

Linear Probing

Outline for Today

● Linear Probing Hashing
● A simple and lightning fast hash table

implementation.

● Analyzing Linear Probing
● Why the degree of independence matters.

● Fourth Moment Bounds
● Another approach for estimating

frequencies.

Hashing Strategies

● All hash table implementations need to address what
happens when collisions occur.

● Common strategies:
● Closed addressing: Store all elements with hash collisions

in a secondary data structure (linked list, BST, etc.)
● Perfect hashing: Choose hash functions to ensure that

collisions don't happen, and rehash or move elements when
they do.

● Open addressing: Allow elements to “leak out” from their
preferred position and spill over into other positions.

● Linear probing is an example of open addressing.
● We'll see a type of perfect hashing (cuckoo hashing)

on Thursday.

Linear Probing

w

y z

r x

0 1

2

3

4

5

6
7

89

10

11

12

13

14

15

● Linear probing is a
simple open-addressing
hashing strategy.

● To insert an element x,
compute h(x) and try to
place x there.

● If it's full, keep moving
through the array,
wrapping around at the
end, until a free spot is
found.

Linear Probing

w

y z

r x

0 1

2

3

4

5

6
7

89

10

11

12

13

14

15

● To look up an element x,
compute h(x) and start
looking there.

● Move around the ring until
either the element is found
or a blank spot is detected.

● (We'll assume the load
factor prohibits us from
inserting so many elements
that there are no free
spaces.)

Linear Probing

w

y z

r x

0 1

2

3

4

5

6
7

89

10

11

12

13

14

15

● Deletions are a bit
trickier than in
chained hashing.

● We cannot just do a
search and remove
the element where
we find it.

● Why?

Linear Probing

y z

r x

0 1

2

3

4

5

6
7

89

10

11

12

13

14

15

● Deletions are a bit
trickier than in
chained hashing.

● We cannot just do a
search and remove
the element where
we find it.

● Why?

Linear Probing

y z

r x

0 1

2

3

4

5

6
7

89

10

11

12

13

14

15

● Deletions are a bit
trickier than in
chained hashing.

● We cannot just do a
search and remove
the element where
we find it.

● Why? r

Linear Probing

墓

y z

r x

0 1

2

3

4

5

6
7

89

10

11

12

13

14

15

● Deletions are often
implemented using
tombstones.

● When removing an element,
mark that the cell is empty
and was previously
occupied.

● When doing a lookup, don't
stop at a tombstone. Instead,
keep the search going.
● You need to watch out for

wraparounds.
● When inserting, feel free to

replace any tombstone you
encounter.

Linear Probing in Practice

● In practice, linear probing is one of the fastest
general-purpose hashing strategies available.

● This is surprising – it was originally invented in
1954! It's pretty amazing that it still holds up so
well.

● Why is this?
● Low memory overhead: just need an array and a hash

function.
● Excellent locality: when collisions occur, we only

search in adjacent locations in the array.
● Great cache performance: a combination of the above

two factors.

The Weakness

● Linear probing exhibits
severe performance
degradations when the
load factor gets high.

● The number of collisions
tends to grow as a
function of the number
of existing collisions.

● This is called primary
clustering.

0

412

13

14

11 1

2

3

10 11

10

0 1

2

3

4

5

6
7

89

10

11

12

13

14

15

Time-Out for Announcements!

Project Proposals

● Project proposals were due today at 3:00PM.
● Didn't submit yet? Please do so ASAP – if not,

you'll end up on a random team with a random
topic.

● We'll run a matchmaking algorithm to assign
topics and aim to get back to everyone by
Thursday.

● We're really excited to see what you all come
up with!

Problem Set Four

● Problem Set Four is due on Thursday at
3:00PM.

● Need help? Ask on Piazza or stop by
office hours!

Back to CS166!

Analyzing Linear Probing

Some Brief History

● The first rigorous analysis of linear probing was done
by Don Knuth in 1962. You can read it on the course
website.

● Knuth's analysis assumed that the underlying hash
function was a truly random function.

● Under this assumption, the expected cost of a
successful lookup is O(1 + (1 – α)-1), where α is the
load factor, and the expected cost of an insertion or
unsuccessful lookup is O(1 + (1 – α)-2).
● If we have n elements and m buckets, then α = n / m.

● Notice that this is O(1) for any fixed α, but as α grows,
this runtime gets progressively worse, as expected.

Hash Function Strength

● The preceding analysis assumes that the hash
functions used are truly random functions, which is
too strong an assumption in practice.

● Typically, the “strength” of hash functions in data
structures is measured by their independence.

● A family of hash functions from a universe to ℋ �
the set [m] is called k-independent if
● for any x ∈ , and for any � h drawn uniformly from , ℋ

the random variable h(x) is uniformly-distributed over
[m]; and

● for any distinct x₁, …, xₖ ∈ and any � h drawn uniformly
from , the random variables ℋ h(x₁), …, h(xₖ) are
independent.

● Theorem: The expected cost of a lookup in chained hashing with
2-independent hash functions is O(1 + α).

● Proof: Consider any key xi and let Xij be an indicator variable that's 1
if there's a collision between xi and xj and 0 otherwise. Then

The cost of a lookup is at most O(1) plus the number of collisions,
hence the expected lookup time is O(1 + α). ■

Comparison: Chained Hashing

E [∑
i≠ j

X ij] = ∑
i≠ j

E [X ij]

= ∑
i≠ j

Pr [h(x i)=h(x j)]

= ∑
i≠ j

∑
k=1

m

Pr [h(x j)=k | h(x i)=k]Pr [h(xi)=k]

= ∑
i≠ j

∑
k=1

m 1
m2

= ∑
i≠ j

1
m

≤ α

This term is 1/m because a 2-independent
hash function distributes each hash code
uniformly over the buckets.

This term is 1/m because a 2-independent
hash function distributes each hash code
uniformly over the buckets.

● Theorem: The expected cost of a lookup in chained hashing with
2-independent hash functions is O(1 + α).

● Proof: Consider any key xi and let Xij be an indicator variable that's 1
if there's a collision between xi and xj and 0 otherwise. Then

The cost of a lookup is at most O(1) plus the number of collisions,
hence the expected lookup time is O(1 + α). ■

Comparison: Chained Hashing

E [∑
i≠ j

X ij] = ∑
i≠ j

E [X ij]

= ∑
i≠ j

Pr [h(x i)=h(x j)]

= ∑
i≠ j

∑
k=1

m

Pr [h(x j)=k | h(x i)=k]Pr [h(xi)=k]

= ∑
i≠ j

∑
k=1

m 1
m2

= ∑
i≠ j

1
m

≤ α

This term is 1/m because, conditioning on
knowing h(xᵢ), the hash code of any other
key is independent and uniformly-
distributed.

This term is 1/m because, conditioning on
knowing h(xᵢ), the hash code of any other
key is independent and uniformly-
distributed.

● Theorem: The expected cost of a lookup in chained hashing with
2-independent hash functions is O(1 + α).

● Proof: Consider any key xi and let Xij be an indicator variable that's 1
if there's a collision between xi and xj and 0 otherwise. Then

The cost of a lookup is at most O(1) plus the number of collisions,
hence the expected lookup time is O(1 + α). ■

Comparison: Chained Hashing

E [∑
i≠ j

X ij] = ∑
i≠ j

E [X ij]

= ∑
i≠ j

Pr [h(x i)=h(x j)]

= ∑
i≠ j

∑
k=1

m

Pr [h(x j)=k | h(x i)=k]Pr [h(xi)=k]

= ∑
i≠ j

∑
k=1

m 1
m2

= ∑
i≠ j

1
m

≤ α

Why Linear Probing is Different

● In chained hashing,
collisions only occur when
two values have exactly the
same hash code.

● In linear probing, collisions
can occur between
elements with entirely
different hash codes.

● To analyze linear probing,
we need to know more than
just how many elements
collide with us.

0

412

13

14

11 1

2

3

10 11

10

0 1

2

3

4

5

6
7

89

10

11

12

13

14

15

The lookup time
here is huge even
though this key
only directly
collides with one
other.

The lookup time
here is huge even
though this key
only directly
collides with one
other.

Question: What impact – if any – does the
degree of independence of our hash

functions have in linear probing?

Analyzing Linear Probing

● When looking at k-independent hash functions, the analysis of
linear probing gets significantly more complex.

● Where we're going:
● Theorem: Using 2-independent hash functions, we can prove an

O(n1/2) expected cost of lookups with linear probing, and there's a
matching adversarial lower bound.

● Theorem: Using 3-independent hash functions, we can prove an
O(log n) expected cost of lookups with linear probing, and there's a
matching adversarial lower bound.

● Theorem: Using 5-independent hash functions, we can prove an
O(1) expected cost of lookups with linear probing.

● These results may seem completely counterintuitive now, but
they make a lot of sense when we dive into the math. In fact,
they hit at a key idea in the design and analysis of
randomized data structures.

The Setup
This data structure is

called a segment
tree. Look it up – it's

interesting!

This data structure is
called a segment

tree. Look it up – it's
interesting!

The Setup

1

3

42

6

5

1 2 3 4 5 6

The Setup

1

3

42

6

5

1 2 3 4 5 6

Let's use ⅓ as a load factor. On expectation, a block
of size 2l will have ⅓ · 2l keys hash into it.

We'll say that a bad block is one with at least ⅔ · 2l
keys hashing into it.

These bad blocks are highlighted in blue.

Let's use ⅓ as a load factor. On expectation, a block
of size 2l will have ⅓ · 2l keys hash into it.

We'll say that a bad block is one with at least ⅔ · 2l
keys hashing into it.

These bad blocks are highlighted in blue.

A Key Theorem

● Theorem: The probability that a key xᵢ is in a run of length
between 2l and 2l+1 is at most

b · Pr[the block of length 2l above h(xᵢ) in the tree is bad]

for some fixed universal constant b.
● Proof idea: Use the pigeonhole principle to show that if a

certain window of blocks of length 2l in the segment tree
aren't bad, then there aren't enough keys to make a run of
length 2l. Then, apply the union bound.
● See Thorup's lecture notes for details.

● We will use this theorem to determine the expected cost of a
lookup in a linear probing hash table.

Analyzing the Runtime

● The cost of looking up some key xq is bounded from
above by the length of the run containing xq.

● The expected cost of performing a lookup is therefore at
most

● Our previous theorem tells us that this cost is

● If we can determine the probability that a given block is

bad, then we'll have a bound on the expected lookup
cost for xq.

O (1) ⋅ ∑
l=0

O(logn)

2lPr [xq is in a run of length 2l
]

O (1) ⋅ ∑
l=0

O(logn)

2lPr [the 2l block above h(xq) is bad]

Bad Blocks

● Recall: On expectation, a block of size 2l will have ⅓ · 2l
elements in it.

● A bad block is one that has at least ⅔ · 2l elements in it.
● Pick a fixed size 2l. Let the random variable X represent

the number of keys that hash into the block of that size
near h(xq). We're then interested in

Pr[X ≥ ⅔ · 2l].
● Let's define μ = E[X] = ⅓ · 2l. Then the above quantity is

equivalent to

Pr[X ≥ 2μ],

or, equivalently,

Pr[X – μ ≥ μ].

A note: Everything in this
analysis implicitly is

conditioned on knowing on
where xq hashed to. For
simplicity we'll omit the
notation for it, but keep

this in mind!

A note: Everything in this
analysis implicitly is

conditioned on knowing on
where xq hashed to. For
simplicity we'll omit the
notation for it, but keep

this in mind!

Concentration Inequalities

● The expression

Pr[X – μ ≥ μ]

seems like a perfect case to try to use a concentration
bound, like we did last Thursday.

● Knowing nothing about X other than the fact that it's
nonnegative, we could start off by trying to use Markov's
inequality:

Pr[X ≥ cE[X]] ≤ 1/c

● Using what we have:

Pr[X – μ ≥ μ] = Pr[X ≥ 2μ] ≤ ½.

● That's a pretty weak bound. What does that do to our
analysis?

A Runtime Bound

● The expected cost of looking up xq in a linear probing table is

● Assuming 2-independent hashing, this is

● This bound is not at all useful. We're going to need to do better
than this!

O (1) ⋅ ∑
l=0

O(logn)

2lPr [the 2l block above h(xq) is bad]

≤ O (1) ⋅ ∑
l=0

O(logn)

2l⋅
1
2

= O (1) ⋅ ∑
l=0

O(logn)

2l−1

= O (n)

O (1) ⋅ ∑
l=0

O(logn)

2lPr [the 2l block above h(xq) is bad]

Concentration Inequalities

● Our previous analysis of X used Markov's inequality,
which makes no assumptions at all about the
distribution of X. Let's see if we can use our knowledge
of where X comes from to tighten the bound.

● Let Xᵢ be an indicator variable that's 1 if xᵢ hashes into
this block and 0 otherwise. Then we can write

● For notational simplicity pᵢ = E[Xᵢ]. We can evaluate

this directly if we'd like, but it turns out that we won't
actually be needing it.

● Notice that

X = ∑
i=1

n

X i .

μ = E [X] = E [∑
i=1

n

X i] = ∑
i=1

n

E [X i] = ∑
i=1

n

pi .

Chernoff Bounds

● Last time, we saw the Chernoff bound, which says that if
X ~ Binom(n, p) and p < 1/2, then

● We just saw that our variable X is the sum of a number of

Bernoulli variables Xᵢ, so it seems like we might be able
to apply Chernoff bounds here.

● Problem: These Xᵢ variables are not independent of one
another! We're assuming that we have a k-independent
hash function and are conditioning on knowing where xq
is, so while we can say that any k – 1 of these Xᵢ's are
independent, we can't say that any n of them are.

● Therefore, X is not binomially distributed, so we can't use
a Chernoff bound.

Pr [X > n/2] < e
−n(1/2−p)

2

2p

Chebyshev's Inequality

● The last remaining bound that we used last time
was Chebyshev's inequality, which states that

Pr [|X – μ| ≥ cσ] ≤ 1 / c2,

where σ2 is the variance of X.
● If we can determine σ2, then we can try using

Chebyshev's inequality to bound the probability
that X is a bad block.

The Variance

● For each Xᵢ, let σᵢ2 = Var[Xᵢ]. Then

So σ2 ≤ μ.

σ2
= Var [X]

= Var [∑
i=1

n

X i]

= ∑
i=1

n

Var [X i]

= ∑
i=1

n

σi
2

= ∑
i=1

n

pi(1−pi)

≤ ∑
i=1

n

pi

= μ

Assume, going forward, that
the Xᵢ's are pairwise
independent.

Assume, going forward, that
the Xᵢ's are pairwise
independent.

We're already conditioning on
knowing h(xq).

This means that we need our
hash function to be at least
3-independent from this
point onward.

We're already conditioning on
knowing h(xq).

This means that we need our
hash function to be at least
3-independent from this
point onward.

The Variance

● For each Xᵢ, let σᵢ2 = Var[Xᵢ]. Then

So σ2 ≤ μ.

σ2
= Var [X]

= Var [∑
i=1

n

X i]

= ∑
i=1

n

Var [X i]

= ∑
i=1

n

σi
2

= ∑
i=1

n

pi(1−pi)

≤ ∑
i=1

n

pi

= μ

Using Chebyshev

● We want to know

Pr[X – μ ≥ μ].

● Using Chebyshev's inequality:

● So the probability that a block of length 2l is bad is
at most μ-1 = 3 · 2-l.

Pr [X−μ ≥ μ] ≤ Pr [|X−μ| ≥ μ]

= Pr [|X−μ| ≥ √μ√μ]

≤ Pr [|X−μ| ≥ √μσ]

≤
1
μ

A Better Bound

● The expected cost of looking up xq in a linear probing table is

● Assuming 3-independent hashing, this is

● Theorem: This runtime bound is tight (there's an adversarial
choice of a 3-independent hash function that degrades the
runtime to this level.)

O (1) ⋅ ∑
l=0

O(logn)

2lPr [the 2l block above h(xq) is bad]

≤ O (1) ⋅ ∑
l=0

O(logn)

2l⋅3⋅2−l

= O (1) ⋅ ∑
l=0

O(logn)

3

= O (logn)

O (1) ⋅ ∑
l=0

O(logn)

2lPr [the 2l block above h(xq) is bad]

Why This Works

● Key idea: Increasing the degree of independence lets us
control the variance of the distribution.

● With 2-independent hashing, we use one degree of
independence to condition on knowing where some specific
key lands. At that point, we only have one more degree of
independence – not enough to control the variance!

● With 3-independent hashing, we use one degree of
independence to condition on knowing where the key
lands. We can then use the two remaining degrees of
independence to control the variance and use Chebyshev's
inequality.

● Small increases to the independence of a hash
function can dramatically tighten concentration
bounds.

Question: If we increase the degree of
independence further, can we constrain the

spread of the elements in a way that
improves our runtime?

(This is the theory version of “can we do
better?”)

A Review: Deriving Chebyshev

● Let's take a minute to derive Chebyshev's inequality.

● Let X be a random variable with mean μ and variance σ2.
Then

Pr[|X – μ| ≥ cσ] = Pr[(X – μ)2 ≥ c2σ2].

● Let Y = (X – μ)2. Notice that

E[Y] = E[(X – μ)2] = σ2.

● So, via Markov's inequality, we have

Pr [|X−μ| ≥ cσ] = Pr [(X−μ)
2

≥ c2σ2
]

= Pr [Y ≥ c2σ2
]

= Pr [Y ≥ c2E [Y]]

≤
1
c2

.

Generalizing Chebyshev

● The variance of a random variable X with mean μ is
defined as

σ2 = E[(X – μ)2].
● We can generalize this to higher exponents.
● The kth central moment of a random variable X with

mean μ, denoted μₖ, is defined as

μₖ = E[(X – μ)k].
● Notice that

μ₁ = E[(X – μ)1] = 0 μ₂ = E[(X – μ)2] = σ2

● Central moments give a way of measuring how much X
is spread out from its mean. Higher central moments
give progressively more weight to outliers.

The Fourth Moment Inequality

● The fourth moment inequality states that

● It's a generalization of Chebyshev's inequality, and the proof is
similar.

● Let X be a random variable with mean μ and fourth moment μ₄. Then

● Let Y = (X – μ)4 . Notice that

E[Y] = E[(X – μ)4] = μ₄.

● So, via Markov's inequality, we have

Pr [|X−μ| ≥ c 4√μ4] = Pr [(X−μ)
4

≥ c4 μ4]

= Pr [Y ≥ c4 μ4]

= Pr [Y ≥ c4 E[Y]]

≤
1

c4
.

Pr [|X−μ| ≥ c 4√μ4] ≤
1

c4

Pr [|X−μ| ≥ c 4√μ4] = Pr [(X−μ)
4

≥ c4 μ4]

Good question to ponder:
why doesn't this work for
the third central moment?

Good question to ponder:
why doesn't this work for
the third central moment?

Updating our Analysis

● For linear probing, we're ultimately interested in
bounding

Pr[X – μ ≥ μ]

in the case where X represents the number of elements
hitting a particular block.

● Using 2-independent hashing, the best bound we could
use was Markov's inequality, which gave an extremely
weak bound.

● Using 3-independent hashing, we could use
Chebyshev's inequality, which gave us a bound of μ-1.

● Question: If we use stronger hash functions, can we
tighten this bound using the fourth moment inequality?

The Fourth Moment

● Let μ₄ = E[(X – μ)4]. We want to get a nice bound on μ₄.

● So now we “just” need to simplify this expression.

E[(X−μ)
4
] = E[(∑

i=1

n

X i−∑
i=1

n

pi)
4

]

= E[(∑
i=1

n

(X i−pi))
4

]

= E[∑
i=1

n

∑
j=1

n

∑
k=1

n

∑
l=1

n

(X i−pi)(X j−p j)(Xk−pk)(X l−pl)]

= ∑
i=1

n

∑
j=1

n

∑
k=1

n

∑
l=1

n

E[(X i−pi)(X j−p j)(Xk−pk)(X l−pl)]

Increasing our Independence

● Recall: If our hash function is k-independent, then
we've already used one degree of independence
conditioning on knowing where h(xq) is. That leaves us
with k-1 degrees of independence.

● Let's suppose we're using a 5-independent hash
function, meaning that any four hash values are
independent of one another.

● This allows us to make some amount of progress in
simplifying this expression.

E[(X−μ)
4
] = ∑

i=1

n

∑
j=1

n

∑
k=1

n

∑
l=1

n

E [(X i−pi)(X j−p j)(Xk−pk)(X l−pl)]

Exploring this Summation

● The terms of this summation might sometimes range
over the same variables at the same time:

● Claim: Any term in the summation where i ≠ j, i ≠ k,

and i ≠ l is 0.

● Proof: Suppose that Xᵢ is a different random variable
from the others. Then

E[(X−μ)
4
] = ∑

i=1

n

∑
j=1

n

∑
k=1

n

∑
l=1

n

E[(X i−pi)(X j−p j)(Xk−pk)(X l−pl)]

E[(X i−pi)(X j−p j)(Xk−pk)(X l−pl)]

= E[X i−pi]E[(X j−p j)(Xk−pk)(X l−pl)]

= 0⋅E[(X j−p j)(Xk−pk)(X l−pl)]

= 0

Exploring this Summation

● The terms of this summation might sometimes range
over the same variables at the same time:

● Claim: The above summation reduces only to the case

where i=j=k=l and the case where there are exactly
two distinct random variables in the product.

● Proof: If a variable appears exactly once, it doesn't
contribute to the total. If a variable appears three
times, some other variable contributes exactly once.

E[(X−μ)
4
] = ∑

i=1

n

∑
j=1

n

∑
k=1

n

∑
l=1

n

E[(X i−pi)(X j−p j)(Xk−pk)(X l−pl)]

E[(X−μ)4] = ∑
i=1

n

∑
j=1

n

∑
k=1

n

∑
l=1

n

E[(X i−pi)(X j−p j)(Xk−pk)(X l−pl)]

= ∑
i=1

n

E[(X i−pi)
4
] + (42)∑

i=1

n

∑
j=i+1

n

E [(X i−pi)
2
(X j−p j)

2
]

= ∑
i=1

n

E[(X i−pi)
4] + 6∑

i=1

n

∑
j=i+1

n

E[(X i−pi)
2]E[(X j−p j)

2]

= ∑
i=1

n

E[(X i−pi)
4
] + 6∑

i=1

n

∑
j=i+1

n

σi
2σ j

2

= ∑
i=1

n

E[(X i−pi)
4
] + 3∑

i≠ j

σi
2σ j

2

≤ ∑
i=1

n

E[(X i−pi)
4
] + 3(∑

i=1

n

σi
2)

2

= ∑
i=1

n

E[(X i−pi)
4
] + 3(σ2

)
2

= ∑
i=1

n

E[(X i−pi)
4] + 3σ4

≤ σ2 + 3σ4

This term represents all the
possible ways we could pick

something four times.

This term represents all the
possible ways we could pick

something four times.

E[(X−μ)4] = ∑
i=1

n

∑
j=1

n

∑
k=1

n

∑
l=1

n

E[(X i−pi)(X j−p j)(Xk−pk)(X l−pl)]

= ∑
i=1

n

E[(X i−pi)
4
] + (42)∑

i=1

n

∑
j=i+1

n

E [(X i−pi)
2
(X j−p j)

2
]

= ∑
i=1

n

E[(X i−pi)
4] + 6∑

i=1

n

∑
j=i+1

n

E[(X i−pi)
2]E[(X j−p j)

2]

= ∑
i=1

n

E[(X i−pi)
4
] + 6∑

i=1

n

∑
j=i+1

n

σi
2σ j

2

= ∑
i=1

n

E[(X i−pi)
4
] + 3∑

i≠ j

σi
2σ j

2

≤ ∑
i=1

n

E[(X i−pi)
4
] + 3(∑

i=1

n

σi
2)

2

= ∑
i=1

n

E[(X i−pi)
4
] + 3(σ2

)
2

= ∑
i=1

n

E[(X i−pi)
4] + 3σ4

≤ σ2 + 3σ4

This accounts for the two-and-two
case. We choose two of the four

indices to serve as i and the other
two to serve as j, hence the

coefficient.

This accounts for the two-and-two
case. We choose two of the four

indices to serve as i and the other
two to serve as j, hence the

coefficient.

E[(X−μ)4] = ∑
i=1

n

∑
j=1

n

∑
k=1

n

∑
l=1

n

E[(X i−pi)(X j−p j)(Xk−pk)(X l−pl)]

= ∑
i=1

n

E[(X i−pi)
4
] + (42)∑

i=1

n

∑
j=i+1

n

E [(X i−pi)
2
(X j−p j)

2
]

= ∑
i=1

n

E[(X i−pi)
4] + 6∑

i=1

n

∑
j=i+1

n

E[(X i−pi)
2]E[(X j−p j)

2]

= ∑
i=1

n

E[(X i−pi)
4
] + 6∑

i=1

n

∑
j=i+1

n

σi
2σ j

2

= ∑
i=1

n

E[(X i−pi)
4
] + 3∑

i≠ j

σi
2σ j

2

≤ ∑
i=1

n

E[(X i−pi)
4
] + 3(∑

i=1

n

σi
2)

2

= ∑
i=1

n

E[(X i−pi)
4
] + 3(σ2

)
2

= ∑
i=1

n

E[(X i−pi)
4] + 3σ4

≤ σ2 + 3σ4

6 × = 3 ×

E[(X−μ)4] = ∑
i=1

n

∑
j=1

n

∑
k=1

n

∑
l=1

n

E[(X i−pi)(X j−p j)(Xk−pk)(X l−pl)]

= ∑
i=1

n

E[(X i−pi)
4
] + (42)∑

i=1

n

∑
j=i+1

n

E [(X i−pi)
2
(X j−p j)

2
]

= ∑
i=1

n

E[(X i−pi)
4] + 6∑

i=1

n

∑
j=i+1

n

E[(X i−pi)
2]E[(X j−p j)

2]

= ∑
i=1

n

E[(X i−pi)
4
] + 6∑

i=1

n

∑
j=i+1

n

σi
2σ j

2

= ∑
i=1

n

E[(X i−pi)
4
] + 3∑

i≠ j

σi
2σ j

2

≤ ∑
i=1

n

E[(X i−pi)
4
] + 3(∑

i=1

n

σi
2)

2

= ∑
i=1

n

E[(X i−pi)
4
] + 3(σ2

)
2

= ∑
i=1

n

E[(X i−pi)
4] + 3σ4

≤ σ2 + 3σ4

2

≤ =

E[(X−μ)4] = ∑
i=1

n

∑
j=1

n

∑
k=1

n

∑
l=1

n

E[(X i−pi)(X j−p j)(Xk−pk)(X l−pl)]

= ∑
i=1

n

E[(X i−pi)
4
] + (42)∑

i=1

n

∑
j=i+1

n

E [(X i−pi)
2
(X j−p j)

2
]

= ∑
i=1

n

E[(X i−pi)
4] + 6∑

i=1

n

∑
j=i+1

n

E[(X i−pi)
2]E[(X j−p j)

2]

= ∑
i=1

n

E[(X i−pi)
4
] + 6∑

i=1

n

∑
j=i+1

n

σi
2σ j

2

= ∑
i=1

n

E[(X i−pi)
4
] + 3∑

i≠ j

σi
2σ j

2

≤ ∑
i=1

n

E[(X i−pi)
4
] + 3(∑

i=1

n

σi
2)

2

= ∑
i=1

n

E[(X i−pi)
4
] + 3(σ2

)
2

= ∑
i=1

n

E[(X i−pi)
4] + 3σ4

≤ σ2 + 3σ4

Fact: The fourth central
moment of a Bernoulli random
variable with probability pᵢ is

at most its variance.
(Prove this!)

Fact: The fourth central
moment of a Bernoulli random
variable with probability pᵢ is

at most its variance.
(Prove this!)

The Net Result

● We've just shown that

μ₄ ≤ σ2 + 3σ4.
● Since σ2 ≤ μ, we can upper-bound this at

 μ₄ ≤ μ + 3μ2.
● For a sufficiently large block size, we know that

μ ≥ 1. Under that assumption, we get that

μ₄ ≤ μ2 + 3μ2 = 4μ2.
● Phew! That was crazy. But at least we now have a

bound on the fourth moment, which lets us use
the fourth moment inequality!

Fourth Moments for Victory

● Using the fourth moment inequality:

● So the probability that a block of length 2l is bad is at most
4μ-2 = 36 · 2-2l.

● Notice that this is exponentially better than our previous
bound!

Pr [X−μ ≥ μ] ≤ Pr [|X−μ| ≥ μ]

= Pr [|X−μ| ≥
√μ

√2
√2μ]

≤ Pr [|X−μ| ≥
√μ

√2
4√μ4]

≤ (√μ

√2)
−4

=
4

μ2

A Strong Runtime Bound

● The expected cost of looking up xq in a linear probing table is

● Assuming 5-independent hashing, this is

● We've finally obtained an O(1) bound on the cost of operations in a
chained hash table – provided that we use 5-independent hashing!

O (1) ⋅ ∑
l=0

O(logn)

2lPr [the 2l block above h(xq) is bad]

= O (1) ⋅ ∑
l=0

O(logn)

2l⋅36⋅2−2 l

= O (1) ⋅ ∑
l=0

O(logn)

2−l

= O (1)

O (1) ⋅ ∑
l=0

O(logn)

2lPr [the 2l block above h(xq) is bad]

What Just Happened?

● Ultimately, we wanted to bound the probability that a block was
twice as full as its expectation.

● With one degree of independence, we could obtain the expected
value and use that to bound the probability with Markov's
inequality.

● Using two degrees of independence, we could obtain the variance
and use that to bound the probability with Chebyshev's inequality.

● Using four degrees of independence, we could obtain the fourth
central moment and use that to bound the probability with the
fourth moment bound.

● Increasing the strength of a hash function allows us to obtain
more central moments and, therefore, to tighten our bound more
than might initially be suspected.

● This technique shows up a lot in randomized data structures.
You'll see it appear in the tug-of-war sketch on Problem Set Five.

Some Concluding Notes

Harnessing Entropy

● In our analysis, we made no assumptions about what
specific keys we were placing in our hash table.

● Theorem (Mitzenmacher and Vadhan): Using 2-
independent hash functions, if there is a reasonable
amount of entropy in the distribution of the keys, linear
probing takes time O(1).

● The proof essentially shows that 2-universal hash
functions applied to data with sufficient entropy very
closely approximate truly random functions.

● Intuitively, they get the “missing” randomness from the
distribution rather than from the hash function itself.

● See “Why Simple Hash Functions Work” for details –
it's a remarkable argument!

Next Time

● Cuckoo Hashing
● Hashing with worst-case O(1) lookups!

● The Cuckoo Graph
● Random graphs for Fun and Profit.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61

