

Balanced Trees
Part One

Balanced Trees

● Balanced trees are surprisingly versatile data
structures.

● Many programming languages ship with a balanced
tree library.
● C++: std::map / std::set
● Java: TreeMap / TreeSet
● Haskell: Data.Map

● Many advanced data structures are layered on top
of balanced trees.
● Euler tour trees (next week)
● Dynamic graphs (later this quarter)
● y-Fast Tries

Outline for This Week

● B-Trees
● A simple type of balanced tree developed for

block storage.

● Red/Black Trees
● The canonical balanced binary search tree.

● Augmented Search Trees
● Adding extra information to balanced trees to

supercharge the data structure.

● Two Advanced Operations
● The split and join operations.

Outline for Today

● BST Review
● Refresher on basic BST concepts and runtimes.

● Overview of Red/Black Trees
● What we're building toward.

● B-Trees
● A simple balanced tree in depth.

● Intuiting Red/Black Trees
● A much better feel for red/black trees.

A Quick BST Review

Binary Search Trees

● A binary search tree is a binary tree with the
following properties:

● Each node in the BST stores a key, and optionally,
some auxiliary information.

● The key of every node in a BST is strictly greater
than all keys to its left and strictly smaller than all
keys to its right.

● The height of a binary search tree is the length of
the longest path from the root to a leaf, measured
in the number of edges.

● A tree with one node has height 0.
● A tree with no nodes has height -1, by convention.

Inserting into a BST

96

137

42

57

271

161 314

Inserting into a BST

96

137

42

57

271

161 314

166

Deleting from a BST

96

137

42

271

161 314

166

Case 1: If the node has
just no children, just
remove it.

Case 1: If the node has
just no children, just
remove it.

Deleting from a BST

137

42 271

161 314

166

Case 2: If the node has
just one child, remove
it and replace it with
its child.

Case 2: If the node has
just one child, remove
it and replace it with
its child.

Deleting from a BST

161

42 271

314166

Case 3: If the node has two
children, find its inorder
successor (which has zero or
one child), replace the node's
key with its successor's key,
then delete its successor.

Case 3: If the node has two
children, find its inorder
successor (which has zero or
one child), replace the node's
key with its successor's key,
then delete its successor.

Runtime Analysis

● The time complexity of all these operations
is O(h), where h is the height of the tree.
● Represents the longest path we can take.

● In the best case, h = O(log n) and all
operations take time O(log n).

● In the worst case, h = Θ(n) and some
operations will take time Θ(n).

● Challenge: How do you efficiently keep the
height of a tree low?

A Glimpse of Red/Black Trees

Red/Black Trees

● A red/black tree is a
BST with the following
properties:
● Every node is either

red or black.
● The root is black.
● No red node has a red

child.
● Every root-null path in

the tree passes
through the same
number of black nodes.

110

107

106

166

161 261

140

Red/Black Trees

● A red/black tree is a
BST with the following
properties:
● Every node is either

red or black.
● The root is black.
● No red node has a red

child.
● Every root-null path in

the tree passes
through the same
number of black nodes.

53

31

59 97

58

26 41

Red/Black Trees

● A red/black tree is a
BST with the following
properties:
● Every node is either

red or black.
● The root is black.
● No red node has a red

child.
● Every root-null path in

the tree passes
through the same
number of black nodes.

5

2

8

7

1 4

Red/Black Trees

● Theorem: Any red/black tree with n
nodes has height O(log n).
● We could prove this now, but there's a much

simpler proof of this we'll see later on.

● Given a fixed red/black tree, lookups can
be done in time O(log n).

Mutating Red/Black Trees

17

3 11 23 37

7 31

13
What are we

supposed to do with
this new node?

What are we
supposed to do with

this new node?

Mutating Red/Black Trees

17

3 11 23

7 37

How do we fix up the
black-height property?

How do we fix up the
black-height property?

Fixing Up Red/Black Trees

● The Good News: After doing an insertion or
deletion, can locally modify a red/black tree in
time O(log n) to fix up the red/black properties.

● The Bad News: There are a lot of cases to
consider and they're not trivial.

● Some questions:
● How do you memorize / remember all the

different types of rotations?
● How on earth did anyone come up with

red/black trees in the first place?

B-Trees

Generalizing BSTs

● In a binary search tree, each node stores a single key.

● That key splits the “key space” into two pieces, and
each subtree stores the keys in those halves.

2

-1 4

-2 0 63

Values less than two Values greater than two

Generalizing BSTs

● In a multiway search tree, each node stores an
arbitrary number of keys in sorted order.

● In a node with k keys splits the “key space” into
k + 1 pieces, and each subtree stores the keys in
those pieces.

2

43

5 19 31 71 83

3 7 11 13 17 23 29 37 41 47 53 67 73 79 89 9759 61

One Solution: B-Trees

● A B-tree of order b is a multiway search tree with the
following properties:

● All leaf nodes are stored at the same depth.

● All non-root nodes have between b – 1 and 2b – 1 keys.

● The root has at most 2b – 1 keys.

2

43

5 19 31 71 83

3 7 11 13 17 23 29 37 41 47 53 67 73 79 89 9759 61

B-tree of
order 3

B-tree of
order 3

One Solution: B-Trees
● A B-tree of order b is a multiway search tree with the following

properties:

● All leaf nodes are stored at the same depth.

● All non-root nodes have between b – 1 and 2b – 1 keys.

● The root has at most 2b – 1 keys.

B-tree of
order 7

B-tree of
order 7

1 3 6 10 11 14 19 20 21 23 24 28 29 33 44 48 57 62 77 91

16 36

One Solution: B-Trees
● A B-tree of order b is a multiway search tree with the following

properties:

● All leaf nodes are stored at the same depth.

● All non-root nodes have between b – 1 and 2b – 1 keys.

● The root has at most 2b – 1 keys.

B-tree of order 2

(2-3-4 Tree)

B-tree of order 2

(2-3-4 Tree)

1 2 4 6 7 8 11 12 14 15 17 18 19 21 2 24 26

3 9 10 16 20 25

5 13 23

The Tradeoff

● Because B-tree nodes can have multiple
keys, we have to spend more work inside
each node.

● Insertion and deletion can be expensive –
for large b, might have to shuffle
thousands or millions of keys over!

● Why would you use a B-tree?

Memory Tradeoffs

● There is an enormous tradeoff between speed and size
in memory.

● SRAM (the stuff registers are made of) is fast but very
expensive:

● Can keep up with processor speeds in the GHz.

● As of 2010, cost is $5/MB.

● Good luck buying 1TB of the stuff!

● Hard disks are cheap but very slow:

● As of 2014, you can buy a 2TB hard drive for about $80.

● As of 2014, good disk seek times are measured in ms
(about two to four million times slower than a processor
cycle!)

The Memory Hierarchy

● Idea: Try to get the best of all worlds by
using multiple types of memory.

256B - 8KB

16KB – 64KB

1MB - 4MB

4GB – 256GB

500GB+

HUGE

0.25 – 1ns

1ns – 5ns

5ns – 25ns

25ns – 100ns

3 – 10ms

10 – 2000ms

L2 Cache

Main Memory

Hard Disk

Network (The Cloud)

Registers

L1 Cache

Why B-Trees?

● Because B-trees have a huge branching factor,
they're great for on-disk storage.

● Disk block reads/writes are glacially slow.
● Only have to read a few disk pages.
● Extra work scanning inside a block offset by these

savings.

● Used extensively in databases, file systems, etc.
● Typically, use a B+-tree rather than a B-tree, but

idea is similar.

● Recently, have been gaining traction for
main-memory data structures.

● Memory cache effects offset extra searching costs.

The Height of a B-Tree

● What is the maximum possible height of a B-tree of
order b?

1

b – 1

b – 1 b – 1

b – 1 b – 1

…

…… …

b – 1

b – 1 b – 1

b – 1 b – 1

…

…… …

1

2(b - 1)

2b(b - 1)

2b2(b - 1)

2bh-1(b - 1)

…

b – 1 b – 1 b – 1…

…

The Height of a B-Tree

● Theorem: The maximum height of a B-tree of order
b containing n nodes is logb ((n + 1) / 2).

● Proof: Number of nodes n in a B-tree of height h is
guaranteed to be at least

= 1 + 2(b – 1) + 2b(b – 1) + 2b2(b – 1) + … + 2bh-1(b – 1)

= 1 + 2(b – 1)(1 + b + b2 + … + bh-1)

= 1 + 2(b – 1)((bh – 1) / (b – 1))

= 1 + 2(bh – 1) = 2bh – 1

● Solving n = 2bh – 1 yields n = logb ((n + 1) / 2)

● Corollary: B-trees of order b have height O(logb n).

Searching in a B-Tree

● Doing a search in a B-tree involves
● searching the root node for the key, and
● if it's not found, recursively exploring the correct child.

● Using binary search within a given node, can find the key or
the correct child in time O(log number-of-keys).

● Repeat this process O(tree-height) times.
● Time complexity is

 = O(log number-of-keys · tree-height)

 = O(log b · logb n)

 = O(log b · (log n / log b))

 = O(log n)

● Requires reading O(logb n) blocks; this more directly
accounts for the total runtime.

B-Trees are Simple

● Because nodes in a B-tree can store multiple keys,
most insertions or deletions are straightforward.

● Here's a B-tree with b = 3 (nodes have between 2
and 5 keys):

2

43

7 19 31 71 83

3 11 12 23 29 37 41 67 73 79 89 976113 14 59

The Trickier Cases

● What happens if you insert a key into a node that's
too full?

● Idea: Split the node in two and propagate upward.

● Here's a 2-3-4 tree (each node has 1 to 3 keys).

1 6

11 21 31

41

16 91

86

26 36 81

56

56

51

46

76

71

66

612

The Trickier Cases

● What happens if you insert a key into a node that's
too full?

● Idea: Split the node in two and propagate upward.

● Here's a 2-3-4 tree (each node has 1 to 3 keys).

1 6

11 21 31

41

16 91

86

26 36 81

56

56

51

46

76

71

66

612 3

The Trickier Cases

● What happens if you insert a key into a node that's
too full?

● Idea: Split the node in two and propagate upward.

● Here's a 2-3-4 tree (each node has 1 to 3 keys).

1 6

11 21 31

41

16 91

86

26 36 81

56

56

51

46

76

71

66

612

3

The Trickier Cases

● What happens if you insert a key into a node that's
too full?

● Idea: Split the node in two and propagate upward.

● Here's a 2-3-4 tree (each node has 1 to 3 keys).

1 6

11 31

41

16 91

86

26 36 81

56

56

51

46

76

71

66

612

3

21

The Trickier Cases

● What happens if you insert a key into a node that's
too full?

● Idea: Split the node in two and propagate upward.

● Here's a 2-3-4 tree (each node has 1 to 3 keys).

1 6

11 31

16 91

86

26 36 81

56

56

51

46

76

71

66

612

3

21

41 Note: B-trees grow
upward, not downward.

Note: B-trees grow
upward, not downward.

Inserting into a B-Tree

● To insert a key into a B-tree:
● Search for the key, insert at the last-visited leaf node.
● If the leaf is too big (contains 2b keys):

– Split the node into two nodes of size b each.
– Remove the largest key of the first block and make it the

parent of both blocks.
– Recursively add that node to the parent, possibly triggering

more upward splitting.

● Time complexity:
● O(b) work per level and O(logb n) levels.

● Total work: O(b logb n)

● In terms of blocks read: O(logb n)

Time-Out for Announcements!

Problem Set One

● Problem Set One is due on Wednesday at
the start of class (2:15PM).

● Hand in theory questions in hardcopy at
the start of lecture and submit coding
problems using the submitter.

● Have questions? I'll be holding my office
hours here in Hewlett 201 today right
after class.

Your Questions!

“Why were segment trees not covered in
the context of RMQs? Segment trees have

complexity ⟨O(n), O(log n)⟩ and as I
understand, they are more suitable when
the array needs to be modified between

queries.”

Time – if we had more time to
spend on RMQ, I definitely would
have covered them. I have about
100 slides on them that I had to

cut... sorry about that!

Time – if we had more time to
spend on RMQ, I definitely would
have covered them. I have about
100 slides on them that I had to

cut... sorry about that!

“What's your favorite programming
language (and why)?”

C++, but that's just my personal
preference. I have a lot of

experience with it and it has some
amazingly powerful features.

C++, but that's just my personal
preference. I have a lot of

experience with it and it has some
amazingly powerful features.

“If you were stuck on a deserted island
with just one data structure, which data

structure would you want to have?”

Any fully retroactive
data structure.

Any fully retroactive
data structure.

Back to CS166!

The Trickier Cases

6

11 26 36

46

16 31 41 61

56

51

● How do you delete from a leaf that has only b – 1
keys?

● Idea: Steal keys from an adjacent nodes, or merge
the nodes if both are empty.

● Again, a 2-3-4 tree:

21

The Trickier Cases

6

? 26 36

46

16 31 41 61

56

51

● How do you delete from a leaf that has only b – 1
keys?

● Idea: Steal keys from an adjacent nodes, or merge
the nodes if both are empty.

● Again, a 2-3-4 tree:

2111

The Trickier Cases

6

16 26 36

46

31 41 61

56

51

● How do you delete from a leaf that has only b – 1
keys?

● Idea: Steal keys from an adjacent nodes, or merge
the nodes if both are empty.

● Again, a 2-3-4 tree:

2111

The Trickier Cases

16 26 36

46

31 41 61

56

51

● How do you delete from a leaf that has only b – 1
keys?

● Idea: Steal keys from an adjacent nodes, or merge
the nodes if both are empty.

● Again, a 2-3-4 tree:

2111

The Trickier Cases

? 26 36

46

31 41 61

56

51

● How do you delete from a leaf that has only b – 1
keys?

● Idea: Steal keys from an adjacent nodes, or merge
the nodes if both are empty.

● Again, a 2-3-4 tree:

2111 16

The Trickier Cases

26 36

46

31 41 61

56

51

● How do you delete from a leaf that has only b – 1
keys?

● Idea: Steal keys from an adjacent nodes, or merge
the nodes if both are empty.

● Again, a 2-3-4 tree:

2111 16

The Trickier Cases

26 36

46

31 41 61

56

51

● How do you delete from a leaf that has only b – 1
keys?

● Idea: Steal keys from an adjacent nodes, or merge
the nodes if both are empty.

● Again, a 2-3-4 tree:

2116

The Trickier Cases

36

46

31 41 61

56

51

● How do you delete from a leaf that has only b – 1
keys?

● Idea: Steal keys from an adjacent nodes, or merge
the nodes if both are empty.

● Again, a 2-3-4 tree:

The Trickier Cases

36

46

31 41 61

56

51

● How do you delete from a leaf that has only b – 1
keys?

● Idea: Steal keys from an adjacent nodes, or merge
the nodes if both are empty.

● Again, a 2-3-4 tree:

The Trickier Cases

?

46

31 41 61

56

51

● How do you delete from a leaf that has only b – 1
keys?

● Idea: Steal keys from an adjacent nodes, or merge
the nodes if both are empty.

● Again, a 2-3-4 tree:

36

The Trickier Cases

?

46

31 41 61

56

51

● How do you delete from a leaf that has only b – 1
keys?

● Idea: Steal keys from an adjacent nodes, or merge
the nodes if both are empty.

● Again, a 2-3-4 tree:

36

The Trickier Cases

?

46

41 61

56

51

● How do you delete from a leaf that has only b – 1
keys?

● Idea: Steal keys from an adjacent nodes, or merge
the nodes if both are empty.

● Again, a 2-3-4 tree:

36

The Trickier Cases

?

41 61

56

51

● How do you delete from a leaf that has only b – 1
keys?

● Idea: Steal keys from an adjacent nodes, or merge
the nodes if both are empty.

● Again, a 2-3-4 tree:

36

46

The Trickier Cases

41 61

56

51

● How do you delete from a leaf that has only b – 1
keys?

● Idea: Steal keys from an adjacent nodes, or merge
the nodes if both are empty.

● Again, a 2-3-4 tree:

36

46

?

The Trickier Cases

41 61

56

51

● How do you delete from a leaf that has only b – 1
keys?

● Idea: Steal keys from an adjacent nodes, or merge
the nodes if both are empty.

● Again, a 2-3-4 tree:

36

46

Deleting from a B-Tree

● If not in a leaf, replace the key with its successor from a leaf
and delete out of a leaf.

● To delete a key from a node:

● If the node has more than b – 1 keys, or if the node is the root,
just remove the key.

● Otherwise, find a sibling node whose shared parent is p.

● If that sibling has at least b – 1 keys, move the max/min key
from that sibling into p's place and p down into the current
node, then remove the key.

● Fuse the node and its sibling into a single node by adding p
into the block, then recursively remove p from the parent
node.

● Work done is O(b logb n): O(b) work per level times O(logb n)
total levels. Requires O(logb n) block reads/writes.

So... red/black trees?

Red/Black Trees

● A red/black tree is a
BST with the following
properties:
● Every node is either

red or black.
● The root is black.
● No red node has a red

child.
● Every root-null path in

the tree passes
through the same
number of black nodes.

110

107

106

166

161 261

140

Red/Black Trees

● A red/black tree is a
BST with the following
properties:
● Every node is either

red or black.
● The root is black.
● No red node has a red

child.
● Every root-null path in

the tree passes
through the same
number of black nodes.

110

107106

166

161 261140

Red/Black Trees

● A red/black tree is a
BST with the following
properties:
● Every node is either

red or black.
● The root is black.
● No red node has a red

child.
● Every root-null path in

the tree passes
through the same
number of black nodes.

19

3

11

23 37

7 31

17

13

Red/Black Trees

● A red/black tree is a
BST with the following
properties:
● Every node is either

red or black.
● The root is black.
● No red node has a red

child.
● Every root-null path in

the tree passes
through the same
number of black nodes.

19

3 11 23 37

7

311713

Red/Black Trees ≡ 2-3-4 Trees

● Red/black trees are an isometry of 2-3-4
trees; they represent the structure of 2-3-4
trees in a different way.

● Many data structures can be designed and
analyzed in the same way.

● Huge advantage: Rather than memorizing a
complex list of red/black tree rules, just think
about what the equivalent operation on the
corresponding 2-3-4 tree would be and
simulate it with color flips and rotations.

The Height of a Red/Black Tree

Theorem: Any red/black tree with n nodes has
height O(log n).

Proof: Contract all red nodes into their
parent nodes to convert the red/black
tree into a 2-3-4 tree. This decreases
the height of the tree by at most a
factor of two. The resulting 2-3-4 tree has
height O(log n), so the original red/black
tree has height 2 · O(log n) = O(log n). ■

Exploring the Isometry

● Nodes in a 2-3-4 tree are classified into
types based on the number of children
they can have.
● 2-nodes have one key (two children).
● 3-nodes have two keys (three children).
● 4-nodes have three keys (four children).

● How might these nodes be represented?

Exploring the Isometry

k₁

k₁ k₂

k₁ k₂ k₃

k₁

k₁

k₂ k₁

k₂

k₁ k₃

k₂

Using the Isometry

19

3 23

7 31

17

13

Using the Isometry

19

3 23

7

311713

Using the Isometry

19

3 23

7

3117135

Using the Isometry

19

3 23

7

3117135

Using the Isometry

19

3 23

7 31

17

13

5

Using the Isometry

19

3 23

7 31

17

13

5

Using the Isometry

19

3 23

7

3117135

Using the Isometry

19

3 23

7

3117135 37

Using the Isometry

19

3 23

7

3117135 37

Using the Isometry

19

3 23

7 31

17

13

5

37

Red/Black Tree Insertion

● Rule #1: When inserting a node, if its
parent is black, make the node red and
stop.

● Justification: This simulates inserting a
key into an existing 2-node or 3-node.

Using the Isometry

19

3 23

7 31

17

13

5

37

Using the Isometry

19

3 23

7

3117135 37

Using the Isometry

19

3 23

7

3117135 374

Using the Isometry

19

3 23

7

3117135 374

Using the Isometry

19

4 23

7 31

17

13

5

37

3

Using the Isometry

19

4 23

7 31

17

13

5

37

3 We need to

1. Change the colors of the
 nodes, and
2. Move the nodes around in
 the tree.

We need to

1. Change the colors of the
 nodes, and
2. Move the nodes around in
 the tree.

Tree Rotations

B

A

>B

<A >A
<B

B

A

>B

<A

>A
<B

Rotate Right

Rotate Left

Tree Rotations

● Tree rotations are a fundamental
primitive on binary search trees.

● Makes it possible to locally reorder
nodes while preserving the binary search
property.

● Most balanced trees use tree rotations at
some point.

3

5

4

3 5

4

3

5

4

3 5

4

apply
rotation

change
colors

 apply
 rotation

This applies any time we're
inserting a new node into
the middle of a “3-node.”

By making observations like
these, we can determine

how to update a red/black
tree after an insertion.

This applies any time we're
inserting a new node into
the middle of a “3-node.”

By making observations like
these, we can determine

how to update a red/black
tree after an insertion.

Using the Isometry

19

3 23

7 31

17

13

5

37

4

Using the Isometry

19

3 23

7 31

17

13

5

37

4

Using the Isometry

19

3

23

7 31

17

13

5

374

Using the Isometry

19

3

23

7 31

17

13

5

374

Using the Isometry

19

3

23

7 31

17

13

5

374

15

Using the Isometry

19

3

23

7 31

17

13

5

374

15

Using the Isometry

19

3

23

7 31

17

13

5

374

15

Using the Isometry

19

3

23

7 31

17135

374 15

Using the Isometry

19

3

23

7 31

17135

374 15

Using the Isometry

19

3 23

7

3117135 374 15

Using the Isometry

19

3 23

7

3117135 374 15 16

Using the Isometry

19

3 23

7

3117135 374

15

16

Using the Isometry

19

3 23

7

3117135 374

15

16

Using the Isometry

19

3 23

7

3117135 374

15

16

Using the Isometry

19

3 23

7

3117135 374

15

16

Two steps:

1. Split the “5-node” into a “2-node” and
 a “3-node.”
2. Insert the new parent of the two nodes
 into the parent node.

Two steps:

1. Split the “5-node” into a “2-node” and
 a “3-node.”
2. Insert the new parent of the two nodes
 into the parent node.

1713

15

16

1713 15 16

1713

15

16
1713

15

16

change
colors

Using the Isometry

19

3

23

7 31

17135

374 15

16

Using the Isometry

19

3

23

7 31

17135

374 15

16

Using the Isometry

19

3

23

7 31

17135

374 15

16

Using the Isometry

19

3

23
7

31

17

13

5

37

4

15

16

Using the Isometry

19

3 23

7

311713

5 37

4

15

16

Using the Isometry

19

3 23

7

311713

5 37

4

15

16

Building Up Rules

● All of the crazy insertion rules on red/black trees
make perfect sense if you connect it back to 2-3-4
trees.

● There are lots of cases to consider because there
are many different ways you can insert into a
red/black tree.

● Main point: Simulating the insertion of a key into
a node takes time O(1) in all cases. Therefore, since
2-3-4 trees support O(log n) insertions, red/black
trees support O(log n) insertions.

● The same is true of deletions.

My Advice

● Do know how to do B-tree insertions and deletions.

● You can derive these easily if you remember to split and
join nodes.

● Do remember the rules for red/black trees and B-trees.

● These are useful for proving bounds and deriving results.

● Do remember the isometry between red/black trees
and 2-3-4 trees.

● Gives immediate intuition for all the red/black tree
operations.

● Don't memorize the red/black rotations and color flips.

● This is rarely useful. If you're coding up a red/black tree,
just flip open CLRS and translate the pseudocode. ☺

Next Time

● Augmented Trees
● Building data structures on top of balanced

BSTs.

● Splitting and Joining Trees
● Two powerful operations on balanced trees.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117

