in taking the course, please sign up on Axess as soon as possible so that we can get an approximate headcount.
- If enrollment is under 100, then everything will work as a normal course.
- If enrollment exceeds 100, we'll send out an application. Sorry for the inconvenience!

Why Study Data Structures?

Why Study Data Structures?

- Explore the intersection between theory and practice.
- Learn new approaches to modeling and solving problems.
- Expand your sense of what can be done efficiently.

Range Minimum Queries

The RMQ Problem

- The Range Minimum Query (RMQ) problem is the following:

Given a fixed array A and two indices $i \leq j$, what is the smallest element out of $\mathrm{A}[i], \mathrm{A}[i+1], \ldots, \mathrm{A}[j-1], \mathrm{A}[j]$?

A Trivial Solution

- There's a simple $O(n)$-time algorithm for evaluating $\mathrm{RMQ}_{\mathrm{A}}(i, j)$: just iterate across the elements between i and j, inclusive, and take the minimum!
- Why is this problem at all algorithmically interesting?
- Suppose that the array A is fixed and we'll make k queries on it.
- Can we do better than the naïve algorithm?

An Observation

- In an array of length n, there are only $\Theta\left(n^{2}\right)$ possible queries.
- Why?

1 subarray of length 5

2 subarrays of length 4

3 subarrays of length 3

4 subarrays of length 2

5 subarrays of length 1

A Different Approach

- There are only $\Theta\left(n^{2}\right)$ possible RMQs in an array of length n.
- If we precompute all of them, we can answer RMQ in time $O(1)$ per query.

Building the Table

- One simple approach: for each entry in the table, iterate over the range in question and find the minimum value.
- How efficient is this?
- Number of entries: $\Theta\left(n^{2}\right)$.
- Time to evaluate each entry: O(n).
- Time required: $\mathrm{O}\left(n^{3}\right)$.
- The runtime is $\mathrm{O}\left(n^{3}\right)$ using this approach. Is it also $\Theta\left(n^{3}\right)$?
$\begin{array}{llllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$

A Different Approach

- Naïvely precomputing the table is inefficient.
- Can we do better?
- Claim: Can precompute all subarrays in time $\Theta\left(n^{2}\right)$ using dynamic programming.

	0		1	2
3				
	16	16	16	\star
1		18	18	18
2			33	33
3				98

Some Notation

- We'll say that an RMQ data structure has time complexity $\langle\boldsymbol{p}(\boldsymbol{n}), \boldsymbol{q}(\boldsymbol{n})$) if
- preprocessing takes time at most $p(n)$ and
- queries take time at most $q(n)$.
- We now have two RMQ data structures:
- $\langle\mathrm{O}(1), \mathrm{O}(n)\rangle$ with no preprocessing.
- $\left\langle\mathrm{O}\left(n^{2}\right), \mathrm{O}(1)\right\rangle$ with full preprocessing.
- These are two extremes on a curve of tradeoffs: no preprocessing versus full preprocessing.
- Question: Is there a "golden mean" between these extremes?

Another Approach: Block Decomposition

A Block-Based Approach

- Split the input into $O(n / b)$ blocks of some "block size" b.
- Here, $b=3$.
- Compute the minimum value in each block.

31					26			23			62		27		
31	41	59	26	53	58	97	93	23	84	62	64	33	83		

Analyzing the Approach

- Let's analyze this approach in terms of n and b.
- Preprocessing time:
- $\mathrm{O}(b)$ work on $\mathrm{O}(n / b)$ blocks to find minimums.
- Total work: O(n).
- Time to query $\mathrm{RMQ}_{\mathrm{A}}(i, j)$:
- O(1) work to find block indices (divide by block size).
- $O(b)$ work to scan inside i and j 's blocks.
- $\mathrm{O}(n / b)$ work looking at block minimums between i and j.
- Total work: $\mathbf{O}(\boldsymbol{b}+\boldsymbol{n} / \boldsymbol{b})$.

31			26			23			62			27		
31	41	59	26	53	58	97	93	23	84	62	64	33	83	27

Intuiting $\mathrm{O}(\boldsymbol{b}+\boldsymbol{n} / \boldsymbol{b})$

- As b increases:
- The b term rises (more elements to scan within each block).
- The $\boldsymbol{n} / \boldsymbol{b}$ term drops (fewer blocks to look at).
- As b decreases:
- The b term drops (fewer elements to scan within a block).
- The $\boldsymbol{n} / \boldsymbol{b}$ term rises (more blocks to look at).
- Is there an optimal choice of b given these constraints?

Optimizing b

- What choice of b minimizes $b+n / b$?
- Start by taking the derivative:

$$
\frac{d}{d b}(b+n / b)=1-\frac{n}{b^{2}}
$$

- Setting the derivative to zero:

$$
\begin{array}{clc}
1-n / b^{2} & = & 0 \\
1 & =n / b^{2} \\
b^{2} & = & n \\
b & = & \sqrt{n}
\end{array}
$$

- Asymptotically optimal runtime is when $b=n^{1 / 2}$.
- In that case, the runtime is

$$
\mathrm{O}(b+n / b)=\mathrm{O}\left(n^{1 / 2}+n / n^{1 / 2}\right)=\mathrm{O}\left(n^{1 / 2}+n^{1 / 2}\right)=\mathbf{O}\left(\boldsymbol{n}^{1 / 2}\right)
$$

Summary of Approaches

- Three solutions so far:
- No preprocessing: $\langle\mathrm{O}(1), \mathrm{O}(n)\rangle$.
- Full preprocessing: $\left\langle\mathrm{O}\left(n^{2}\right), \mathrm{O}(1)\right\rangle$.
- Block partition: $\left\langle\mathrm{O}(n), \mathrm{O}\left(n^{1 / 2}\right)\right\rangle$.
- Modest preprocessing yields modest performance increases.
- Question: Can we do better?

A Second Approach: Sparse Tables

An Intuition

- The $\left\langle\mathrm{O}\left(n^{2}\right), \mathrm{O}(1)\right\rangle$ solution gives fast queries because every range we might look up has already been precomputed.
- This solution is slow overall because we have to compute the minimum of every possible range.
- Question: Can we still get O(1) queries without preprocessing all possible ranges?

An Observation

The Intuition

- It's still possible to answer any query in time O(1) without precomputing RMQ over all ranges.
- If we precompute the answers over too many ranges, the preprocessing time will be too large.
- If we precompute the answers over too few ranges, the query time won't be O(1).
- Goal: Precompute RMQ over a set of ranges such that
- There are $o\left(n^{2}\right)$ total ranges, but
- there are enough ranges to support $O(1)$ query times.

Some Observations

The Approach

- For each index i, compute RMQ for ranges starting at i of size $1,2,4,8,16, \ldots, 2^{k}$ as long as they fit in the array.
- Gives both large and small ranges starting at any point in the array.
- Only $\mathrm{O}(\log n)$ ranges computed for each array element.
- Total number of ranges: $O(n \log n)$.
- Claim: Any range in the array can be formed as the union of two of these ranges.

Creating Ranges

Creating Ranges

Doing a Query

- To answer $\mathrm{RMQ}_{\mathrm{A}}(i, j)$:
- Find the largest k such that $2^{k} \leq j-i+1$.
- With the right preprocessing, this can be done in time $\mathrm{O}(1)$; you'll figure out how in the problem set!
- The range $[i, j]$ can be formed as the overlap of the ranges $\left[i, i+2^{k}-1\right]$ and $\left[j-2^{k}+1, j\right]$.
- Each range can be looked up in time $O(1)$.
- Total time: O(1).

Precomputing the Ranges

- There are $\mathrm{O}(n \log n)$ ranges to precompute.
- Using dynamic programming, we can compute all of them in time $O(n \log n)$.

31	41	59	26	53	58	97	93
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$

Sparse Tables

- This data structure is called a sparse table.
- Gives an $\langle\mathbf{O}(\boldsymbol{n} \log \boldsymbol{n}), \mathbf{O}(\mathbf{1})\rangle$ solution to RMQ.
- Asymptotically better than precomputing all possible ranges!

The Story So Far

- We now have the following solutions for RMQ:
- Precompute all: $\left\langle\mathrm{O}\left(n^{2}\right), \mathrm{O}(1)\right\rangle$.
- Precompute none: $\langle\mathrm{O}(1), \mathrm{O}(n)\rangle$.
- Blocking: $\left\langle\mathrm{O}(n), \mathrm{O}\left(n^{1 / 2}\right)\right\rangle$.
- Sparse table: $\langle\mathrm{O}(n \log n), \mathrm{O}(1)\rangle$.
- Can we do better?

A Third Approach: Hybrid Strategies

Blocking Revisited

Blocking Revisited

This is just RMQ on the block minimums!

Blocking Revisited

This is just RMQ inside the blocks!

The Setup

- Here's a new possible route for solving RMQ:
- Split the input into blocks of some block size b.
- For each of the $\mathrm{O}(n / b)$ blocks, compute the minimum.
- Construct an RMQ structure on the block minimums.
- Construct RMQ structures on each block.
- Combine the RMQ answers to solve RMQ overall.
- This approach of segmenting a structure into a high-level structure and many low-level structures is sometimes called a macro/micro decomposition.

Combinations and Permutations

- The macro/micro decomposition isn't a single data structure; it's a framework for data structures.
- We get to choose
- the block size,
- which RMQ structure to use on top, and
- which RMQ structure to use for the blocks.
- Summary and block RMQ structures don't have to be the same type of RMQ data structure - we can combine different structures together to get different results.

The Framework

- Suppose we use a $\left\langle p_{1}(n), q_{1}(n)\right\rangle$-time RMQ solution for the block minimums and a $\left\langle p_{2}(n), q_{2}(n)\right\rangle$-time RMQ solution within each block.
- Let the block size be b.
- In the hybrid structure, the preprocessing time is

$$
O\left(n+p_{1}(n / b)+(n / b) p_{2}(b)\right)
$$

- The query time is

$$
\mathbf{O}\left(q_{1}(n / b)+q_{2}(b)\right)
$$

31			26			23			62			27		
31			26	53	58	97	93	23	84	62	64	33	83	27

A Sanity Check

- The $\left\langle\mathrm{O}(n), \mathrm{O}\left(n^{1 / 2}\right)\right\rangle$ block-based structure from earlier uses this framework with the $\langle\mathrm{O}(1), \mathrm{O}(n)\rangle$ no-preprocessing RMQ structure and $b=n^{1 / 2}$.
- According to our formulas, the preprocessing time should be

$$
\begin{aligned}
& \mathrm{O}\left(n+p_{1}(n / b)+(n / b) p_{2}(b)\right) \\
= & \mathrm{O}(n+1+n / b) \\
= & \mathbf{O}(\boldsymbol{n})
\end{aligned}
$$

- The query time should be

$$
\begin{aligned}
& \mathrm{O}\left(q_{1}(n / b)+q_{2}(b)\right) \\
= & \mathrm{O}(n / b+b) \\
= & \mathbf{O}\left(\boldsymbol{n}^{1 / 2}\right)
\end{aligned}
$$

- Looks good so far!

For Reference

$$
\begin{gathered}
p_{1}(n)=1 \\
q_{1}(n)=n \\
p_{2}(n)=1 \\
q_{2}(n)=n \\
b=n^{1 / 2}
\end{gathered}
$$

An Observation

- A sparse table takes time $\mathrm{O}(n \log n)$ to construct on an array of n elements.
- With block size b, there are $\mathrm{O}(n / b)$ total blocks.
- Time to construct a sparse table over the block minimums: $\mathrm{O}((n / b) \log (n / b))$.
- Since $\log (n / b)=O(\log n)$, the time to build the sparse table is at most $\mathrm{O}((n / b) \log n)$.
- Cute trick: If $b=\Theta(\log n)$, the time to construct a sparse table over the minimums is

$$
\mathrm{O}((n / b) \log n)=\mathrm{O}((n / \log n) \log n)=\mathbf{O}(\boldsymbol{n})
$$

One Possible Hybrid

- Set the block size to $\log n$.
- Use a sparse table for the top-level structure.
- Use the "no preprocessing" structure for each block.
- Preprocessing time:

$$
\begin{aligned}
& \mathrm{O}\left(n+p_{1}(n / b)+(n / b)\right. \\
= & \mathrm{O}(n+n+n+n)) \\
= & \mathbf{O}(\boldsymbol{n})
\end{aligned}
$$

- Query time:

$$
\begin{aligned}
& \mathrm{O}\left(q_{1}(n / b)+q_{2}(b)\right) \\
= & \mathrm{O}(1+\log n) \\
= & \mathbf{O}(\log \boldsymbol{n})
\end{aligned}
$$

- An $\langle\mathbf{O}(\boldsymbol{n}), \mathbf{O}(\boldsymbol{\operatorname { l o g }} \boldsymbol{n})\rangle$ solution!

For Reference

$$
\begin{aligned}
& p_{1}(n)=n \log n \\
& q_{1}(n)=1 \\
& p_{2}(n)=1 \\
& q_{2}(n)=n \\
& b=\log n
\end{aligned}
$$

Another Hybrid

- Let's suppose we use the $\langle\mathrm{O}(n \log n), \mathrm{O}(1)\rangle$ sparse table for both the top and bottom RMQ structures with a block size of $\log n$.
- The preprocessing time is

$$
\begin{aligned}
& \mathrm{O}\left(n+p_{1}(n / b)+(n / b) p_{2}(b)\right) \\
= & \mathrm{O}(n+n+(n / \log n) b \log b) \\
= & \mathrm{O}(n+(n / \log n) \log n \log \log n) \\
= & \mathbf{O}(\boldsymbol{n} \log \log \boldsymbol{n}) \quad \text { For }
\end{aligned}
$$

- The query time is

$$
\begin{aligned}
& \mathrm{O}\left(q_{1}(n / b)+q_{2}(b)\right) \\
= & \mathbf{O}(\mathbf{1})
\end{aligned}
$$

- We have an 〈O(n $\log \log n), \mathbf{O (1) \rangle}$ solution to RMQ!

$$
\begin{aligned}
& p_{1}(n)=n \log n \\
& q_{1}(n)=1 \\
& p_{2}(n)=n \log n \\
& q_{2}(n)=1 \\
& b=\log n
\end{aligned}
$$

One Last Hybrid

- Suppose we use a sparse table for the top structure and the $\langle\mathrm{O}(n), \mathrm{O}(\log n)\rangle$ solution for the bottom structure. Let's choose $b=\log n$.
- The preprocessing time is

$$
\begin{aligned}
& \mathrm{O}\left(n+p_{1}(n / b)+(n / b) p_{2}(b)\right) \\
= & \mathrm{O}(n+n+(n / \log n) b) \\
= & \mathrm{O}(n+n+(n / \log n) \log n) \\
= & \mathbf{O}(\boldsymbol{n})
\end{aligned}
$$

- The query time is

$$
\begin{aligned}
& \mathrm{O}\left(q_{1}(n / b)+q_{2}(b)\right) \\
= & \mathrm{O}(1+\log \log n) \\
= & \mathbf{O}(\log \log \boldsymbol{n})
\end{aligned}
$$

- We have an $\langle\mathbf{O}(\boldsymbol{n}), \mathbf{O}(\boldsymbol{\operatorname { l o g }} \log \boldsymbol{n})\rangle$ solution to RMQ!

For Reference

$$
\begin{aligned}
& p_{1}(n)=n \log n \\
& q_{1}(n)=1 \\
& p_{2}(n)=n \\
& q_{2}(n)=\log n \\
& b=\log n
\end{aligned}
$$

Where We Stand

- We've seen a bunch of RMQ structures today:
- No preprocessing: $\langle\mathrm{O}(1), \mathrm{O}(n)\rangle$
- Full preprocessing: $\left\langle\mathrm{O}\left(n^{2}\right), \mathrm{O}(1)\right\rangle$
- Block partition: $\left\langle\mathrm{O}(n), \mathrm{O}\left(n^{1 / 2}\right)\right\rangle$
- Sparse table: $\langle\mathrm{O}(n \log n), \mathrm{O}(1)\rangle$
- Hybrid 1: $\langle\mathrm{O}(n), \mathrm{O}(\log n)\rangle$
- Hybrid 2: $\langle\mathrm{O}(n \log \log n), \mathrm{O}(1)\rangle$
- Hybrid 3: 〈O(n), O(log log $n)\rangle$

Is there an $\langle\mathrm{O}(n), \mathrm{O}(1)\rangle$ solution to RMQ ?

Yes!

Next Time

- Cartesian Trees
- A data structure closely related to RMQ.
- The Method of Four Russians
- A technique for shaving off log factors.
- The Fischer-Heun Structure
- A deceptively simple, asymptotically optimal RMQ structure.

