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Balanced Trees

● Balanced trees are surprisingly versatile data 
structures.

● Many programming languages ship with a balanced 
tree library.
● C++: std::map / std::set
● Java: TreeMap / TreeSet
● Haskell: Data.Map

● Many advanced data structures are layered on top 
of balanced trees.
● Euler tour trees (next week)
● Dynamic graphs (later this quarter)
● y-Fast Tries



  

Outline for This Week

● B-Trees
● A simple type of balanced tree developed for 

block storage.

● Red/Black Trees
● The canonical balanced binary search tree.

● Augmented Search Trees
● Adding extra information to balanced trees to 

supercharge the data structure.

● Two Advanced Operations
● The split and join operations.



  

Outline for Today

● BST Review
● Refresher on basic BST concepts and runtimes.

● Overview of Red/Black Trees
● What we're building toward.

● B-Trees
● A simple balanced tree in depth.

● Intuiting Red/Black Trees
● A much better feel for red/black trees.



  

A Quick BST Review



  

Binary Search Trees

● A binary search tree is a binary tree with the 
following properties:

● Each node in the BST stores a key, and optionally, 
some auxiliary information.

● The key of every node in a BST is strictly greater 
than all keys to its left and strictly smaller than all 
keys to its right.

● The height of a binary search tree is the length of 
the longest path from the root to a leaf, measured 
in the number of edges.

● A tree with one node has height 0.
● A tree with no nodes has height -1, by convention.



  

Inserting into a BST
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Deleting from a BST
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Case 1: If the node has 
just no children, just 
remove it.

Case 1: If the node has 
just no children, just 
remove it.



  

Deleting from a BST
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Case 2: If the node has 
just one child, remove 
it and replace it with 
its child.

Case 2: If the node has 
just one child, remove 
it and replace it with 
its child.



  

Deleting from a BST
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Case 3: If the node has two 
children, find its inorder 
successor (which has zero or 
one child), replace the node's 
key with its successor's key, 
then delete its successor.

Case 3: If the node has two 
children, find its inorder 
successor (which has zero or 
one child), replace the node's 
key with its successor's key, 
then delete its successor.



  

Runtime Analysis

● The time complexity of all these operations 
is O(h), where h is the height of the tree.
● Represents the longest path we can take.

● In the best case, h = O(log n) and all 
operations take time O(log n).

● In the worst case, h = Θ(n) and some 
operations will take time Θ(n).

● Challenge: How do you efficiently keep the 
height of a tree low?



  

A Glimpse of Red/Black Trees



  

Red/Black Trees

● A red/black tree is a 
BST with the following 
properties:
● Every node is either 

red or black.
● The root is black.
● No red node has a red 

child.
● Every root-null path in 

the tree passes 
through the same 
number of black nodes.
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Red/Black Trees

● A red/black tree is a 
BST with the following 
properties:
● Every node is either 

red or black.
● The root is black.
● No red node has a red 

child.
● Every root-null path in 

the tree passes 
through the same 
number of black nodes.
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Red/Black Trees

● A red/black tree is a 
BST with the following 
properties:
● Every node is either 

red or black.
● The root is black.
● No red node has a red 

child.
● Every root-null path in 

the tree passes 
through the same 
number of black nodes.
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Red/Black Trees

● Theorem: Any red/black tree with n 
nodes has height O(log n).
● We could prove this now, but there's a much 

simpler proof of this we'll see later on.

● Given a fixed red/black tree, lookups can 
be done in time O(log n).



  

Mutating Red/Black Trees
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What are we 

supposed to do with 
this new node?

What are we 
supposed to do with 

this new node?



  

Mutating Red/Black Trees
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How do we fix up the 
black-height property?

How do we fix up the 
black-height property?



  

Fixing Up Red/Black Trees

● The Good News: After doing an insertion or 
deletion, can locally modify a red/black tree in 
time O(log n) to fix up the red/black properties.

● The Bad News: There are a lot of cases to 
consider and they're not trivial.

● Some questions:
● How do you memorize / remember all the 

different types of rotations?
● How on earth did anyone come up with 

red/black trees in the first place?



  

B-Trees



  

Generalizing BSTs

● In a binary search tree, each node stores a single key.

● That key splits the “key space” into two pieces, and 
each subtree stores the keys in those halves.
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-2 0 63
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Generalizing BSTs

● In a multiway search tree, each node stores an 
arbitrary number of keys in sorted order.

 

 

 

 

 

 

● In a node with k keys splits the “key space” into 
k + 1 pieces, and each subtree stores the keys in 
those pieces.
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3 7 11 13 17 23 29 37 41 47 53 67 73 79 89 9759 61



  

One Solution: B-Trees

● A B-tree of order b is a multiway search tree with the 
following properties:

● All leaf nodes are stored at the same depth.

● All non-root nodes have between b – 1 and 2b – 1 keys.

● The root has at most 2b – 1 keys.
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43

5 19 31 71 83

3 7 11 13 17 23 29 37 41 47 53 67 73 79 89 9759 61

B-tree of 
order 3

B-tree of 
order 3



  

One Solution: B-Trees
● A B-tree of order b is a multiway search tree with the following 

properties:

● All leaf nodes are stored at the same depth.

● All non-root nodes have between b – 1 and 2b – 1 keys.

● The root has at most 2b – 1 keys.

B-tree of 
order 7

B-tree of 
order 7

1 3 6 10 11 14 19 20 21 23 24 28 29 33 44 48 57 62 77 91

16 36



  

One Solution: B-Trees
● A B-tree of order b is a multiway search tree with the following 

properties:

● All leaf nodes are stored at the same depth.

● All non-root nodes have between b – 1 and 2b – 1 keys.

● The root has at most 2b – 1 keys.

B-tree of order 2

(2-3-4 Tree)

B-tree of order 2

(2-3-4 Tree)

1 2 4 6 7 8 11 12 14 15 17 18 19 21 2 24 26

3 9 10 16 20 25

5 13 23



  

The Tradeoff

● Because B-tree nodes can have multiple 
keys, we have to spend more work inside 
each node.

● Insertion and deletion can be expensive – 
for large b, might have to shuffle 
thousands or millions of keys over!

● Why would you use a B-tree?



  

Memory Tradeoffs

● There is an enormous tradeoff between speed and size 
in memory.

● SRAM (the stuff registers are made of) is fast but very 
expensive:

● Can keep up with processor speeds in the GHz.

● As of 2010, cost is $5/MB.

● Good luck buying 1TB of the stuff!

● Hard disks are cheap but very slow:

● As of 2014, you can buy a 2TB hard drive for about $80.

● As of 2014, good disk seek times are measured in ms 
(about two to four million times slower than a processor 
cycle!)



  

The Memory Hierarchy

● Idea: Try to get the best of all worlds by 
using multiple types of memory.

256B - 8KB

16KB – 64KB

1MB - 4MB

4GB – 256GB

500GB+

HUGE

0.25 – 1ns

1ns – 5ns

5ns – 25ns

25ns – 100ns

3 – 10ms

10 – 2000ms

L2 Cache

Main Memory

Hard Disk

Network (The Cloud)

Registers

L1 Cache



  

Why B-Trees?

● Because B-trees have a huge branching factor, 
they're great for on-disk storage.

● Disk block reads/writes are glacially slow.
● Only have to read a few disk pages.
● Extra work scanning inside a block offset by these 

savings.

● Used extensively in databases, file systems, etc.
● Typically, use a B+-tree rather than a B-tree, but 

idea is similar.

● Recently, have been gaining traction for 
main-memory data structures.

● Memory cache effects offset extra searching costs.



  

The Height of a B-Tree

● What is the maximum possible height of a B-tree of 
order b?
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b – 1
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…
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2b(b - 1)
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b – 1 b – 1 b – 1…

…



  

The Height of a B-Tree

● Theorem: The maximum height of a B-tree of order 
b containing n nodes is logb ((n + 1) / 2).

● Proof: Number of nodes n in a B-tree of height h is 
guaranteed to be at least

= 1 + 2(b – 1) + 2b(b – 1) + 2b2(b – 1) + … + 2bh-1(b – 1)

= 1 + 2(b – 1)(1 + b + b2 + … + bh-1)

= 1 + 2(b – 1)((bh – 1) / (b – 1))

= 1 + 2(bh – 1) = 2bh – 1

● Solving n = 2bh – 1 yields n = logb ((n + 1) / 2)

● Corollary: B-trees of order b have height O(logb n).



  

Searching in a B-Tree

● Doing a search in a B-tree involves
● searching the root node for the key, and
● if it's not found, recursively exploring the correct child.

● Using binary search within a given node, can find the key or 
the correct child in time O(log number-of-keys).

● Repeat this process O(tree-height) times.
● Time complexity is

      = O(log number-of-keys · tree-height)

      = O(log b · logb n)

      = O(log b · (log n / log b))

      = O(log n)

● Requires reading O(logb n) blocks; this more directly 
accounts for the total runtime.



  

B-Trees are Simple

● Because nodes in a B-tree can store multiple keys, 
most insertions or deletions are straightforward.

● Here's a B-tree with b = 3 (nodes have between 2 
and 5 keys):
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3 11 12 23 29 37 41 67 73 79 89 976113 14 59



  

The Trickier Cases

● What happens if you insert a key into a node that's 
too full?

● Idea: Split the node in two and propagate upward.

● Here's a 2-3-4 tree (each node has 1 to 3 keys).
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The Trickier Cases

● What happens if you insert a key into a node that's 
too full?

● Idea: Split the node in two and propagate upward.
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The Trickier Cases

● What happens if you insert a key into a node that's 
too full?

● Idea: Split the node in two and propagate upward.

● Here's a 2-3-4 tree (each node has 1 to 3 keys).
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41 Note: B-trees grow 
upward, not downward.

Note: B-trees grow 
upward, not downward.



  

Inserting into a B-Tree

● To insert a key into a B-tree:
● Search for the key, insert at the last-visited leaf node.
● If the leaf is too big (contains 2b keys):

– Split the node into two nodes of size b each.
– Remove the largest key of the first block and make it the 

parent of both blocks.
– Recursively add that node to the parent, possibly triggering 

more upward splitting.

● Time complexity:
● O(b) work per level and O(logb n) levels.

● Total work: O(b logb n)

● In terms of blocks read: O(logb n)



  

Time-Out for Announcements!



  

Problem Set One

● Problem Set One is due on Wednesday at 
the start of class (2:15PM).

● Hand in theory questions in hardcopy at 
the start of lecture and submit coding 
problems using the submitter.

● Have questions? I'll be holding my office 
hours here in Hewlett 201 today right 
after class.



  

Your Questions!



  

“Why were segment trees not covered in 
the context of RMQs? Segment trees have 

complexity ⟨O(n), O(log n)⟩ and as I 
understand, they are more suitable when 
the array needs to be modified between 

queries.”

Time – if we had more time to 
spend on RMQ, I definitely would 
have covered them. I have about 
100 slides on them that I had to 

cut... sorry about that!

Time – if we had more time to 
spend on RMQ, I definitely would 
have covered them. I have about 
100 slides on them that I had to 

cut... sorry about that!



  

“What's your favorite programming 
language (and why)?”

C++, but that's just my personal 
preference. I have a lot of 

experience with it and it has some 
amazingly powerful features.

C++, but that's just my personal 
preference. I have a lot of 

experience with it and it has some 
amazingly powerful features.



  

“If you were stuck on a deserted island 
with just one data structure, which data 

structure would you want to have?”

Any fully retroactive 
data structure.

Any fully retroactive 
data structure.



  

Back to CS166!



  

The Trickier Cases
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● How do you delete from a leaf that has only b – 1 
keys?

● Idea: Steal keys from an adjacent nodes, or merge 
the nodes if both are empty.

● Again, a 2-3-4 tree:

21



  

The Trickier Cases

6

? 26 36

46

16 31 41 61

56

51

● How do you delete from a leaf that has only b – 1 
keys?

● Idea: Steal keys from an adjacent nodes, or merge 
the nodes if both are empty.

● Again, a 2-3-4 tree:

2111



  

The Trickier Cases

6

16 26 36

46

31 41 61

56

51

● How do you delete from a leaf that has only b – 1 
keys?

● Idea: Steal keys from an adjacent nodes, or merge 
the nodes if both are empty.

● Again, a 2-3-4 tree:

2111



  

The Trickier Cases

16 26 36

46

31 41 61

56

51

● How do you delete from a leaf that has only b – 1 
keys?

● Idea: Steal keys from an adjacent nodes, or merge 
the nodes if both are empty.

● Again, a 2-3-4 tree:

2111



  

The Trickier Cases

? 26 36

46

31 41 61

56

51

● How do you delete from a leaf that has only b – 1 
keys?

● Idea: Steal keys from an adjacent nodes, or merge 
the nodes if both are empty.

● Again, a 2-3-4 tree:

2111 16
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The Trickier Cases
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● How do you delete from a leaf that has only b – 1 
keys?

● Idea: Steal keys from an adjacent nodes, or merge 
the nodes if both are empty.

● Again, a 2-3-4 tree:
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● Idea: Steal keys from an adjacent nodes, or merge 
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The Trickier Cases
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● How do you delete from a leaf that has only b – 1 
keys?

● Idea: Steal keys from an adjacent nodes, or merge 
the nodes if both are empty.

● Again, a 2-3-4 tree:
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The Trickier Cases

41 61
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● How do you delete from a leaf that has only b – 1 
keys?

● Idea: Steal keys from an adjacent nodes, or merge 
the nodes if both are empty.

● Again, a 2-3-4 tree:

36
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Deleting from a B-Tree

● If not in a leaf, replace the key with its successor from a leaf 
and delete out of a leaf.

● To delete a key from a node:

● If the node has more than b – 1 keys, or if the node is the root, 
just remove the key.

● Otherwise, find a sibling node whose shared parent is p.

● If that sibling has at least b – 1 keys, move the max/min key 
from that sibling into p's place and p down into the current 
node, then remove the key.

● Fuse the node and its sibling into a single node by adding p 
into the block, then recursively remove p from the parent 
node.

● Work done is O(b logb n): O(b) work per level times O(logb n) 
total levels. Requires O(logb n) block reads/writes.



  

So... red/black trees?



  

Red/Black Trees

● A red/black tree is a 
BST with the following 
properties:
● Every node is either 

red or black.
● The root is black.
● No red node has a red 

child.
● Every root-null path in 

the tree passes 
through the same 
number of black nodes.
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Red/Black Trees

● A red/black tree is a 
BST with the following 
properties:
● Every node is either 

red or black.
● The root is black.
● No red node has a red 

child.
● Every root-null path in 

the tree passes 
through the same 
number of black nodes.
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Red/Black Trees

● A red/black tree is a 
BST with the following 
properties:
● Every node is either 

red or black.
● The root is black.
● No red node has a red 

child.
● Every root-null path in 

the tree passes 
through the same 
number of black nodes.
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Red/Black Trees

● A red/black tree is a 
BST with the following 
properties:
● Every node is either 

red or black.
● The root is black.
● No red node has a red 

child.
● Every root-null path in 

the tree passes 
through the same 
number of black nodes.
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Red/Black Trees ≡ 2-3-4 Trees

● Red/black trees are an isometry of 2-3-4 
trees; they represent the structure of 2-3-4 
trees in a different way.

● Many data structures can be designed and 
analyzed in the same way.

● Huge advantage: Rather than memorizing a 
complex list of red/black tree rules, just think 
about what the equivalent operation on the 
corresponding 2-3-4 tree would be and 
simulate it with color flips and rotations.



  

The Height of a Red/Black Tree

Theorem: Any red/black tree with n nodes has
height O(log n).

Proof: Contract all red nodes into their
parent nodes to convert the red/black
tree into a 2-3-4 tree. This decreases
the height of the tree by at most a
factor of two. The resulting 2-3-4 tree has
height O(log n), so the original red/black
tree has height 2 · O(log n) = O(log n). ■



  

Exploring the Isometry

● Nodes in a 2-3-4 tree are classified into 
types based on the number of children 
they can have.
● 2-nodes have one key (two children).
● 3-nodes have two keys (three children).
● 4-nodes have three keys (four children).

● How might these nodes be represented?



  

Exploring the Isometry
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Using the Isometry
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Using the Isometry
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Using the Isometry
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Red/Black Tree Insertion

● Rule #1: When inserting a node, if its 
parent is black, make the node red and 
stop.

● Justification: This simulates inserting a 
key into an existing 2-node or 3-node.



  

Using the Isometry
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Using the Isometry
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Using the Isometry
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Using the Isometry
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3 We need to

1. Change the colors of the
    nodes, and
2. Move the nodes around in
    the tree.

We need to

1. Change the colors of the
    nodes, and
2. Move the nodes around in
    the tree.



  

Tree Rotations

B

A
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<A >A
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Tree Rotations

● Tree rotations are a fundamental 
primitive on binary search trees.

● Makes it possible to locally reorder 
nodes while preserving the binary search 
property.

● Most balanced trees use tree rotations at 
some point.



  

3
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3 5

4

3

5

4

3 5

4

apply
rotation

change
colors

                           apply
                           rotation

This applies any time we're 
inserting a new node into 
the middle of a “3-node.”

By making observations like 
these, we can determine 

how to update a red/black 
tree after an insertion.

This applies any time we're 
inserting a new node into 
the middle of a “3-node.”

By making observations like 
these, we can determine 

how to update a red/black 
tree after an insertion.



  

Using the Isometry

19

3 23

7 31

17

13

5

37

4



  

Using the Isometry

19

3 23

7 31

17

13

5

37

4



  

Using the Isometry

19

3

23

7 31

17

13

5

374



  

Using the Isometry

19

3

23

7 31

17

13

5

374



  

Using the Isometry

19

3

23

7 31

17

13

5

374

15



  

Using the Isometry

19

3

23

7 31

17

13

5

374

15



  

Using the Isometry

19

3

23

7 31

17

13

5

374

15



  

Using the Isometry
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Two steps:

1. Split the “5-node” into a “2-node” and
    a “3-node.”
2. Insert the new parent of the two nodes
    into the parent node.

Two steps:

1. Split the “5-node” into a “2-node” and
    a “3-node.”
2. Insert the new parent of the two nodes
    into the parent node.
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Building Up Rules

● All of the crazy insertion rules on red/black trees 
make perfect sense if you connect it back to 2-3-4 
trees.

● There are lots of cases to consider because there 
are many different ways you can insert into a 
red/black tree.

● Main point: Simulating the insertion of a key into 
a node takes time O(1) in all cases. Therefore, since 
2-3-4 trees support O(log n) insertions, red/black 
trees support O(log n) insertions.

● The same is true of deletions.



  

My Advice

● Do know how to do B-tree insertions and deletions.

● You can derive these easily if you remember to split and 
join nodes.

● Do remember the rules for red/black trees and B-trees.

● These are useful for proving bounds and deriving results.

● Do remember the isometry between red/black trees 
and 2-3-4 trees.

● Gives immediate intuition for all the red/black tree 
operations.

● Don't memorize the red/black rotations and color flips.

● This is rarely useful. If you're coding up a red/black tree, 
just flip open CLRS and translate the pseudocode. ☺



  

Next Time

● Augmented Trees
● Building data structures on top of balanced 

BSTs.

● Splitting and Joining Trees
● Two powerful operations on balanced trees.
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