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Outline for Today

● The Two-Stack Queue
● A simple, fast implementation of a queue.

● Amortized Analysis
● A little accounting trickery never hurt 

anyone, right?
● Red/Black Trees Revisited

● Some subtle and useful properties.



  

Two Worlds

● Data structures have different requirements 
in different contexts.
● In real-time applications, each operation on a 

given data structure needs to be fast and snappy.
● In long data processing pipelines, we care more 

about the total time used than we do the cost of 
any one operation.

● In many cases, we can get better 
performance in the long-run than we can on 
a per-operation basis.
● Good intuition: “economy of scale.”



  

Key Idea: Design data structures that 
trade per-operation efficiency for

overall efficiency.



  

Example: The Two-Stack Queue



  

The Two-Stack Queue
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The Two-Stack Queue

● Maintain an In stack and an Out stack.
● To enqueue an element, push it onto the 

In stack.
● To dequeue an element:

● If the Out stack is nonempty, pop it.
● If the Out stack is empty, pop elements from 

the In stack, pushing them into the Out 
stack, until the bottom of the In stack is 
exposed.



  

The Two-Stack Queue

● Each enqueue takes time O(1).
● Just push an item onto the In stack.

● Dequeues can vary in their runtime.
● Could be O(1) if the Out stack isn’t empty.
● Could be Θ(n) if the Out stack is empty.
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The Two-Stack Queue

● Intuition: We only do expensive dequeues after a 
long run of cheap dequeues.

● Think “carbon credits:” the fast enqueue operation 
introduces pollution that needs to be cleaned up 
every once and a while.

● Provided the cleanup is fast and pollution doesn’t 
build up too quickly, this is a good idea!
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The Two-Stack Queue

● Any series of m operations on a two-stack queue will 
take time O(m).

● Every element is pushed at most twice and popped at 
most twice.

● Key Question: What’s the best way to summarize the 
above idea in a useful way?

● This is a bit more subtle than it looks.
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Analyzing the Queue

● Initial idea: Summarize our result using 
an average-case analysis.
● If we do m total operations, the total work 

done is O(m).
● Average amount of work per operation: O(1).

● Based on this argument, we can claim that 
the average cost of an enqueue or 
dequeue is O(1).

● Claim: While the above statement is true, 
it’s not as precise as we might like.



  

The Problem with Averages

● Compare our two-stack queue to a chained hash table. 

 

 

 

 
● The average cost of an insertion or lookup in a chained 

hash table with n elements is O(1).
● However, this use of “average” for a hash table means 

something different than the use of “average” for our two-
stack queue.

● Why?
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Total work done: 15
 

Total operations: 9
 

Average work per element: ≈1.66

Total work done: 15
 

Total operations: 9
 

Average work per element: ≈1.66
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Total work done: Θ(m)
 

Total operations: Θ(m)
 

Average work per element: O(1).

Total work done: Θ(m)
 

Total operations: Θ(m)
 

Average work per element: O(1).
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Total work done: 16
 

Total operations: 9
 

Average work per element: ≈1.8

Total work done: 16
 

Total operations: 9
 

Average work per element: ≈1.8
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Total work done: Θ(m2)

Total operations: Θ(m)
 

Average work per element: Θ(m).

Total work done: Θ(m2)

Total operations: Θ(m)
 

Average work per element: Θ(m).



  

Issue 1: Terms like “average” or 
“expected” convey randomness. Our

two-stack queue has zero probability of 
giving a long series of bad operations.



  

The Problem with Averages

● I’m going to (incorrectly!) claim that the average 
cost of creating a Fischer-Heun structure or doing a 
query on a Fischer-Heun structure is O(1).

● ⚠ Argument: ⚠
● Construct a Fischer-Heun structure on an array of length 

m in time O(m).
● Do m – 1 range minimum queries on it in total time O(m).
● Total work done is O(m), and there were n operations 

performed.
● Average cost of an operation (construct or query): O(1).

● Why doesn’t this argument work?
● How is this different from the two-stack queue?
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Issue 2: It’s not just that the average 
operation time on a particular sequence is 
O(1). It’s true for any series of operations.



  

To Summarize
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Each expensive 
operation is 

preceded by lots 
of cheap ones.

Each expensive 
operation is 

preceded by lots 
of cheap ones.

Always performs 
well, not just on 

expectation.

Always performs 
well, not just on 

expectation.

Don’t require 
future operations 
to pay off debt.

Don’t require 
future operations 
to pay off debt.



  

So What?



  

Key Idea: Backcharge expensive 
operations to cheaper ones.
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Key Idea: Backcharge expensive 
operations to cheaper ones.
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Key Idea: Backcharge expensive 
operations to cheaper ones.

w
o
rk

time

If we pretend that each 
operation takes three units of 
time, we never underestimate 

the amount of work that we do.

If we pretend that each 
operation takes three units of 
time, we never underestimate 

the amount of work that we do.



  

Amortized Analysis



  

Amortized Analysis

● Suppose we perform a series of operations op₁, 
op₂, …, opₘ.

● The amount of time taken to execute operation 
opᵢ is denoted by t(opi).

● Goal: For each operation opᵢ, pick a value a(opᵢ), 
called the amortized cost of opᵢ, such that

∀k ≤ m. ∑
i=1

k

t (opi) ≤ ∑
i=1

k

a(opi).

…the actual cost of 
performing those 

operations…

…the actual cost of 
performing those 

operations…

… is at most the amortized 
cost of performing those 

operations.

… is at most the amortized 
cost of performing those 

operations.

No matter when we 
stop performing 

operations…

No matter when we 
stop performing 

operations…



  

Amortized Analysis

● Suppose we perform a series of operations op₁, 
op₂, …, opₘ.

● The amount of time taken to execute operation 
opᵢ is denoted by t(opi).

● Goal: For each operation opᵢ, pick a value a(opᵢ), 
called the amortized cost of opᵢ, such that

∀k ≤ m. ∑
i=1

k

t (opi) ≤ ∑
i=1

k

a(opi).

t

a



  

Amortized Analysis

● The amortized cost of an enqueue or 
dequeue in a two-stack queue is O(1).

● Intuition: If you pretend that the actual cost 
of each enqueue or dequeue is O(1), you will 
never overestimate the total time spent 
performing queue operations.

∀k ≤ m. ∑
i=1

k

t (opi) ≤ ∑
i=1

k

a(opi).

t

a



  

Amortized Analysis

● It’s helpful to contrast different ways of handling 
expensive operations:

● Preprocessing/runtime tradeoffs:

“Yes, we have to do a lot of work, but it’s a one-
time cost and everything is cheaper after that.”

● Randomization:

“We might have to do a lot of work,
but it’s unlikely that we’ll do so.”

● Amortization:

“Yes, we have to do a lot of work every once and a 
while, but only after a period of doing very little.”



  

Major Questions

● In what situations can we nicely amortize 
the cost of expensive operations?

● How do we choose the amortized costs 
we want to use?

● How do we design data structures with 
amortization in mind?



  

When Amortization Works



  

When Amortization Works

H He Li Be B C N O F Ne Na Mg Al Si P S

Most appends take time O(1) and 
consume some free space.

 

Every now and then, an append takes 
time O(n), but produce a lot of free space.

 

With a little math, you can show that the 
amortized cost of any append is O(1).

Most appends take time O(1) and 
consume some free space.

 

Every now and then, an append takes 
time O(n), but produce a lot of free space.

 

With a little math, you can show that the 
amortized cost of any append is O(1).



  

When Amortization Works
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Most insertions take time O(log n) and unbalance the tree. Some 
insertions do more work, but balance large parts of the tree.

 

With the right strategy for rebuilding trees, all insertions
can be shown to run in amortized time O(log n) each.

(This is called a scapegoat tree.)



  

Key Intuition: Amortization works best if
 

(1) imbalances accumulate slowly, and
(2) imbalances get cleaned up quickly.



  

Performing Amortized Analyses



  

Performing Amortized Analyses

● You have a data structure where
● imbalances accumulate slowly, and
● imbalances get cleaned up quickly.

● You’re fairly sure the cleanup costs will 
amortize away nicely.

● How do you assign amortized costs?



  

The Banker's Method

● In the banker's method, operations can place credits on the 
data structure or spend credits that have already been placed.

● Placing a credit on the data structure takes time O(1).

● Spending a credit previously placed on the data structure 
takes time -O(1). (Yes, that’s negative time!)

● The amortized cost of an operation is then

a(opᵢ) = t(opᵢ) + O(1) · (addedᵢ – removedᵢ)

● There aren’t any real credits anywhere. They’re just an 
accounting trick.

t

a

+   –   +   +   +   –   –   



  

The Banker's Method

∑
i=1

k

a(opi) = ∑
i=1

k

(t (opi) + O(1)⋅(addedi−removedi))         

= ∑
i=1

k

t (opi) + O(1)∑
i=1

k

(addedi−removedi)        

= ∑
i=1

k

t (opi) + O(1)(∑
i=1

k

addedi − ∑
i=1

k

removedi)

= ∑
i=1

k

t (opi) + O(1)⋅(netcreditsadded)            

≥ ∑
i=1

k

t (opi)                                                      
(Assuming we 
never spend 
credits we 

don’t have.)

(Assuming we 
never spend 
credits we 

don’t have.)



  

The Two-Stack Queue

1
Out In

$

Actual work: O(1)
Credits added: 1

Amortized cost: O(1)

Actual work: O(1)
Credits added: 1

Amortized cost: O(1)

This credit will pay for the 
work to pop this element 
later on and push it onto 

the other stack.

This credit will pay for the 
work to pop this element 
later on and push it onto 

the other stack.



  

The Two-Stack Queue

1
Out In

2

$

$

Actual work: O(1)
Credits added: 1

Amortized cost: O(1)

Actual work: O(1)
Credits added: 1
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The Two-Stack Queue
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The Two-Stack Queue
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Credits added: 1
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The Two-Stack Queue

In

2

3

4
Out

11

Actual work: Θ(k)
Credits spent: k

Amortized cost: O(1)

Actual work: Θ(k)
Credits spent: k

Amortized cost: O(1)



  

An Observation

● The amortized cost of an operation is

a(opᵢ) = t(opᵢ) + O(1) · (addedᵢ – removedᵢ)

● Equivalently, this is

a(opᵢ) = t(opᵢ) + O(1) · Δcreditsᵢ.  

● Some observations:

● It doesn't matter where these credits are placed 
or removed from.

● The total number of credits added and removed 
doesn't matter; all that matters is the difference 
between these two.



  

The Potential Method

● In the potential method, we define a potential 
function Φ that maps a data structure to a non-
negative real value.

● Define a(opᵢ) as

a(opᵢ) = t(opᵢ) + O(1) · ΔΦᵢ

● Here, ΔΦᵢ is the change in the value of Φ during the 
execution of operation opᵢ.

t

a

+1 -1 +1 +1 0 0 -2 +1



  

The Potential Method

∑
i=1

k

a(opi) = ∑
i=1

k

(t (opi) + O(1)⋅ΔΦi)                                

= ∑
i=1

k

t (opi) + O(1)⋅∑
i=1

k

ΔΦi                              

= ∑
i=1

k

t (opi) + O(1)⋅(net change in potential)

≥ ∑
i=1

k

t (opi)                                                     

Think “fundamental theorem of calculus,”
but for discrete derivatives!

Think “fundamental theorem of calculus,”
but for discrete derivatives!

∫
a

b

f '(x)dx = f (b)− f (a) ∑
x=a

b

Δ f (x) = f (b+1)− f (a)

Look up finite calculus if you’re curious to learn more!



  

The Potential Method

∑
i=1

k

a(opi) = ∑
i=1

k

(t (opi) + O(1)⋅ΔΦi)                                

= ∑
i=1

k

t (opi) + O(1)⋅∑
i=1

k

ΔΦi                              

= ∑
i=1

k

t (opi) + O(1)⋅(net change in potential)

≥ ∑
i=1

k

t (opi)                                                     
(Assuming our 

potential doesn’t 
end up below 

where it started)

(Assuming our 
potential doesn’t 

end up below 
where it started)



  

The Two-Stack Queue

1
Out In

Φ = Height 
of In Stack

Φ = Height 
of In Stack

Actual work: O(1)
ΔΦ: +1

 

Amortized cost: O(1)

Actual work: O(1)
ΔΦ: +1

 

Amortized cost: O(1)



  

The Two-Stack Queue
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The Two-Stack Queue
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The Two-Stack Queue
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The Two-Stack Queue
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Φ = Height 
of In Stack

Φ = Height 
of In Stack

Actual work: Θ(k)
ΔΦ: -k

 

Amortized cost: O(1)

Actual work: Θ(k)
ΔΦ: -k

 

Amortized cost: O(1)



  

The Story So Far

● We assign amortized costs to operations, which 
are different than their real costs.

● The requirement is that the sum of the amortized 
costs never underestimates the sum of the real 
costs.

● The banker’s method works by placing credits 
on the data structure and adjusting costs based 
on those credits.

● The potential method works by assigning a 
potential function to the data structure and 
adjusting costs based on the change in potential.



  

Time-Out for Announcements!



  

Problem Sets

● Problem Set Two was due at 2:30PM.
● Need more time? Use a late period to extend the 

deadline to Saturday at 2:30PM.
● Problem Set Three goes out today. It’s due on 

Tuesday, May 7th.
● Play around with balanced and augmented trees!
● Explore data structure isometries and multiway 

trees!
● See how everything fits together!



  

Project Proposals

● Proposals for the final project are due next Thursday, 
May 2nd, at 2:30PM.
● No late periods may be used here. We’ll be doing a global 

matchmaking and will want to give everyone as much lead 
time as possible.

● What you need to do:
● Find a team of three people. (If you want to work in a pair, 

you’ll need to email us to get permission.)
● Rank your top four project topics and find sources for each.

● Looking for topics to pick from? Check out Handout 10, 
“Suggested Final Project Topics.”

● Looking for teammates? Use Piazza’s “Search for 
Teammates” feature!



  

Back to CS166!



  

Deleting from a BST



  

BST Deletions

● We’ve seen how to do insertions into a 2-3-4 
tree.
● Put the key into the appropriate leaf.
● Keep splitting big nodes and propagating keys 

upward as necessary.
● Using our isometry, we can use this to derive 

insertion rules for red/black trees.
● Question: How do you delete from a 2-3-4 

tree or red/black tree?



  

BST Deletions

● Question: How do we delete 20 from this tree? How 
about 4? How about 25? How about 17?
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Dead Simple Deletions

● Idea: Delete things in the laziest way possible.
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Dead Simple Deletions

● Each key is either dead (removed) or 
alive (still there).

● To remove a key, just mark it dead.
● Do lookups as usual, but pretend missing 

keys aren’t there.
● When inserting, if a dead version of the 

key is found, resurrect it.



  

Dead Simple Deletions

● Problem: What happens if too many keys die?
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Dead Simple Deletions

● Problem: What happens if too many keys die?
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Dead Simple Deletions

● Idea: Rebuild the tree when half the keys are dead.

17

6

12

4 8

15

5

1

2

3

14

13 16

25

19

23 27

18 21

24 26

28

29

22

7 10

209 11

30



  

Dead Simple Deletions

● Idea: Rebuild the tree when half the keys are dead.
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Dead Simple Deletions

● Idea: Rebuild the tree when half the keys are dead.
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Dead Simple Deletions

● Idea: Rebuild the tree when half the keys are dead.
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Dead Simple Deletions

● Idea: Rebuild the tree when half the keys are dead.
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Analyzing Lazy Rebuilding

● What is the cost of an insertion or lookup 
in a tree with n (living) keys?
● Total number of nodes: at most 2n.
● Cost of the operation: O(log 2n) = O(log n).

● What is the cost of a deletion?
● Most of the time, it’s O(log n).
● Every now and then, it’s O(n).
● Can we amortize these costs away?

You can rebuild the 
red/black tree in 
time O(n). How?

You can rebuild the 
red/black tree in 
time O(n). How?



  

Amortized Analysis

● Idea: Place a credit on each dead key.
● When we do a rebuild, there are Θ(n) credits on the 

tree, which we can use to pay for the Θ(n) rebuild cost.
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Amortized Analysis
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● Idea: Place a credit on each dead key.
● When we do a rebuild, there are Θ(n) credits on the 

tree, which we can use to pay for the Θ(n) rebuild cost.



  

Amortized Analysis
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● Idea: Place a credit on each dead key.
● When we do a rebuild, there are Θ(n) credits on the 

tree, which we can use to pay for the Θ(n) rebuild cost.



  

Lazy Rebuilding

● The amortized cost of a lookup or insertion is O(log n). 
(Do you see why?)

● If a deletion doesn’t rebuild, its amortized cost is

O(log n) + O(1) = O(log n).
● If a deletion triggers a rebuild:

● When we start, we have n / 2 credits.
● When we end, we have 0 credits.
● Cost of the tree search: O(log n).
● Cost of the tree rebuild: Θ(n).
● Amortized cost: O(log n) + Θ(n) – O(1) · Θ(n) = O(log n).

● Intuition: Imbalances build up over time, then get fixed 
all at once, so we’d expect costs to spread out nicely.



  

Lazy Deletions

● This approach isn’t perfect.
● Queries for the min or max are slower.
● Augmentation is a bit harder.
● Successor / predecessor / range searches slower.

● There are a number of papers about being 
lazy during BST deletions, many of which 
have led to new, fast tree data structures.

● Check out WAVL and RAVL trees – these 
might make for great final project topics!



  

Next Time

● Binomial Heaps
● A simple and versatile heap data structure 

based on binary arithmetic.
● Lazy Binomial Heaps

● Rejiggering binomial heaps for fun and 
profit.


