
  

Disjoint-Set Forests



  

Thanks for Showing Up!



  

Outline for Today

● Incremental Connectivity
● Maintaining connectivity as edges are added to a graph.

● Disjoint-Set Forests
● A simple data structure for incremental connectivity.

● Union-by-Rank and Path Compression
● Two improvements over the basic data structure.

● Forest Slicing
● A technique for analyzing these structures.

● The Ackermann Inverse Function
● An unbelievably slowly-growing function.



  

The Dynamic Connectivity Problem



  

The Connectivity Problem

● The graph connectivity problem is the following:

Given an undirected graph G, preprocess the graph so 
that queries of the form “are nodes u and v 

connected?”

Using Θ(m + n) preprocessing, can preprocess the 
graph to answer queries in time O(1).



  

Dynamic Connectivity

● The dynamic connectivity problem is the following:

Maintain an undirected graph G so that edges may be 
inserted an deleted and connectivity queries may be 

answered efficiently.

● This is a much harder problem!



  

Dynamic Connectivity

● Euler tour trees solve dynamic connectivity in 
forests.

● Today, we'll focus on the incremental dynamic 
connectivity problem: maintaining connectivity 
when edges can only be added, not deleted.

● Applications to Kruskal's MST algorithm.

● Next Monday, we'll see how to achieve full 
dynamic connectivity in polylogarithmic amortized 
time.



  

Incremental Connectivity and Partitions



  

Set Partitions

● The incremental connectivity problem is equivalent 
to maintaining a partition of a set.

● Initially, each node belongs to its own set.
● As edges are added, the sets at the endpoints 

become connected and are merged together.
● Querying for connectivity is equivalent to querying 

for whether two elements belong to the same set.
● Goal: Maintain a set partition while supporting the 

union and in-same-set operation.



  

Representatives

● Given a partition of a set S, we can choose one 
representative from each of the sets in the 
partition.

● Representatives give a simple proxy for which set 
an element belongs to: two elements are in the 
same set in the partition iff their set has the same 
representative.



  

Union-Find Structures

● A union-find structure is a data structure 
supporting the following operations:
● find(x), which returns the representative of 

node x, and
● union(x, y), which merges the sets containing x 

and y into a single set.
● We'll focus on these sorts of structures as a 

solution to incremental connectivity.



  

Data Structure Idea

● Idea: Associate each element in a set with a 
representative from that set.

● To determine if two nodes are in the same set, 
check if they have the same representative.

● To link two sets together, change all elements 
of the two sets so they reference a single 
representative.



  

Using Representatives



  

Using Representatives

● If we update all the representative 
pointers in a set when doing a union, we 
may spend time O(n) per union 
operation.

● Can we avoid paying this cost?



  

Hierarchical Representatives



  

Hierarchical Representatives

● In a degenerate case, a hierarchical 
representative approach will require 
time Θ(n) for some find operations.

● Therefore, some union operations will 
take time Θ(n) as well.

● Can we avoid these degenerate cases?



  

Union by Rank
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Union by Rank

● Assign to each node a rank that is initially zero.

● To link two trees, link the tree of the smaller 
rank to the tree of the larger rank.

● If both trees have the same rank, link one to 
the other and increase the rank of the other 
tree by one.



  

Union by Rank

● Claim: The number of nodes in a tree of 
rank r is at least 2r.
● Proof is by induction; intuitively, need to double 

the size to get to a tree of the next order.

● Claim: Maximum rank of a node in a graph 
with n nodes is O(log n).

● Runtime for union and find is now 
O(log n).



  

Path Compression
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Path Compression
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Path Compression

● Path compression is an optimization to the 
standard disjoint-set forest.

● When performing a find, change the parent 
pointers of each node found along the way to point 
to the representative.

● When combined with union-by-rank, the runtime is 
O(log n).

● Intuitively, it seems like this shouldn't be tight, 
since repeated find operations will end up taking 
less time.



  

The Claim

● Claim: The runtime of union and find when 
using path compression and union-by-rank is 
amortized O(α(n)), where α is an extremely 
slowly-growing function.

● The original proof of this result (which is 
included in CLRS) is due to Tarjan and uses a 
complex amortized charging scheme.

● Today, we'll use a proof due to Seidel and 
Sharir based on a forest-slicing approach.



  

Where We're Going

● This analysis is nontrivial.
● First, we're going to define our cost model so we 

know how to analyze the structure.
● Next, we'll introduce the forest-slicing approach 

and use it to prove a key lemma.
● Finally, we'll use that lemma to build recurrence 

relations that analyze the runtime.



  

Our Cost Model

● The cost of a union or find is O(1) plus 
Θ(#ptr-changes-made)

● Therefore, the cost of m operations is

Θ(m + #ptr-changes-made)

● We will analyze the number of pointers 
changed across the life of the data structure to 
bound the overall cost.



  

Some Accounting Tricks

● To perform a union operation, we need to first 
perform two finds.

● After that, only O(1) time is required to perform 
the union operation.

● Therefore, we can replace each union(x, y) with 
three operations:
● A call to find(x).
● A call to find(y).
● A linking step between the nodes found this way.

● Going forward, we will assume that each union 
operation will take worst-case time O(1).



  

A Slight Simplification

● Currently, find(x) compresses from x up to its 
ancestor.

● For mathematical simplicity, we'll introduce an 
operation compress(x, y) that compresses 
from x upward to y, assuming that y is an 
ancestor of x.

● Our analysis will then try to bound the total 
cost of the compress operations.



  

Removing the Interleaving

● We will run into some trouble in our 
analysis because unions and compresses 
can be interleaved.

● To address this, we will will remove the 
interleaving by pretending that all 
compresses come before all compresses.

● This does not change the overall work being 
done.



  

Removing the Interleaving

compress(j, b)
union(b, a)

compress(h, a)

f → b
h → b
j → b
b → a
h → a

a
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union(b, a)
compress(j, b)
compress(h, a)

b → a
f → b
h → b
j → b
h → a



  

Recap: The Setup

● Transform any sequence of unions and finds as 
follows:
● Replace all union operations with two finds and a 

union on the ancestors.
● Replace each find operation with a compress 

operation indicating its start and end nodes.
● Move all union operations to the front.

● Since all unions are at the front, we build the 
entire forest before we begin compressing.

● Can analyze compress assuming the forest has 
already been created for us.



  

The Forest-Slicing Approach



  

Forest-Slicing
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Forest-Slicing

● Let  be a disjoint-set forest.ℱ
● Consider splitting  into two forests ₊ ℱ ℱ

and ₋ with the following properties:ℱ
● ₊ ℱ is upward-closed: if x ∈ ₊, then any ℱ

ancestor of x is also in ₊.ℱ
● ₋ ℱ is downward-closed: if x ∈ ₋, then any ℱ

descendant of x is also in ₋.ℱ
● We'll call ₊ the ℱ top forest and ₋ the ℱ

bottom forest.



  

Forest-Slicing
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Forest-Slicing
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Nodes from ₋ never ℱ
move into ₊ or ℱ

vice-versa. We retain the 
original cut after doing 

compressions.

Nodes from ₋ never ℱ
move into ₊ or ℱ

vice-versa. We retain the 
original cut after doing 

compressions.



  

Why Slice Forests?



  

Forest-Slicing

● Key insight: Each compress operation is either
● purely in ₊,ℱ
● purely in ₋, orℱ
● crosses from ₋ into ₊.ℱ ℱ

● Analyze the runtime of a series of compressions 
using a divide-and-conquer approach:
● Analyze the compressions purely in ₊ and ₋ ℱ ℱ

recursively.
● Bound the cost of the compressions crossing from ₊ ℱ

to ₋ separately.ℱ
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Observation 1: The portion of the 
compression in ₊ is equivalent to a ℱ

compression of the first node in ₊ on ℱ
the compression path to the last node 

in ₊ on the compression path.ℱ

Observation 1: The portion of the 
compression in ₊ is equivalent to a ℱ

compression of the first node in ₊ on ℱ
the compression path to the last node 

in ₊ on the compression path.ℱ
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Observation 2: The effect of the 
compression on ₋ is ℱ not the same as 

the effect of compressing from the first 
node in ₋ to the last node in ₋.ℱ ℱ

Observation 2: The effect of the 
compression on ₋ is ℱ not the same as 

the effect of compressing from the first 
node in ₋ to the last node in ₋.ℱ ℱ
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Observation 3: The cost of the compress in 
₋ is the number of nodes in ₋ that got a ℱ ℱ

parent in ₊, plus (possibly) one more for the ℱ
topmost node in ₋ on the compression path.ℱ

Observation 3: The cost of the compress in 
₋ is the number of nodes in ₋ that got a ℱ ℱ

parent in ₊, plus (possibly) one more for the ℱ
topmost node in ₋ on the compression path.ℱ



  

The Cost of Crossing Compressions

● Suppose we do k compressions crossing from 
₋ into ₊.ℱ ℱ

● We can upper bound the cost of these 
compressions as the sum of the following: 
● The cost of all the tops of those compressions, 

which occur purely in ₊.ℱ
● k (one per compression).
● The number of nodes in ₋, since each node in ℱ

₋ gets a parent in ₊ for the first time at most ℱ ℱ
once.



  

Theorem: Let  be a disjoint-set forest and let ₊ℱ ℱ
 and ₋ be a partition of  into top and bottomℱ ℱ

forests.

Then for any series of m compressions C, there 
exist compression sequences C₊ in ₊ and ℱ C₋ in 

₋ such thatℱ

 · cost(C) ≤ cost(C₊) + cost(C₋) + n + m₊

 · m₊ + m₋ = m

Here, m₊ = |C₊| and m₋ = |C₋|.

Paths purely in ₊ or ℱ
₋, plus the tops of ℱ

paths crossing them.

Paths purely in ₊ or ℱ
₋, plus the tops of ℱ

paths crossing them.

Nodes in ₋ ℱ
getting their 
first parent 

in ₊ℱ

Nodes in ₋ ℱ
getting their 
first parent 

in ₊ℱ

Nodes in ₋ ℱ
having their 
parent in ₊ ℱ

change.

Nodes in ₋ ℱ
having their 
parent in ₊ ℱ

change.



  

Time-Out for Announcements!



  

Midterms Graded

● Midterms are graded and available for pickup.

● Solutions and statistics released in hardcopy 
up front.

● Regrades accepted until next Monday at 
3:15PM; just let us know what problem(s) you'd 
like us to review.



  

Presentation Schedule

● We've posted the presentation schedule 
to the course website.

● You're welcome to attend any 
presentations you'd like as long as 
they're not on the same data structure 
that you chose.



  

Writeup Logistics

● Writeup will be due electronically as a 
PDF exactly 24 hours before you present.

● Your writeup should include
● background on the data structure,
● how the data structure works,
● a correctness and runtime analysis, and
● what your “interesting” addition is.



  

Presentation Logistics

● Presentation should be 15 – 20 minutes; 
we'll cut you off after 20 minutes.

● We'll have up to five minutes of questions 
afterwards.

● Please arrive five minutes early so you 
have time to get set up.

● Don't try to present everything – you 
won't have time!



  

Your Questions



  

“Can we have some opportunity to practice 
our presentations in whatever room they're 

being presented in?”

Absolutely! The room 
assignments are posted online. 

Feel free to stop by those 
locations to try out your 

presentation, and feel free to 
invite friends along with!

Absolutely! The room 
assignments are posted online. 

Feel free to stop by those 
locations to try out your 

presentation, and feel free to 
invite friends along with!



  

“How long do you plan on teaching? Do you 
think you'll ever want to leave Stanford, 

either to pursue options at other 
universities or to do research for a 

company? Do you have any desire to start 
your own company?”

Wow, that's a 
hard one.

Wow, that's a 
hard one.



  

Back to CS166!



  

The Main Analysis



  

Where We Are

● We now have a divide-and-conquer-style 
result for evaluating the runtime of a 
series of compresses.

● We'll now combine that analysis with 
some Clever Math to get the overall 
runtime bound.



  

Rank Forests

● The result we proved about compression 
costs works even if we don't use 
union-by-rank.

● If we do use union-by-rank, the following 
results hold:
● The maximum rank of any node is O(log n).
● For any rank r, there are at most n / 2r nodes 

of rank greater than r.



  

Some Terminology

● Let's denote by T(m, n) the maximum 
possible cost of performing m 
compresses in a rank forest of n nodes.

● Define T(m, n, r) to be the maximum 
possible cost of performing m 
compresses in a rank forest of at most n 
nodes and with maximum rank r.

● Note that T(m, n) = T(m, n, O(log n)).



  

Functional Iteration

● Let f : ℕ → ℕ be a nondecreasing function 
where f(0) = 0 and f(n) < n for n > 0.

● The iterated function of f, denoted f*, is 
defined as follows:

 
● Intuitively, f*(n) is the number of times that f 

has to be applied to n for n to drop down to 2.

● (The choice of 2 here is arbitrary; we just 
need a nice, small constant.)

f * (n)={ 0 if f (n)≤2
1+ f * ( f (n)) otherwise



  

Functional Iteration

● As an example, consider the function 
lg n, assuming that we round down.

● Notice that
● lg 137 = 7
● lg 7 = 2

● Therefore, lg* 137 = 2.



  

Iterated Logarithms

● For any k, define

log*(k) n = log***...* n (k times)
● These functions are extremely 

slowly-growing.
● log* n ≤ 4 for all n < 265,536, for example.
● Fun exercise: What is the inverse 

function of log* n? How about log** n?



  

Where We're Going

● We're going to show that

T(m, n) = O(n lg*(k) lg n + m)

for any constant k ≥ 1
● From there, we'll define a function α(n) 

that grows slower than lg*(k) n for any k 
and prove that

 T(m, n) = O(mα(n) + n)   



  

Our Approach

● Our result will rely on a “feedback” 
technique used to build stronger results 
out of weaker ones.

● We'll find an initial proof that

T(m, n) = O(n lg* lg n + m).
● Then, we'll prove that if we know that 

T(m, n) = O(n lg*(k) lg n + m), then we 
can prove T(m, n) = O(n lg*(k+1) lg n + m)



  

Proving T(m, n) = O(n lg* lg n + m)



  

A Starting Point

● Lemma: T(m, n, r) ≤ nr.
● Proof: Since the maximum possible rank 

is r, each node can have its parent 
change at most r times. Therefore, the 
number of pointer changes made is at 
most nr.

● (Remember that we've defined the cost 
to be the number of pointer changes.)



  

Getting a Recurrence

● Let  be a rank forest of maximum rank ℱ r and let C be 
a worst-case series of m compresses performed in .ℱ

● Split  into ₋ and ₊ by putting all nodes of rank at ℱ ℱ ℱ
most lg r into ₋ and all other nodesℱ  into ₊.ℱ

● By our earlier theorem, there exist C₊ and C₋ such 
that

cost(C) ≤ cost(C₊) + cost(C₋) + n + m₊
● Therefore

T(m, n, r) ≤ cost(C₊) + cost(C₋) + n + m₊
● Let's see if we can simplify this expression, starting 

with cost(C₊). 



  

An Observation

● The forest ₊ consists of all nodes whose rank is ℱ
greater than lg r.

● Therefore, the ranks go from lg r + 1 up through 
and including r.

● By our earlier result, the number of nodes in ₊ ℱ
is at most n / 2lg r = n / r.

● If we subtract lg r + 1 from the ranks of all of 
the nodes, we end up with a rank forest whose 
maximum rank is at most r.

● Therefore, by our earlier lemma, we get that 
cost(C₊) ≤ r (n / r) = n.



  

The Recurrence

● We had

T(m, n, r) ≤ cost(C₊) + cost(C₋) + n + m₊
● We now have

T(m, n, r) ≤ cost(C₋) + 2n + m₊
● Notice that C₋ is a set of compressions in a rank 

forest of maximum rank lg r.
● There are at most n nodes in ₋ and the number ℱ

of compresses in C₋ is m₋.
● Therefore, we have

T(m, n, r) ≤ T(m₋, n, lg r) + 2n + m₊



  

Solving the Recurrence

● We have

T(m, n, r) ≤ T(m₋, n, lg r) + 2n + m₊
● As our base cases:

T(0, n, r) = 0

T(m, n, 2) ≤ 2n
● As the recursion unwinds:

● The 2n term gets multiplied by the number of layers in 
the recursion.

● The m₊ term sums across the layers to at most m.

● The solution is T(m, n, r) ≤ 2nL + m, where L is 
the total number of layers in the recursion.



  

Solving the Recurrence

● The solution is T(m, n, r) ≤ 2nL + m, where L is 
the total number of layers in the recursion.

● At each layer, we shrink r from r to lg r.
● The maximum number of times you can do this 

before r gets to 2 is at most lg* r.

● Therefore, T(m, n, r) ≤ 2n lg* r + m.

● Since r = O(log n), this is O(n lg* lg n + m).



  

Adding Extra Stars



  

The Feedback Lemma

● Lemma: If

T(m, n, r) ≤ 2n log*(k) r + km

then

T(m, n, r) ≤ 2n log*(k+1) r + (k + 1)m

● This will enable us to place as many stars as 
we'd like on the runtime.



  

What We'll Prove

● Lemma: If

T(m, n, r) ≤ 2n log* r + m

then

T(m, n, r) ≤ 2n log** r + 2m

● This is a special case of the theorem with 
k = 1, but uses the same basic approach.

● Fun exercise: Update the proof to the general 
case.



  

The Recurrence

● Let  be a rank forest of maximum rank ℱ r and let C 
be a worst-case series of m compressions 
performed in .ℱ

● Split  into ₋ and ₊ by putting all nodes of ℱ ℱ ℱ
depth at most lg* r into ₋ and all other nodes ℱ into 

₊.ℱ
● There exist C₊ and C₋ such that

cost(C) ≤ cost(C₊) + cost(C₋) + n + m₊
● Therefore

T(m, n, r) ≤ cost(C₊) + cost(C₋) + n + m₊
● Let's see if we can simplify this expression.



  

An Observation

● The forest ₊ consists of all nodes whose rank ℱ
is at least lg* r.

● Therefore, the ranks go from lg* r + 1 up 
through and including r.

● The number of nodes in ₊ is at mostℱ  n / 2lg* r

● If we subtract lg* r + 1 from the ranks of all of 
the nodes, we end up with a rank forest with 
ranks going up to at most r.

● Then cost(C₊) ≤ 2(n / 2lg* r) lg* r + m₊.
● Therefore, cost(C₊) ≤ 2n + m₊.



  

The Recurrence

● We had

T(m, n, r) ≤ cost(C₊) + cost(C₋) + n + m₊
● We now have

T(m, n, r) ≤ cost(C₋) + 2n + 2m₊
● Notice that C₋ is a set of compressions in a rank 

forest of maximum rank lg* r.
● There are at most n nodes in ₋ and the number ℱ

of compresses in C₋ is m₋.
● Therefore, we have

T(m, n, r) ≤ T(m₋, n, lg* r) + 2n + 2m₊



  

Solving the Recurrence

● We have
● T(m, n, r) ≤ T(m₋, n, lg* r) + 2n + 2m₊

● As our base cases:

T(0, n, r) = 0

T(m, n, 2) ≤ 2n
● As the recursion unwinds:

● The 2n term gets multiplied by the number of layers 
in the recursion.

● The 2m₊ term sums across the layers to 2m.

● The solution is T(m, n, r) ≤ 2nL + 2m, where L 
is the total number of layers in the recursion.



  

Solving the Recurrence

● The solution is T(m, n, r) ≤ 2nL + 2m, where L is 
the total number of layers in the recursion.

● At each layer, we shrink r from r to lg* r.

● The maximum number of times you can do this 
before r gets to 2 is lg** r.

● Thus T(m, n, r) ≤ 2n lg** r + 2m.



  

The Optimal Approach

● We know that for any k > 0, that

T(m, n, r) ≤ 2n lg*(k) r + km
● Since r = O(log n), this means that for any k > 0, we 

have

T(m, n) = O(n lg*(k) lg n + km)
● What is the optimal value of k?
● The Ackermann inverse function α(n) is defined 

as follows:

α(m, n) = min { k | lg*(k) lg n ≤ 1 + m / n }
● Therefore:

T(m, n) = O(n + m + α(m, n)) = O(n + mα(m, n))



  

Completing the Analysis

● In a forest of n nodes, if we do m union and 
find operations, the total runtime will be

O(m + mα(m, n)) = O(n + mα(m, n)).

● Assuming that m ≥ n, the amortized cost per 
operation is O(α(m, n)).



  

For Perspective

● Consider 265,536.
● Then

● lg 265,536 = 65,536 = 216

● lg 216 = 16 = 24

● lg 24 = 4 = 22

● lg 22 = 2

● So lg* 265,536 = 4.



  

For Perspective

● Recall that lg* 265,656 = 4.

● Let z be 2 raised to the 265,656th power.
● Then lg* z = 5.

● If you let z' = 2z, then lg* z' = 6.
● Since lg** z' counts the number of times you 

have to apply lg* to z' to drop it down to two, 
this means that lg** z' is about three.

● Therefore, if m ≥ n, then α(m, n) ≤ 3 as long as 
n ≥ z'.



  

Next Time

● Fully-Dynamic Connectivity
● How to maintain full connectivity 

information in a dynamic graph.
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