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Outline for Today

● Linear Probing Hashing
● A simple and lightning fast hash table 

implementation.

● Analyzing Linear Probing
● Why the degree of independence matters.

● Fourth Moment Bounds
● Another approach for estimating 

frequencies.



  

Hashing Strategies

● All hash table implementations need to address what 
happens when collisions occur.

● Common strategies:
● Closed addressing: Store all elements with hash collisions 

in a secondary data structure (linked list, BST, etc.)
● Perfect hashing: Choose hash functions to ensure that 

collisions don't happen, and rehash or move elements when 
they do.

● Open addressing: Allow elements to “leak out” from their 
preferred position and spill over into other positions.

● Linear probing is an example of open addressing.
● We'll see a type of perfect hashing (cuckoo hashing) 

on Thursday.
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● Linear probing is a 
simple open-addressing 
hashing strategy.

● To insert an element x, 
compute h(x) and try to 
place x there.

● If it's full, keep moving 
through the array, 
wrapping around at the 
end, until a free spot is 
found. 
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● To look up an element x, 
compute h(x) and start 
looking there.

● Move around the ring until 
either the element is found 
or a blank spot is detected.

● (We'll assume the load 
factor prohibits us from 
inserting so many elements 
that there are no free 
spaces.)
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● Deletions are a bit 
trickier than in 
chained hashing.

● We cannot just do a 
search and remove 
the element where 
we find it.

● Why?
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trickier than in 
chained hashing.

● We cannot just do a 
search and remove 
the element where 
we find it.

● Why? r
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● Deletions are often 
implemented using 
tombstones.

● When removing an element, 
mark that the cell is empty 
and was previously 
occupied.

● When doing a lookup, don't 
stop at a tombstone. Instead, 
keep the search going.
● You need to watch out for 

wraparounds.
● When inserting, feel free to 

replace any tombstone you 
encounter.



  

Linear Probing in Practice

● In practice, linear probing is one of the fastest 
general-purpose hashing strategies available.

● This is surprising – it was originally invented in 
1954! It's pretty amazing that it still holds up so 
well.

● Why is this?
● Low memory overhead: just need an array and a hash 

function.
● Excellent locality: when collisions occur, we only 

search in adjacent locations in the array.
● Great cache performance: a combination of the above 

two factors.



  

The Weakness

● Linear probing exhibits 
severe performance 
degradations when the 
load factor gets high.

● The number of collisions 
tends to grow as a 
function of the number 
of existing collisions.

● This is called primary 
clustering.
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Time-Out for Announcements!



  

Project Proposals

● Project proposals were due today at 3:00PM.
● Didn't submit yet? Please do so ASAP – if not, 

you'll end up on a random team with a random 
topic.

● We'll run a matchmaking algorithm to assign 
topics and aim to get back to everyone by 
Thursday.

● We're really excited to see what you all come 
up with!



  

Problem Set Four

● Problem Set Four is due on Thursday at 
3:00PM.

● Need help? Ask on Piazza or stop by 
office hours!



  

Back to CS166!



  

Analyzing Linear Probing



  

Some Brief History

● The first rigorous analysis of linear probing was done 
by Don Knuth in 1962. You can read it on the course 
website.

● Knuth's analysis assumed that the underlying hash 
function was a truly random function.

● Under this assumption, the expected cost of a 
successful lookup is O(1 + (1 – α)-1), where α is the 
load factor, and the expected cost of an insertion or 
unsuccessful lookup is O(1 + (1 – α)-2).
● If we have n elements and m buckets, then α = n / m.

● Notice that this is O(1) for any fixed α, but as α grows, 
this runtime gets progressively worse, as expected.



  

Hash Function Strength

● The preceding analysis assumes that the hash 
functions used are truly random functions, which is 
too strong an assumption in practice.

● Typically, the “strength” of hash functions in data 
structures is measured by their independence.

● A family of hash functions  from a universe  to ℋ  �
the set [m] is called k-independent if
● for any x ∈ , and for any  � h drawn uniformly from , ℋ

the random variable h(x) is uniformly-distributed over 
[m]; and

● for any distinct x₁, …, xₖ ∈  and any  � h drawn uniformly 
from , the random variables ℋ h(x₁), …, h(xₖ) are 
independent. 



  

● Theorem: The expected cost of a lookup in chained hashing with
2-independent hash functions is O(1 + α).

● Proof: Consider any key xi and let Xij be an indicator variable that's 1 
if there's a collision between xi and xj and 0 otherwise. Then 

  

 

 

The cost of a lookup is at most O(1) plus the number of collisions, 
hence the expected lookup time is O(1 + α). ■

Comparison: Chained Hashing

E [∑
i≠ j

X ij] = ∑
i≠ j

E [ X ij]

= ∑
i≠ j

Pr [h(x i)=h(x j)]

= ∑
i≠ j

∑
k=1

m

Pr [h(x j)=k  | h(x i)=k]Pr [h(xi)=k]

= ∑
i≠ j

∑
k=1

m 1
m2

= ∑
i≠ j

1
m

≤ α

This term is 1/m because a 2-independent 
hash function distributes each hash code 
uniformly over the buckets.

This term is 1/m because a 2-independent 
hash function distributes each hash code 
uniformly over the buckets.
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key is independent and uniformly-
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Why Linear Probing is Different

● In chained hashing, 
collisions only occur when 
two values have exactly the 
same hash code.

● In linear probing, collisions 
can occur between 
elements with entirely 
different hash codes.

● To analyze linear probing, 
we need to know more than 
just how many elements 
collide with us.
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The lookup time 
here is huge even 
though this key 
only directly 
collides with one 
other.

The lookup time 
here is huge even 
though this key 
only directly 
collides with one 
other.



  

Question: What impact – if any – does the 
degree of independence of our hash 

functions have in linear probing?



  

Analyzing Linear Probing

● When looking at k-independent hash functions, the analysis of 
linear probing gets significantly more complex.

● Where we're going:
● Theorem: Using 2-independent hash functions, we can prove an 

O(n1/2) expected cost of lookups with linear probing, and there's a 
matching adversarial lower bound.

● Theorem: Using 3-independent hash functions, we can prove an 
O(log n) expected cost of lookups with linear probing, and there's a 
matching adversarial lower bound.

● Theorem: Using 5-independent hash functions, we can prove an 
O(1) expected cost of lookups with linear probing.

● These results may seem completely counterintuitive now, but 
they make a lot of sense when we dive into the math. In fact, 
they hit at a key idea in the design and analysis of 
randomized data structures.



  

The Setup
This data structure is 

called a segment 
tree. Look it up – it's 

interesting!

This data structure is 
called a segment 

tree. Look it up – it's 
interesting!



  

The Setup

1

3

42

6

5

1 2 3 4 5 6



  

The Setup

1

3

42

6

5

1 2 3 4 5 6

Let's use ⅓ as a load factor. On expectation, a block 
of size 2l will have ⅓ · 2l keys hash into it.
 

We'll say that a bad block is one with at least ⅔ · 2l 
keys hashing into it.
 

These bad blocks are highlighted in blue. 

Let's use ⅓ as a load factor. On expectation, a block 
of size 2l will have ⅓ · 2l keys hash into it.
 

We'll say that a bad block is one with at least ⅔ · 2l 
keys hashing into it.
 

These bad blocks are highlighted in blue. 



  

A Key Theorem

● Theorem: The probability that a key xᵢ is in a run of length 
between 2l and 2l+1 is at most

b · Pr[ the block of length 2l above h(xᵢ) in the tree is bad ]

for some fixed universal constant b.
● Proof idea: Use the pigeonhole principle to show that if a 

certain window of blocks of length 2l in the segment tree 
aren't bad, then there aren't enough keys to make a run of 
length 2l. Then, apply the union bound.
● See Thorup's lecture notes for details.

● We will use this theorem to determine the expected cost of a 
lookup in a linear probing hash table.



  

Analyzing the Runtime

● The cost of looking up some key xq is bounded from 
above by the length of the run containing xq.

● The expected cost of performing a lookup is therefore at 
most

  
● Our previous theorem tells us that this cost is

  
● If we can determine the probability that a given block is 

bad, then we'll have a bound on the expected lookup 
cost for xq. 

O (1) ⋅ ∑
l=0

O(logn)

2lPr [xq  is in a run of length 2l
]

O (1) ⋅ ∑
l=0

O(logn)

2lPr [the 2l block above h(xq) is bad ]



  

Bad Blocks

● Recall: On expectation, a block of size 2l will have ⅓ · 2l 
elements in it.

● A bad block is one that has at least ⅔ · 2l elements in it.
● Pick a fixed size 2l. Let the random variable X represent 

the number of keys that hash into the block of that size 
near h(xq). We're then interested in

Pr[ X ≥ ⅔ · 2l ].
● Let's define μ = E[X] = ⅓ · 2l. Then the above quantity is 

equivalent to

Pr[ X ≥ 2μ ],

or, equivalently,

Pr[ X – μ ≥ μ ].

A note: Everything in this 
analysis implicitly is 

conditioned on knowing on 
where xq hashed to. For 
simplicity we'll omit the 
notation for it, but keep 

this in mind! 

A note: Everything in this 
analysis implicitly is 

conditioned on knowing on 
where xq hashed to. For 
simplicity we'll omit the 
notation for it, but keep 

this in mind! 



  

Concentration Inequalities

● The expression

Pr[ X – μ ≥ μ ]

seems like a perfect case to try to use a concentration 
bound, like we did last Thursday.

● Knowing nothing about X other than the fact that it's 
nonnegative, we could start off by trying to use Markov's 
inequality:

Pr[ X ≥ cE[X] ] ≤ 1/c

● Using what we have:

Pr[ X – μ ≥ μ ] = Pr[ X ≥ 2μ ] ≤ ½.

● That's a pretty weak bound. What does that do to our 
analysis?



  

A Runtime Bound

● The expected cost of looking up xq in a linear probing table is

  
● Assuming 2-independent hashing, this is

 

● This bound is not at all useful. We're going to need to do better 
than this!

O (1) ⋅ ∑
l=0

O( logn)

2lPr [the 2l  block above h(xq) is bad ]

≤ O (1) ⋅ ∑
l=0

O( logn)

2l⋅
1
2

= O (1) ⋅ ∑
l=0

O( logn)

2l−1

= O (n)

O (1) ⋅ ∑
l=0

O( logn)

2lPr [ the 2l  block above h(xq) is bad ]



  

Concentration Inequalities

● Our previous analysis of X used Markov's inequality, 
which makes no assumptions at all about the 
distribution of X. Let's see if we can use our knowledge 
of where X comes from to tighten the bound.

● Let Xᵢ be an indicator variable that's 1 if xᵢ hashes into 
this block and 0 otherwise. Then we can write

 
● For notational simplicity pᵢ = E[Xᵢ]. We can evaluate 

this directly if we'd like, but it turns out that we won't 
actually be needing it.

● Notice that

X = ∑
i=1

n

X i .

μ = E [ X ] = E [∑
i=1

n

X i] = ∑
i=1

n

E [ X i ] = ∑
i=1

n

pi .



  

Chernoff Bounds

● Last time, we saw the Chernoff bound, which says that if 
X ~ Binom(n, p) and p < 1/2, then

 
● We just saw that our variable X is the sum of a number of 

Bernoulli variables Xᵢ, so it seems like we might be able 
to apply Chernoff bounds here.

● Problem: These Xᵢ variables are not independent of one 
another! We're assuming that we have a k-independent 
hash function and are conditioning on knowing where xq 
is, so while we can say that any k – 1 of these Xᵢ's are 
independent, we can't say that any n of them are.

● Therefore, X is not binomially distributed, so we can't use 
a Chernoff bound.

Pr [X > n/2] < e
−n(1/2−p)

2

2p



  

Chebyshev's Inequality

● The last remaining bound that we used last time 
was Chebyshev's inequality, which states that

Pr [ |X – μ| ≥ cσ ] ≤ 1 / c2, 

where σ2 is the variance of X.
● If we can determine σ2, then we can try using 

Chebyshev's inequality to bound the probability 
that X is a bad block.



  

The Variance

● For each Xᵢ, let σᵢ2 = Var[Xᵢ]. Then

 

 

 

So σ2 ≤ μ.

σ2
= Var [X ]

= Var [∑
i=1

n

X i]

= ∑
i=1

n

Var [X i]

= ∑
i=1

n

σi
2

= ∑
i=1

n

pi(1−pi)

≤ ∑
i=1

n

pi

= μ

Assume, going forward, that 
the Xᵢ's are pairwise 
independent.

Assume, going forward, that 
the Xᵢ's are pairwise 
independent.

We're already conditioning on 
knowing h(xq).
 

This means that we need our 
hash function to be at least
3-independent from this 
point onward.

We're already conditioning on 
knowing h(xq).
 

This means that we need our 
hash function to be at least
3-independent from this 
point onward.



  

The Variance
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So σ2 ≤ μ.

σ2
= Var [X ]

= Var [∑
i=1

n

X i]

= ∑
i=1

n

Var [X i]

= ∑
i=1

n

σi
2

= ∑
i=1

n

pi(1−pi)

≤ ∑
i=1

n

pi

= μ



  

Using Chebyshev

● We want to know

Pr[ X – μ ≥ μ ].

● Using Chebyshev's inequality:

● So the probability that a block of length 2l is bad is 
at most μ-1 = 3 · 2-l.

Pr [ X−μ ≥ μ] ≤ Pr [|X−μ| ≥ μ]

= Pr [|X−μ| ≥ √μ√μ]

≤ Pr [|X−μ| ≥ √μσ ]

≤
1
μ



  

A Better Bound

● The expected cost of looking up xq in a linear probing table is

  
● Assuming 3-independent hashing, this is

 

● Theorem: This runtime bound is tight (there's an adversarial 
choice of a 3-independent hash function that degrades the 
runtime to this level.)

O (1) ⋅ ∑
l=0

O( logn)

2lPr [the 2l  block above h(xq) is bad ]

≤ O (1) ⋅ ∑
l=0

O( logn)

2l⋅3⋅2−l

= O (1) ⋅ ∑
l=0

O( logn)

3

= O (logn)

O (1) ⋅ ∑
l=0

O( logn)

2lPr [ the 2l  block above h(xq) is bad ]



  

Why This Works

● Key idea: Increasing the degree of independence lets us 
control the variance of the distribution.

● With 2-independent hashing, we use one degree of 
independence to condition on knowing where some specific 
key lands. At that point, we only have one more degree of 
independence – not enough to control the variance!

● With 3-independent hashing, we use one degree of 
independence to condition on knowing where the key 
lands. We can then use the two remaining degrees of 
independence to control the variance and use Chebyshev's 
inequality.

● Small increases to the independence of a hash 
function can dramatically tighten concentration 
bounds.



  

Question: If we increase the degree of 
independence further, can we constrain the 

spread of the elements in a way that 
improves our runtime?

(This is the theory version of “can we do 
better?”)



  

A Review: Deriving Chebyshev

● Let's take a minute to derive Chebyshev's inequality.

● Let X be a random variable with mean μ and variance σ2. 
Then

Pr[|X – μ| ≥ cσ ] = Pr[ (X – μ)2 ≥ c2σ2 ].

● Let Y = (X – μ)2. Notice that

E[Y] = E[(X – μ)2] = σ2. 

● So, via Markov's inequality, we have

Pr [|X−μ| ≥ cσ ] = Pr [(X−μ)
2

≥ c2σ2
]

= Pr [Y ≥ c2σ2
]

= Pr [Y ≥ c2E [Y ]]

≤
1
c2

.



  

Generalizing Chebyshev

● The variance of a random variable X with mean μ is 
defined as

σ2 = E[(X – μ)2].
● We can generalize this to higher exponents.
● The kth central moment of a random variable X with 

mean μ, denoted μₖ, is defined as

μₖ = E[(X – μ)k].
● Notice that

μ₁ = E[(X – μ)1] = 0           μ₂ = E[(X – μ)2] = σ2

● Central moments give a way of measuring how much X 
is spread out from its mean. Higher central moments 
give progressively more weight to outliers.



  

The Fourth Moment Inequality

● The fourth moment inequality states that

● It's a generalization of Chebyshev's inequality, and the proof is 
similar.

● Let X be a random variable with mean μ and fourth moment μ₄. Then

● Let Y = (X – μ)4 . Notice that

E[Y] = E[(X – μ)4] = μ₄. 

● So, via Markov's inequality, we have

Pr [|X−μ| ≥ c 4√μ4] = Pr [( X−μ)
4

≥ c4 μ4 ]

= Pr [Y ≥ c4 μ4 ]

= Pr [Y ≥ c4 E[Y ]]

≤
1

c4
.

Pr [|X−μ| ≥ c 4√μ4] ≤
1

c4

Pr [|X−μ| ≥ c 4√μ4] = Pr [( X−μ)
4

≥ c4 μ4 ]

Good question to ponder: 
why doesn't this work for 
the third central moment?

Good question to ponder: 
why doesn't this work for 
the third central moment?



  

Updating our Analysis

● For linear probing, we're ultimately interested in 
bounding

Pr[ X – μ ≥ μ ]

in the case where X represents the number of elements 
hitting a particular block.

● Using 2-independent hashing, the best bound we could 
use was Markov's inequality, which gave an extremely 
weak bound.

● Using 3-independent hashing, we could use 
Chebyshev's inequality, which gave us a bound of μ-1.

● Question: If we use stronger hash functions, can we 
tighten this bound using the fourth moment inequality?



  

The Fourth Moment

● Let μ₄ = E[(X – μ)4]. We want to get a nice bound on μ₄.

● So now we “just” need to simplify this expression.

E[(X−μ)
4
] = E[(∑

i=1

n

X i−∑
i=1

n

pi)
4

]

= E[(∑
i=1

n

(X i−pi))
4

]

= E[∑
i=1

n

∑
j=1

n

∑
k=1

n

∑
l=1

n

(X i−pi)(X j−p j)(Xk−pk)(X l−pl)]

= ∑
i=1

n

∑
j=1

n

∑
k=1

n

∑
l=1

n

E[(X i−pi)(X j−p j)(Xk−pk)(X l−pl)]



  

Increasing our Independence

● Recall: If our hash function is k-independent, then 
we've already used one degree of independence 
conditioning on knowing where h(xq) is. That leaves us 
with k-1 degrees of independence.

● Let's suppose we're using a 5-independent hash 
function, meaning that any four hash values are 
independent of one another.

● This allows us to make some amount of progress in 
simplifying this expression.

E[(X−μ)
4
] = ∑

i=1

n

∑
j=1

n

∑
k=1

n

∑
l=1

n

E [(X i−pi)(X j−p j)(Xk−pk)(X l−pl)]



  

Exploring this Summation

● The terms of this summation might sometimes range 
over the same variables at the same time:

 
● Claim: Any term in the summation where i ≠ j, i ≠ k, 

and i ≠ l is 0.

● Proof: Suppose that Xᵢ is a different random variable 
from the others. Then

E[(X−μ)
4
] = ∑

i=1

n

∑
j=1

n

∑
k=1

n

∑
l=1

n

E[(X i−pi)(X j−p j)(Xk−pk)(X l−pl)]

E[(X i−pi)(X j−p j)(Xk−pk)(X l−pl)]

= E[X i−pi]E[(X j−p j)(Xk−pk)(X l−pl)]

= 0⋅E[(X j−p j)(Xk−pk)(X l−pl)]

= 0



  

Exploring this Summation

● The terms of this summation might sometimes range 
over the same variables at the same time:

 
● Claim: The above summation reduces only to the case 

where i=j=k=l and the case where there are exactly 
two distinct random variables in the product.

● Proof: If a variable appears exactly once, it doesn't 
contribute to the total. If a variable appears three 
times, some other variable contributes exactly once.

E[(X−μ)
4
] = ∑

i=1

n

∑
j=1

n

∑
k=1

n

∑
l=1

n

E[(X i−pi)(X j−p j)(Xk−pk)(X l−pl)]



  

E[(X−μ)4] = ∑
i=1

n

∑
j=1

n

∑
k=1

n

∑
l=1

n

E[(X i−pi)(X j−p j)(Xk−pk)(X l−pl)]

= ∑
i=1

n

E[(X i−pi)
4
] + (42)∑

i=1

n

∑
j=i+1

n

E [(X i−pi)
2
(X j−p j)

2
]

= ∑
i=1

n

E[(X i−pi)
4] + 6∑

i=1

n

∑
j=i+1

n

E[(X i−pi)
2]E[(X j−p j)

2]

= ∑
i=1

n

E[(X i−pi)
4
] + 6∑

i=1

n

∑
j=i+1

n

σi
2σ j

2

= ∑
i=1

n

E[(X i−pi)
4
] + 3∑

i≠ j

σi
2σ j

2

≤ ∑
i=1

n

E[(X i−pi)
4
] + 3(∑

i=1

n

σi
2)

2

= ∑
i=1

n

E[(X i−pi)
4
] + 3(σ2

)
2

= ∑
i=1

n
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Fact: The fourth central 
moment of a Bernoulli random 
variable with probability pᵢ is 

at most its variance.
(Prove this!)
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at most its variance.
(Prove this!)



  

The Net Result

● We've just shown that

μ₄ ≤ σ2 + 3σ4.
● Since σ2 ≤ μ, we can upper-bound this at

  μ₄ ≤ μ + 3μ2.
● For a sufficiently large block size, we know that 

μ ≥ 1. Under that assumption, we get that

μ₄ ≤ μ2 + 3μ2 = 4μ2.
● Phew! That was crazy. But at least we now have a 

bound on the fourth moment, which lets us use 
the fourth moment inequality!



  

Fourth Moments for Victory

● Using the fourth moment inequality:

 

 

 

● So the probability that a block of length 2l is bad is at most 
4μ-2 = 36 · 2-2l.

● Notice that this is exponentially better than our previous 
bound!

Pr [ X−μ ≥ μ] ≤ Pr [|X−μ| ≥ μ]

= Pr [|X−μ| ≥
√μ

√2
√2μ ]

≤ Pr [|X−μ| ≥
√μ

√2
4√μ4]

≤ (√μ

√2 )
−4

=
4

μ2



  

A Strong Runtime Bound

● The expected cost of looking up xq in a linear probing table is

  
● Assuming 5-independent hashing, this is

 

● We've finally obtained an O(1) bound on the cost of operations in a 
chained hash table – provided that we use 5-independent hashing!

O (1) ⋅ ∑
l=0

O( logn)

2lPr [the 2l  block above h(xq) is bad ]

= O (1) ⋅ ∑
l=0

O( logn)

2l⋅36⋅2−2 l

= O (1) ⋅ ∑
l=0

O( logn)

2−l

= O (1)

O (1) ⋅ ∑
l=0

O( logn)

2lPr [ the 2l  block above h(xq) is bad ]



  

What Just Happened?

● Ultimately, we wanted to bound the probability that a block was 
twice as full as its expectation.

● With one degree of independence, we could obtain the expected 
value and use that to bound the probability with Markov's 
inequality.

● Using two degrees of independence, we could obtain the variance 
and use that to bound the probability with Chebyshev's inequality.

● Using four degrees of independence, we could obtain the fourth 
central moment and use that to bound the probability with the 
fourth moment bound.

● Increasing the strength of a hash function allows us to obtain 
more central moments and, therefore, to tighten our bound more 
than might initially be suspected.

● This technique shows up a lot in randomized data structures. 
You'll see it appear in the tug-of-war sketch on Problem Set Five.



  

Some Concluding Notes



  

Harnessing Entropy

● In our analysis, we made no assumptions about what 
specific keys we were placing in our hash table.

● Theorem (Mitzenmacher and Vadhan): Using 2-
independent hash functions, if there is a reasonable 
amount of entropy in the distribution of the keys, linear 
probing takes time O(1).

● The proof essentially shows that 2-universal hash 
functions applied to data with sufficient entropy very 
closely approximate truly random functions.

● Intuitively, they get the “missing” randomness from the 
distribution rather than from the hash function itself.

● See “Why Simple Hash Functions Work” for details – 
it's a remarkable argument!



  

Next Time

● Cuckoo Hashing
● Hashing with worst-case O(1) lookups!

● The Cuckoo Graph
● Random graphs for Fun and Profit.
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