
  

Cuckoo Hashing

Problem Set 6 and Final 
Project Proposals are 

due in the box up front.

Problem Set 6 and Final 
Project Proposals are 

due in the box up front.



  

Outline for Today

● Review of Chained Hash Tables
● A quick refresher on simple and efficient 

hash tables.

● Cuckoo Hashing
● Hashing with worst-case O(1) lookups.

● The Cuckoo Graph
● A framework for analyzing cuckoo hashing. 

● Analysis of Cuckoo Hashing
● Just how fast is cuckoo hashing?



  

Chained Hash Tables



  

Chained Hash Tables

● A chained hash table is a hash table in which 
collisions are resolved by placing all colliding elements 
into the same bucket.

● To determine whether an element is present, hash to 
its bucket and scan for it.

● Insertions and deletions are generalizations of lookups.

Calliope

Clio

Polyhymnia

Urania

Erato

Thalia

Terpsichore

Euterpe

Melpomene



  

Chained Hash Tables

● The load factor of a chained hash table is 
the ratio of the number of elements (n) to 
the number of buckets (m).
● Typically denoted α = n / m.

● By doubling the table size whenever α 
exceeds two, α can be kept low with 
amortized O(1) work per insertion.

● With universal hash functions, the expected, 
amortized cost of a lookup is O(1).



  

Worst-Case Analyses

● In the worst case, a lookup in a chained 
hash table takes time Ω(n).
● Happens when all elements are dropped into 

the same bucket.
● Extremely unlikely in practice.

● Interestingly, the expected worst-case 
cost of a lookup is O(log n / log log n).
● Check Exercise 11-2 in CLRS for details.



  

Worst-Case Efficient Hashing

● Question: Is it possible to design a hash 
table where lookups are worst-case O(1)?

● This is challenging – we have to know 
exactly where to look to find the element 
we need, but there may be collisions!

● Many techniques for this have been 
developed over the years.
● Check CLRS 11.5 for one such approach.



  

Cuckoo Hashing

● Cuckoo hashing is a simple hash table 
where
● Lookups are worst-case O(1).
● Deletions are worst-case O(1).
● Insertions are amortized, expected O(1).
● Insertions are amortized O(1) with reasonably 

high probability.

● Today, we'll explore cuckoo hashing and 
work through the analysis.



  

Cuckoo Hashing

● Maintain two tables, 
each of which has m 
elements.

● We choose two hash 
functions h₁ and h₂ 
from  to [� m].

● Every element x ∈  �
will either be at 
position h₁(x) in the 
first table or h₂(x) in 
the second.  

32

93

58

84

59

97

23

53

26

41

T₁ T₂



  

Cuckoo Hashing

● Lookups take time O(1) 
because only two 
locations must be 
checked.

● Deletions take time 
O(1) because only two 
locations must be 
checked.

32

93

58

84

59

97

23

53

26

41

T₁ T₂



  

Cuckoo Hashing

● To insert an element x, 
start by inserting it 
into table 1.

● If h₁(x) is empty, place 
x there.

● Otherwise, place x 
there, evict the old 
element y, and try 
placing y into table 2.

● Repeat this process, 
bouncing between 
tables, until all 
elements stabilize.

53

10

58

6

75

97

23

84

26

32

93

T₁ T₂



  

Cuckoo Hashing

58 75

97

23

84

26

32

93

T₁ T₂

● Insertions run into 
trouble if we run into a 
cycle.

● If that happens, 
perform a rehash by 
choosing a new h₁ and 
h₂ and inserting all 
elements back into the 
tables.

● Multiple rehashes 
might be necessary 
before this succeeds.

53

10

6

91



  

A Note on Cycles

● It's possible for a 
successful insertion 
to revisit the same 
slot twice.

● Cycles only arise if 
we revisit the same 
slot with the same 
element to insert.

58 75

97

23

84

26

32

93

T₁ T₂

53

10

6

91



  

Analyzing Cuckoo Hashing

● Cuckoo hashing can be tricky to analyze 
for a few reasons:
● Elements move around and can be in one of 

two different places.
● The sequence of displacements can jump 

chaotically over the table.

● It turns out there's a beautiful framework 
for analyzing cuckoo hashing.



  

The Cuckoo Graph

● The cuckoo graph is a 
bipartite graph derived 
from a cuckoo hash 
table.

● Each table slot is a node.

● Each element is an edge.

● Edges link slots where 
each element can be.

● Each insertion introduces 
a new edge into the 
graph.

16

58 75

19

26

32

T₁ T₂

53

10

6

91

16

10
   

   5
8

91

53

6

26

19



  

The Cuckoo Graph

● An insertion in a 
cuckoo hash table 
traces a path through 
the cuckoo graph.

● An insertion succeeds 
iff the connected 
component 
containing the 
inserted value 
contains at most one 
cycle.

91

10 75

19

26

32

6

T₁ T₂

53

16

88

58

16

10
   

   5
8

91

53

6

26

19

88



  

The Cuckoo Graph

● An insertion in a 
cuckoo hash table 
traces a path through 
the cuckoo graph.

● An insertion succeeds 
iff the connected 
component 
containing the 
inserted value 
contains at most one 
cycle.

91

10 75

19

26

32

6

T₁ T₂

53

16

88

58

16

10
   

91

53

6

26

19

88

4

  4   5
8



  

The Cuckoo Graph

● Claim 1: If x is inserted into a cuckoo hash 
table, the insertion fails if the connected 
component containing x has two or more 
cycles.

● Proof: Each edge represents an element and 
needs to be placed in a bucket.

● If the number of nodes (buckets) in the CC is k, 
then there must be at least k + 1 elements 
(edges) in that CC to have two cycles.

● Therefore, there are too many nodes to place 
into the buckets.



  

The Cuckoo Graph

● Claim 2: If x is inserted into a cuckoo hash 
table, the insertion succeeds if the connected 
component containing x contains either no 
cycles or only one cycle.

Each edge is an element and 
each node is a bucket. The 
arrows show which bucket 
each element belongs to.

Each edge is an element and 
each node is a bucket. The 
arrows show which bucket 
each element belongs to.



  

The Cuckoo Graph

● Claim 2: If x is inserted into a cuckoo hash 
table, the insertion succeeds if the connected 
component containing x contains either no 
cycles or only one cycle.

If there are no cycles, 
eventually the displacement 

chain comes to rest.

If there are no cycles, 
eventually the displacement 

chain comes to rest.



  

The Cuckoo Graph

● Claim 2: If x is inserted into a cuckoo hash 
table, the insertion succeeds if the connected 
component containing x contains either no 
cycles or only one cycle.



  

The Cuckoo Graph

● Claim 2: If x is inserted into a cuckoo hash 
table, the insertion succeeds if the connected 
component containing x contains either no 
cycles or only one cycle.

When we arrive back at this 
node, we can't follow the edge 

back into the cycle because 
it's flipped the wrong way.

When we arrive back at this 
node, we can't follow the edge 

back into the cycle because 
it's flipped the wrong way.



  

The Cuckoo Graph

● Claim 2: If x is inserted into a cuckoo hash 
table, the insertion succeeds if the connected 
component containing x contains either no 
cycles or only one cycle.

We either stabilize inside the 
cycle, avoid the cycle, or get 

kicked out of the cycle.

We either stabilize inside the 
cycle, avoid the cycle, or get 

kicked out of the cycle.



  

The Cuckoo Graph

● Claim 2: If x is inserted into a cuckoo hash 
table, the insertion succeeds if the connected 
component containing x contains either no 
cycles or only one cycle.

● Claim 3: If x is inserted in a connected 
component with k nodes, the insertion process 
does at most 2k displacements.



  

Terminology

● A tree is an undirected, connected component 
with no cycles.

● A unicyclic component is a connected 
component with exactly one cycle.

● A connected component is called complex if it's 
neither a tree nor unicyclic.

● Cuckoo hashing fails iff any of the connected 
components in the cuckoo graph are complex.



  

The Gameplan

● To analyze cuckoo hashing, we'll do the 
following.
● First, we'll analyze the probability that a 

connected component is complex. 
● Next, under the assumption that no 

connected component is complex, we'll 
analyze the expected cost of an insertion.

● Finally, we'll put the two together to 
complete the analysis.



  

Time-Out for Announcements!



  

Problem Set 7

● Problem Set 7 goes out now and is due 
next Wednesday at the start of class.

● Play around with randomized data 
structures and related mathematical 
techniques!



  

Final Project Presentations

● We'll review the project proposals we 
receive today and set up a schedule for 
presentations.

● Presentations will be in Week 10 and are 
open to the public.

● We'll send out a sign-up form once we 
have everything ready.



  

Midterm

● The midterm is next Wednesday, May 21 from 
7PM – 10PM at Cemex Auditorium.
● Can't make that time? Let us know ASAP so that we 

can set up an alternate.

● Covers material up through and including next 
Monday's lecture, but with a strong focus on 
the topics up through and including this week.

● We'll hold a review session (time/place TBA) 
and give out a practice midterm later this week.



  

Your Questions



  

“Would you consider giving us some 
ungraded practice exercises for the last 

two weeks of material? This stuff won't be 
on the psets or the midterm, so it would be 

nice to have a few exercises to better 
solidify our understanding.”

Sure, I can try 
to do that.

Sure, I can try 
to do that.



  

“Why have you been so down on math?”

I'm not sure I 
understand this 
question... sorry!

I'm not sure I 
understand this 
question... sorry!



  

“Can you give an application of data 
structures in solving a machine

learning problem?”

There are lots of applications in clustering. For 
low-dimensional clustering, data structures like the 

k-d tree are useful for doing nearest-neighbor 
searches. The sparse partition for 

multidimensional, dynamic closest pair of points is 
useful in multidimensional clustering. The 

count-min sketch from last time is often used to 
do exploratory data mining.

There are lots of applications in clustering. For 
low-dimensional clustering, data structures like the 

k-d tree are useful for doing nearest-neighbor 
searches. The sparse partition for 

multidimensional, dynamic closest pair of points is 
useful in multidimensional clustering. The 

count-min sketch from last time is often used to 
do exploratory data mining.



  

“Suppose we need to estimate the k most 
frequent search queries. With a populated 
count-min sketch, how can we quickly find 

k frequent queries? Are there other 
structures that do this in O(k) time 

(reservoir sampling?) and what are their 
error bounds?”

The original paper on count sketches and count-min 
sketches have great expositions on this. You basically 

maintain a max-heap coupled with a count(-min) sketch 
and update frequencies in response to updates.

Random sampling can also be used here, but the 
sample rate needs to be close to the frequency of the 

most-frequent element to have good bounds. Check the 
paper on count sketches for details.

The original paper on count sketches and count-min 
sketches have great expositions on this. You basically 

maintain a max-heap coupled with a count(-min) sketch 
and update frequencies in response to updates.

Random sampling can also be used here, but the 
sample rate needs to be close to the frequency of the 

most-frequent element to have good bounds. Check the 
paper on count sketches for details.



  

“Can a deterministic algorithm utilize 
randomized data structure?”

Yep! There's a technique called 
derandomization that can be 

used to turn randomized 
algorithms and data structures 

into fully-deterministic ones. It's 
certainly worth looking into!

Yep! There's a technique called 
derandomization that can be 

used to turn randomized 
algorithms and data structures 

into fully-deterministic ones. It's 
certainly worth looking into!



  

Back to CS166!



  

Step One:
Exploring the Graph Structure



  

Exploring the Graph Structure

● If there are no complex CC's, then we 
will not get into a loop and insertion time 
will depend only on the sizes of the CC's.

● It's reasonable to ask, therefore, what 
the probability is that this occurs.



  

Awful Combinatorics

● Question: What is the probability that a 
randomly-chosen bipartite graph with 2m nodes 
and n edges will contain a complex connected 
component:

● Answer: If n = (1 – δ)m, the answer is

● Source: “Bipartite Random Graphs and Cuckoo 
Hashing” by Reinhard Kutzelnigg.

1−
(2δ2−5δ+5)(1−δ)3

12(2−δ)
2 δ3

1
m

+O(
1

m2 )



  

The Main Result

● Theorem: If m = (1 + ε)n for some 
ε > 0, the probability that the cuckoo 
graph contains a complex connected 
component is O(1 / m).

● I have scoured the literature and cannot 
seem to find a simple proof of this result.

● Challenge Problem: Provide a simple 
proof of this result.



  

The Implications

● If m ≥ (1 + ε)n, then the hash table will 
have a load factor of 1 / (2 + 2ε).

● This means that roughly half of the table 
cells will be empty.

● There are techniques for improving upon 
this; more details later on.



  

Step Two:
Analyzing Connected Components



  

Analyzing Connected Components

● The cost of inserting x into a cuckoo hash 
table is proportional to the size of the CC 
containing x.

● Question: What is the expected size of a 
CC in the cuckoo graph?



  

The Result

● Claim: If m ≥ (1 + ε)n for any ε > 0, 
then on expectation, the cost of an 
insertion in a cuckoo hash table that does 
not trigger a rehash is O(1 + ε-1).

● Proof idea: Show that the expected 
number of nodes in a connected 
component is at most 1 + ε-1.

● Let's see how to do this!



  

Sizing a Connected Component

★Binom(n, 1/m)

Binom(n, 1/m)

Binom(n, 1/m)



  

Modeling the DFS

● Fix a start node v.
● The number of nodes 

incident to v is modeled 
by a Binom(n, 1 / m) 
variable.

● For each node u 
connected to v, we can 
upper-bound the 
number of nodes 
connected to u by a 
Binom(n, 1 / m) 
variable.



  

Subcritical Galton-Watson Processes

● The process modeled by this tree is 
called a subcritical Galton-Watson 
process.

● Models a tree where each node has a 
number of children given by i.i.d. copies 
of some variable ξ.

● Constraint: E[ξ] must be less than 1.



  

http://1.bp.blogspot.com/-f3gzOHMBM6I/TWcdXn-R1SI/AAAAAAAAAEA/G8uu8scBj1I/s1600/1868-02%2Bgazette%2Bof%2Bfashion.jpg

http://1.bp.blogspot.com/-f3gzOHMBM6I/TWcdXn-R1SI/AAAAAAAAAEA/G8uu8scBj1I/s1600/1868-02%2Bgazette%2Bof%2Bfashion.jpg


  

Subcritical Galton-Watson Processes

● Denote by Xₙ the number of nodes alive at 
depth n. This gives a series of random 
variables X₀, X₁, X₂, … .

● These variables are defined by the 
following recurrence: 

● Here, each ξᵢ,ₙ is an i.i.d. copy of ξ.

Xn+1=∑
i=1

Xn

ξ i ,nX0=1



  

Subcritical Galton-Watson Processes

Lemma: E[Xₙ] = E[ξ]n.

Proof: Problem Set 7. ■



  

Theorem: The expected size of a connected component
in the cuckoo graph is at most 1 + ε-1.

Proof: We can upper-bound the number of nodes in a CC
with the number of nodes in a subcritical Galton-Watson
process where ξ ~ Binom(n, 1 / m). If we denote by X
the total number of nodes in the CC, we see that

  
Therefore, the expected value of X is given by

  
Note that E[ξ] = n / m ≤ 1 / 1 + ε, so

  
Therefore, the expected size of a CC in the cuckoo 
graph is at most 1 + ε-1. ■

X=∑
i=0

∞

X i

E[ X ] = E[∑
i=0

∞

X i] = ∑
i=0

∞

E[ X i] = ∑
i=0

∞

E[ξ ]
i
=

1
1−E[ξ ]

E[ X ] = (1−
n
m

)
−1

≤ (1−
1

1+ε
)
−1

=
1+ε

ε
= 1+ε−1



  

Finishing Touches

Lemma: The expected cost of a single rehash,
assuming that it succeeds, is O(m + nε-1).

Proof: If the rehash succeeds, each insertion takes
expected time O(1 + ε-1). There are n insertions,
so the time will be O(n + ε-1n). We also do O(m) work
reinitializing the buckets, so the total time is
O(m + nε-1). ■

Lemma: The expected cost of a rehash is O(m + nε-1).

Proof: Each rehash succeeds with probability 
1 – O(1 / m). Therefore, on expectation, only
1 / (1 – O(1/m)) = O(1) rehashes are necessary.
Since each one takes expected time O(m + nε-1), the
expected total time is O(m + nε-1). ■



  

Planned Rehashing

● We need to rehash in two situations:
● A planned rehash, where we rehash to ensure that m ≥ 

(1 + ε)n. This needs to happen periodically to ensure the 
table grows.

● An unplanned rehash, where we rehash because there is a 
complex CC in the table.

● If we repeatedly double the size of the table, the 
expected total work done in planned rehashing is 
O(m + nε-1) across the lifetime of the table.
● Analysis similar to chained hashing. 

● This amortizes out to expected O(1 + ε + ε-1) additional 
work per insertion.



  

Theorem: The expected, amortized cost of an insertion
into a cuckoo hash table is O(1 + ε + ε-1).

Proof: We have already shown that the amortized overhead
of an insertion due to planned rehashing is O(1 + ε + ε-1),
so all we need to do is analyze the expected cost ignoring
planned rehashes.

 With probability 1 – O(1 / m), the expected cost is
O(1 + ε + ε-1). With probability O(1 / m), we have to
rehash, which takes expected time O(m + nε-1). Therefore,
the expected cost of an insert is

   = O(1 + ε + ε-1) + O(1 + nε-1 / m)
   = O(1 + ε + ε-1) + O(1 + ε-1)
    = O(1 + ε + ε-1)

 As required. ■ 



  

Finishing it Off: High Confidence



  

High Confidence

● We've shown that the amortized, expected cost 
of an insertion into a cuckoo hash table is 
O(1 + ε + ε-1).

● How likely are we to actually get this runtime?

● Claim: With probability 1 – O(1 / m), any 
sequence of n insertions will run in amortized 
time O(1 + ε + ε-1).



  

Two Components

● There are two ways that the insertion time will 
not be amortized O(1 + ε + ε-1):
● We introduce a complex CC into the cuckoo 

graph. This has probability O(1 / m).
● We have a large CC whose size is ω(1 + ε-1).

● We'll show that this second case happens with 
probability o(1 / m), so the probability of a fast 
insertion is O(1 / m).



  

A Tricky Question

● Question: Given a fixed CC in the cuckoo 
hash table, what is the probability that 
this CC contains at least k nodes?

● Another way of interpreting this question 
is as the survival probability of our 
subcritical Galton-Watson process: what is 
the probability that the process will 
continue for at least k steps?



  

The Survival Probability

● Imagine the expansion 
of the tree structure.

● Call a node spent if 
we've already processed 
it to add children and 
unspent otherwise.

● Claim: This process 
continues for more than 
k steps if after k nodes 
are spent, there is at 
least one unspent node.



  

The Survival Probability

● Start by making the root 
node unspent.

● Every spent node 
increases unspent nodes 
by Yᵢ – 1, where 
Yᵢ ~ Binom(n, 1 / m).

● The process stops after k 
total nodes are spent if

 1+∑
i=1

k

(Y i−1) < 1



  

The Survival Probability

● Claim: The probability that the process 
continues after k nodes have been spent is 
upper-bounded by

 
● This is not a tight bound. It includes cases where 

the number of nodes becomes negative and then 
increases.

Pr [1+∑
i=1

k

(Y i−1) ≥ 1]



  

The Survival Probability

● Simplifying:

● Notice that this sum is the sum of k i.i.d. variables 
drawn from a Binom(n, 1 / m) distribution.

● Therefore, it itself is distributed according to a 
Binom(kn, 1 / m) distribution.

Pr [1+∑
i=1

k

(Y i−1) ≥ 1] = Pr [∑i=1

k

(Y i−1) ≥ 0]
= Pr [∑i=1

k

Y i ≥ k]



  

The Survival Probability

● Let X ~ Binom(nk, 1 / m).

● The probability that a CC contains more than k 
nodes is then given by

 

● Our goal now is to obtain a bound on this 
probability.

● To do so, we'll need to introduce another tail 
inequality.

Pr [ X ≥ k ]



  

Hoeffding's Inequality

● Hoeffding's inequality states, among other 
things, that if X ~ Binom(n, p), then

● In our case, Y ~ Binom(nk, 1 / m) and we want
 

● Rewriting:
Pr [Y ≥ k ]

Pr [Y ≥ k ] = Pr [Y ≥
nk
m

+k−
nk
m ]

= Pr [Y ≥
nk
m

+k(1−
n
m )]

≤ e
−2k2(1−

n
m

)
2

n

                 

Pr [ X ≥ np+δ ] ≤ e−2δ2n



  

Hoeffding's Inequality

● We now have 

   
● Notice that

     
● Therefore,

     
● It is exponentially unlikely that we get large 

connected components!

1−
n
m

≥ 1−
n

(1+ε)n
=

ε
1+ε

= O(1)

Pr [Y ≥ k ] ≤ e−O(1)k2n

Pr [Y ≥ k ] ≤ e
−2k2(1−

n
m

)
2

n



  

The Final Analysis

● The previous theorem says 

For any node v in the cuckoo graph, the
probability that the CC containing that node

has more than k nodes is at most e-n · O(1).

● Using the union bound, we get that the probability 
that any connected component contains k or more 
nodes is at most 2m e-n · O(1)

● This is eln 2m e-n · O(1) = e-n · O(1) + ln 2m = e-O(n).

● Therefore, it is exponentially unlikely that any 
connected component will contain more than O(1) 
nodes.



  

The Final Analysis

● Theorem: For any ε > 0, cuckoo hashing 
supports the following:
● Worst-case O(1) lookups and deletions.
● Expected, amortized O(1 + ε + ε-1) insertions.
● Amortized O(1 + ε + ε-1) time for m insertions 

with probability 1 – O(1 / m).

● And it works really well in practice, too!



  

Final Thoughts on Cuckoo Hashing



  

A Few Technical Details

● There are a few technical details we glossed 
over in this analysis.

● Hash function choice: The hash functions 
chosen need to have a high degree of 
independence for these results to hold.

● In practice, most simple hash functions will 
work, though some particular classes do not. 
See “On the risks of using cuckoo hashing with 
simple universal hash classes” by 
Dietzfelbinger et al. for more details.



  

A Few Technical Details

● There are a few technical details we glossed 
over in this analysis.

● Stopping time: Typically, cuckoo hashing 
triggers a rehash as soon as C log n elements 
have been displaced, for some constant C.

● Need to repeat the analysis to show that this 
addition doesn't cause rehashing with high 
frequency.



  

Further Reading

● Many variations on cuckoo hashing have been 
proposed:
● If each table bucket can hold k elements each for 

k > 1, the table can become significantly more 
space efficient without sacrificing much 
performance.

● Can set aside a “stash” where elements that would 
cause cycles can live. This can lead to marked 
performance increases.

● Can try to use cuckoo hashing with at most one 
move by using multiway associative memory 
devices.



  

Next Time

● Integer Data Structures
● Data structures for storing and manipulating 

integers.

● van Emde Boas Trees
● Searching in o(log n) time for integers.


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73

