

Disjoint-Set Forests

Thanks for Showing Up!

Outline for Today

● Incremental Connectivity
● Maintaining connectivity as edges are added to a graph.

● Disjoint-Set Forests
● A simple data structure for incremental connectivity.

● Union-by-Rank and Path Compression
● Two improvements over the basic data structure.

● Forest Slicing
● A technique for analyzing these structures.

● The Ackermann Inverse Function
● An unbelievably slowly-growing function.

The Dynamic Connectivity Problem

The Connectivity Problem

● The graph connectivity problem is the following:

Given an undirected graph G, preprocess the graph so
that queries of the form “are nodes u and v

connected?”

Using Θ(m + n) preprocessing, can preprocess the
graph to answer queries in time O(1).

Dynamic Connectivity

● The dynamic connectivity problem is the following:

Maintain an undirected graph G so that edges may be
inserted an deleted and connectivity queries may be

answered efficiently.

● This is a much harder problem!

Dynamic Connectivity

● Euler tour trees solve dynamic connectivity in
forests.

● Today, we'll focus on the incremental dynamic
connectivity problem: maintaining connectivity
when edges can only be added, not deleted.

● Applications to Kruskal's MST algorithm.

● Next Monday, we'll see how to achieve full
dynamic connectivity in polylogarithmic amortized
time.

Incremental Connectivity and Partitions

Set Partitions

● The incremental connectivity problem is equivalent
to maintaining a partition of a set.

● Initially, each node belongs to its own set.
● As edges are added, the sets at the endpoints

become connected and are merged together.
● Querying for connectivity is equivalent to querying

for whether two elements belong to the same set.
● Goal: Maintain a set partition while supporting the

union and in-same-set operation.

Representatives

● Given a partition of a set S, we can choose one
representative from each of the sets in the
partition.

● Representatives give a simple proxy for which set
an element belongs to: two elements are in the
same set in the partition iff their set has the same
representative.

Union-Find Structures

● A union-find structure is a data structure
supporting the following operations:
● find(x), which returns the representative of

node x, and
● union(x, y), which merges the sets containing x

and y into a single set.
● We'll focus on these sorts of structures as a

solution to incremental connectivity.

Data Structure Idea

● Idea: Associate each element in a set with a
representative from that set.

● To determine if two nodes are in the same set,
check if they have the same representative.

● To link two sets together, change all elements
of the two sets so they reference a single
representative.

Using Representatives

Using Representatives

● If we update all the representative
pointers in a set when doing a union, we
may spend time O(n) per union
operation.

● Can we avoid paying this cost?

Hierarchical Representatives

Hierarchical Representatives

● In a degenerate case, a hierarchical
representative approach will require
time Θ(n) for some find operations.

● Therefore, some union operations will
take time Θ(n) as well.

● Can we avoid these degenerate cases?

Union by Rank

0

1

0

2

1

0

0

0

0 0

Union by Rank

● Assign to each node a rank that is initially zero.

● To link two trees, link the tree of the smaller
rank to the tree of the larger rank.

● If both trees have the same rank, link one to
the other and increase the rank of the other
tree by one.

Union by Rank

● Claim: The number of nodes in a tree of
rank r is at least 2r.
● Proof is by induction; intuitively, need to double

the size to get to a tree of the next order.

● Claim: Maximum rank of a node in a graph
with n nodes is O(log n).

● Runtime for union and find is now
O(log n).

Path Compression

0

1

0

2

1

0

0

0

0 0

Path Compression

0

1

0

2

1

0

0

0

0 0

Path Compression

● Path compression is an optimization to the
standard disjoint-set forest.

● When performing a find, change the parent
pointers of each node found along the way to point
to the representative.

● When combined with union-by-rank, the runtime is
O(log n).

● Intuitively, it seems like this shouldn't be tight,
since repeated find operations will end up taking
less time.

The Claim

● Claim: The runtime of union and find when
using path compression and union-by-rank is
amortized O(α(n)), where α is an extremely
slowly-growing function.

● The original proof of this result (which is
included in CLRS) is due to Tarjan and uses a
complex amortized charging scheme.

● Today, we'll use a proof due to Seidel and
Sharir based on a forest-slicing approach.

Where We're Going

● This analysis is nontrivial.
● First, we're going to define our cost model so we

know how to analyze the structure.
● Next, we'll introduce the forest-slicing approach

and use it to prove a key lemma.
● Finally, we'll use that lemma to build recurrence

relations that analyze the runtime.

Our Cost Model

● The cost of a union or find is O(1) plus
Θ(#ptr-changes-made)

● Therefore, the cost of m operations is

Θ(m + #ptr-changes-made)

● We will analyze the number of pointers
changed across the life of the data structure to
bound the overall cost.

Some Accounting Tricks

● To perform a union operation, we need to first
perform two finds.

● After that, only O(1) time is required to perform
the union operation.

● Therefore, we can replace each union(x, y) with
three operations:
● A call to find(x).
● A call to find(y).
● A linking step between the nodes found this way.

● Going forward, we will assume that each union
operation will take worst-case time O(1).

A Slight Simplification

● Currently, find(x) compresses from x up to its
ancestor.

● For mathematical simplicity, we'll introduce an
operation compress(x, y) that compresses
from x upward to y, assuming that y is an
ancestor of x.

● Our analysis will then try to bound the total
cost of the compress operations.

Removing the Interleaving

● We will run into some trouble in our
analysis because unions and compresses
can be interleaved.

● To address this, we will will remove the
interleaving by pretending that all
compresses come before all compresses.

● This does not change the overall work being
done.

Removing the Interleaving

compress(j, b)
union(b, a)

compress(h, a)

f → b
h → b
j → b
b → a
h → a

a

b c d

e f

h

g

i

j

union(b, a)
compress(j, b)
compress(h, a)

b → a
f → b
h → b
j → b
h → a

Recap: The Setup

● Transform any sequence of unions and finds as
follows:
● Replace all union operations with two finds and a

union on the ancestors.
● Replace each find operation with a compress

operation indicating its start and end nodes.
● Move all union operations to the front.

● Since all unions are at the front, we build the
entire forest before we begin compressing.

● Can analyze compress assuming the forest has
already been created for us.

The Forest-Slicing Approach

Forest-Slicing

a

b c d

e f

h

g

i

k

j

l

Forest-Slicing

● Let be a disjoint-set forest.ℱ
● Consider splitting into two forests ₊ ℱ ℱ

and ₋ with the following properties:ℱ
● ₊ ℱ is upward-closed: if x ∈ ₊, then any ℱ

ancestor of x is also in ₊.ℱ
● ₋ ℱ is downward-closed: if x ∈ ₋, then any ℱ

descendant of x is also in ₋.ℱ
● We'll call ₊ the ℱ top forest and ₋ the ℱ

bottom forest.

Forest-Slicing

a

b c d

e f

h

g

i

k

j

l

Forest-Slicing

a

b c d

e f

h

g

i

k

j

l

Nodes from ₋ never ℱ
move into ₊ or ℱ

vice-versa. We retain the
original cut after doing

compressions.

Nodes from ₋ never ℱ
move into ₊ or ℱ

vice-versa. We retain the
original cut after doing

compressions.

Why Slice Forests?

Forest-Slicing

● Key insight: Each compress operation is either
● purely in ₊,ℱ
● purely in ₋, orℱ
● crosses from ₋ into ₊.ℱ ℱ

● Analyze the runtime of a series of compressions
using a divide-and-conquer approach:
● Analyze the compressions purely in ₊ and ₋ ℱ ℱ

recursively.
● Bound the cost of the compressions crossing from ₊ ℱ

to ₋ separately.ℱ

c

d

e

f

b

a

g

c

d

e

f

b

a

g

c

d e f

b

a

g

c

d

e

f

b

a

g

c

d e f

b

a

g

c

d

e

f

b

a

g

Observation 1: The portion of the
compression in ₊ is equivalent to a ℱ

compression of the first node in ₊ on ℱ
the compression path to the last node

in ₊ on the compression path.ℱ

Observation 1: The portion of the
compression in ₊ is equivalent to a ℱ

compression of the first node in ₊ on ℱ
the compression path to the last node

in ₊ on the compression path.ℱ

c

d e f

b

a

g

c

d e f

b

a

g

Observation 2: The effect of the
compression on ₋ is ℱ not the same as

the effect of compressing from the first
node in ₋ to the last node in ₋.ℱ ℱ

Observation 2: The effect of the
compression on ₋ is ℱ not the same as

the effect of compressing from the first
node in ₋ to the last node in ₋.ℱ ℱ

c

d e f

b

a

g

c

d e f

b

a

g

Observation 3: The cost of the compress in
₋ is the number of nodes in ₋ that got a ℱ ℱ

parent in ₊, plus (possibly) one more for the ℱ
topmost node in ₋ on the compression path.ℱ

Observation 3: The cost of the compress in
₋ is the number of nodes in ₋ that got a ℱ ℱ

parent in ₊, plus (possibly) one more for the ℱ
topmost node in ₋ on the compression path.ℱ

The Cost of Crossing Compressions

● Suppose we do k compressions crossing from
₋ into ₊.ℱ ℱ

● We can upper bound the cost of these
compressions as the sum of the following:
● The cost of all the tops of those compressions,

which occur purely in ₊.ℱ
● k (one per compression).
● The number of nodes in ₋, since each node in ℱ

₋ gets a parent in ₊ for the first time at most ℱ ℱ
once.

Theorem: Let be a disjoint-set forest and let ₊ℱ ℱ
 and ₋ be a partition of into top and bottomℱ ℱ

forests.

Then for any series of m compressions C, there
exist compression sequences C₊ in ₊ and ℱ C₋ in

₋ such thatℱ

 · cost(C) ≤ cost(C₊) + cost(C₋) + n + m₊

 · m₊ + m₋ = m

Here, m₊ = |C₊| and m₋ = |C₋|.

Paths purely in ₊ or ℱ
₋, plus the tops of ℱ

paths crossing them.

Paths purely in ₊ or ℱ
₋, plus the tops of ℱ

paths crossing them.

Nodes in ₋ ℱ
getting their
first parent

in ₊ℱ

Nodes in ₋ ℱ
getting their
first parent

in ₊ℱ

Nodes in ₋ ℱ
having their
parent in ₊ ℱ

change.

Nodes in ₋ ℱ
having their
parent in ₊ ℱ

change.

Time-Out for Announcements!

Midterms Graded

● Midterms are graded and available for pickup.

● Solutions and statistics released in hardcopy
up front.

● Regrades accepted until next Monday at
3:15PM; just let us know what problem(s) you'd
like us to review.

Presentation Schedule

● We've posted the presentation schedule
to the course website.

● You're welcome to attend any
presentations you'd like as long as
they're not on the same data structure
that you chose.

Writeup Logistics

● Writeup will be due electronically as a
PDF exactly 24 hours before you present.

● Your writeup should include
● background on the data structure,
● how the data structure works,
● a correctness and runtime analysis, and
● what your “interesting” addition is.

Presentation Logistics

● Presentation should be 15 – 20 minutes;
we'll cut you off after 20 minutes.

● We'll have up to five minutes of questions
afterwards.

● Please arrive five minutes early so you
have time to get set up.

● Don't try to present everything – you
won't have time!

Your Questions

“Can we have some opportunity to practice
our presentations in whatever room they're

being presented in?”

Absolutely! The room
assignments are posted online.

Feel free to stop by those
locations to try out your

presentation, and feel free to
invite friends along with!

Absolutely! The room
assignments are posted online.

Feel free to stop by those
locations to try out your

presentation, and feel free to
invite friends along with!

“How long do you plan on teaching? Do you
think you'll ever want to leave Stanford,

either to pursue options at other
universities or to do research for a

company? Do you have any desire to start
your own company?”

Wow, that's a
hard one.

Wow, that's a
hard one.

Back to CS166!

The Main Analysis

Where We Are

● We now have a divide-and-conquer-style
result for evaluating the runtime of a
series of compresses.

● We'll now combine that analysis with
some Clever Math to get the overall
runtime bound.

Rank Forests

● The result we proved about compression
costs works even if we don't use
union-by-rank.

● If we do use union-by-rank, the following
results hold:
● The maximum rank of any node is O(log n).
● For any rank r, there are at most n / 2r nodes

of rank greater than r.

Some Terminology

● Let's denote by T(m, n) the maximum
possible cost of performing m
compresses in a rank forest of n nodes.

● Define T(m, n, r) to be the maximum
possible cost of performing m
compresses in a rank forest of at most n
nodes and with maximum rank r.

● Note that T(m, n) = T(m, n, O(log n)).

Functional Iteration

● Let f : ℕ → ℕ be a nondecreasing function
where f(0) = 0 and f(n) < n for n > 0.

● The iterated function of f, denoted f*, is
defined as follows:

● Intuitively, f*(n) is the number of times that f

has to be applied to n for n to drop down to 2.

● (The choice of 2 here is arbitrary; we just
need a nice, small constant.)

f * (n)={ 0 if f (n)≤2
1+ f * (f (n)) otherwise

Functional Iteration

● As an example, consider the function
lg n, assuming that we round down.

● Notice that
● lg 137 = 7
● lg 7 = 2

● Therefore, lg* 137 = 2.

Iterated Logarithms

● For any k, define

log*(k) n = log***...* n (k times)
● These functions are extremely

slowly-growing.
● log* n ≤ 4 for all n < 265,536, for example.
● Fun exercise: What is the inverse

function of log* n? How about log** n?

Where We're Going

● We're going to show that

T(m, n) = O(n lg*(k) lg n + m)

for any constant k ≥ 1
● From there, we'll define a function α(n)

that grows slower than lg*(k) n for any k
and prove that

 T(m, n) = O(mα(n) + n)

Our Approach

● Our result will rely on a “feedback”
technique used to build stronger results
out of weaker ones.

● We'll find an initial proof that

T(m, n) = O(n lg* lg n + m).
● Then, we'll prove that if we know that

T(m, n) = O(n lg*(k) lg n + m), then we
can prove T(m, n) = O(n lg*(k+1) lg n + m)

Proving T(m, n) = O(n lg* lg n + m)

A Starting Point

● Lemma: T(m, n, r) ≤ nr.
● Proof: Since the maximum possible rank

is r, each node can have its parent
change at most r times. Therefore, the
number of pointer changes made is at
most nr.

● (Remember that we've defined the cost
to be the number of pointer changes.)

Getting a Recurrence

● Let be a rank forest of maximum rank ℱ r and let C be
a worst-case series of m compresses performed in .ℱ

● Split into ₋ and ₊ by putting all nodes of rank at ℱ ℱ ℱ
most lg r into ₋ and all other nodesℱ into ₊.ℱ

● By our earlier theorem, there exist C₊ and C₋ such
that

cost(C) ≤ cost(C₊) + cost(C₋) + n + m₊
● Therefore

T(m, n, r) ≤ cost(C₊) + cost(C₋) + n + m₊
● Let's see if we can simplify this expression, starting

with cost(C₊).

An Observation

● The forest ₊ consists of all nodes whose rank is ℱ
greater than lg r.

● Therefore, the ranks go from lg r + 1 up through
and including r.

● By our earlier result, the number of nodes in ₊ ℱ
is at most n / 2lg r = n / r.

● If we subtract lg r + 1 from the ranks of all of
the nodes, we end up with a rank forest whose
maximum rank is at most r.

● Therefore, by our earlier lemma, we get that
cost(C₊) ≤ r (n / r) = n.

The Recurrence

● We had

T(m, n, r) ≤ cost(C₊) + cost(C₋) + n + m₊
● We now have

T(m, n, r) ≤ cost(C₋) + 2n + m₊
● Notice that C₋ is a set of compressions in a rank

forest of maximum rank lg r.
● There are at most n nodes in ₋ and the number ℱ

of compresses in C₋ is m₋.
● Therefore, we have

T(m, n, r) ≤ T(m₋, n, lg r) + 2n + m₊

Solving the Recurrence

● We have

T(m, n, r) ≤ T(m₋, n, lg r) + 2n + m₊
● As our base cases:

T(0, n, r) = 0

T(m, n, 2) ≤ 2n
● As the recursion unwinds:

● The 2n term gets multiplied by the number of layers in
the recursion.

● The m₊ term sums across the layers to at most m.

● The solution is T(m, n, r) ≤ 2nL + m, where L is
the total number of layers in the recursion.

Solving the Recurrence

● The solution is T(m, n, r) ≤ 2nL + m, where L is
the total number of layers in the recursion.

● At each layer, we shrink r from r to lg r.
● The maximum number of times you can do this

before r gets to 2 is at most lg* r.

● Therefore, T(m, n, r) ≤ 2n lg* r + m.

● Since r = O(log n), this is O(n lg* lg n + m).

Adding Extra Stars

The Feedback Lemma

● Lemma: If

T(m, n, r) ≤ 2n log*(k) r + km

then

T(m, n, r) ≤ 2n log*(k+1) r + (k + 1)m

● This will enable us to place as many stars as
we'd like on the runtime.

What We'll Prove

● Lemma: If

T(m, n, r) ≤ 2n log* r + m

then

T(m, n, r) ≤ 2n log** r + 2m

● This is a special case of the theorem with
k = 1, but uses the same basic approach.

● Fun exercise: Update the proof to the general
case.

The Recurrence

● Let be a rank forest of maximum rank ℱ r and let C
be a worst-case series of m compressions
performed in .ℱ

● Split into ₋ and ₊ by putting all nodes of ℱ ℱ ℱ
depth at most lg* r into ₋ and all other nodes ℱ into

₊.ℱ
● There exist C₊ and C₋ such that

cost(C) ≤ cost(C₊) + cost(C₋) + n + m₊
● Therefore

T(m, n, r) ≤ cost(C₊) + cost(C₋) + n + m₊
● Let's see if we can simplify this expression.

An Observation

● The forest ₊ consists of all nodes whose rank ℱ
is at least lg* r.

● Therefore, the ranks go from lg* r + 1 up
through and including r.

● The number of nodes in ₊ is at mostℱ n / 2lg* r

● If we subtract lg* r + 1 from the ranks of all of
the nodes, we end up with a rank forest with
ranks going up to at most r.

● Then cost(C₊) ≤ 2(n / 2lg* r) lg* r + m₊.
● Therefore, cost(C₊) ≤ 2n + m₊.

The Recurrence

● We had

T(m, n, r) ≤ cost(C₊) + cost(C₋) + n + m₊
● We now have

T(m, n, r) ≤ cost(C₋) + 2n + 2m₊
● Notice that C₋ is a set of compressions in a rank

forest of maximum rank lg* r.
● There are at most n nodes in ₋ and the number ℱ

of compresses in C₋ is m₋.
● Therefore, we have

T(m, n, r) ≤ T(m₋, n, lg* r) + 2n + 2m₊

Solving the Recurrence

● We have
● T(m, n, r) ≤ T(m₋, n, lg* r) + 2n + 2m₊

● As our base cases:

T(0, n, r) = 0

T(m, n, 2) ≤ 2n
● As the recursion unwinds:

● The 2n term gets multiplied by the number of layers
in the recursion.

● The 2m₊ term sums across the layers to 2m.

● The solution is T(m, n, r) ≤ 2nL + 2m, where L
is the total number of layers in the recursion.

Solving the Recurrence

● The solution is T(m, n, r) ≤ 2nL + 2m, where L is
the total number of layers in the recursion.

● At each layer, we shrink r from r to lg* r.

● The maximum number of times you can do this
before r gets to 2 is lg** r.

● Thus T(m, n, r) ≤ 2n lg** r + 2m.

The Optimal Approach

● We know that for any k > 0, that

T(m, n, r) ≤ 2n lg*(k) r + km
● Since r = O(log n), this means that for any k > 0, we

have

T(m, n) = O(n lg*(k) lg n + km)
● What is the optimal value of k?
● The Ackermann inverse function α(n) is defined

as follows:

α(m, n) = min { k | lg*(k) lg n ≤ 1 + m / n }
● Therefore:

T(m, n) = O(n + m + α(m, n)) = O(n + mα(m, n))

Completing the Analysis

● In a forest of n nodes, if we do m union and
find operations, the total runtime will be

O(m + mα(m, n)) = O(n + mα(m, n)).

● Assuming that m ≥ n, the amortized cost per
operation is O(α(m, n)).

For Perspective

● Consider 265,536.
● Then

● lg 265,536 = 65,536 = 216

● lg 216 = 16 = 24

● lg 24 = 4 = 22

● lg 22 = 2

● So lg* 265,536 = 4.

For Perspective

● Recall that lg* 265,656 = 4.

● Let z be 2 raised to the 265,656th power.
● Then lg* z = 5.

● If you let z' = 2z, then lg* z' = 6.
● Since lg** z' counts the number of times you

have to apply lg* to z' to drop it down to two,
this means that lg** z' is about three.

● Therefore, if m ≥ n, then α(m, n) ≤ 3 as long as
n ≥ z'.

Next Time

● Fully-Dynamic Connectivity
● How to maintain full connectivity

information in a dynamic graph.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82

