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Part Two



  

Recap from Last Time
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The RMQ Problem
● The Range Minimum Query (RMQ) 

problem is the following:
Given a fixed array A and two indices 

i ≤ j, what is the smallest element out of 
A[i], A[i + 1], …, A[j – 1], A[j]?

31 58 97 93



  

Some Notation
● We'll say that an RMQ data structure has time 

complexity ⟨p(n), q(n)⟩ if
● preprocessing takes time at most p(n) and
● queries take time at most q(n).

● Last time, we saw structures with the following 
runtimes:

● ⟨O(n2), O(1)⟩ (full preprocessing)
● ⟨O(n log n), O(1)⟩ (sparse table)
● ⟨O(n log log n), O(1)⟩ (hybrid approach)
● ⟨O(n), O(n1/2)⟩ (blocking)
● ⟨O(n), O(log n)⟩ (hybrid approach)
● ⟨O(n), O(log log n)⟩ (hybrid approach)



  

The Framework
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● Split the input into blocks of size b.
● Form an array of the block minima.
● Construct a “summary” RMQ structure over the block minima.
● Construct “block” RMQ structures for each block.
● Aggregate the results together.
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● Suppose we use a ⟨p₁(n), q₁(n)⟩-time RMQ solution 
for the summary and a ⟨p₂(n), q₂(n)⟩-time RMQ 
solution within each block. Let the block size be b.

● In the hybrid structure, the preprocessing time is
O(n + p₁(n / b) + (n / b) p₂(b))
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● Suppose we use a ⟨p₁(n), q₁(n)⟩-time RMQ solution 
for the summary and a ⟨p₂(n), q₂(n)⟩-time RMQ 
solution within each block. Let the block size be b.

● In the hybrid structure, the query time is
O(q₁(n / b) + q₂(b))



  

Is there an ⟨O(n), O(1)⟩ solution to RMQ?

Yes!



  

New Stuff!



  

An Observation



  

The Limits of Hybrids
● The preprocessing time on a hybrid structure is

 O(n + p₁(n / b) + (n / b) p₂(b)). 
● The query time is

 O(q₁(n / b) + q₂(b)). 
●  

p₂(n) = O(n)          q₂(n) = O(1)
● Problem: We can’t build an optimal RMQ 

structure unless we already have one!
● Or can we?
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● The preprocessing time on a hybrid structure is

 O(n + p₁(n / b) + (n / b) p₂(b)). 
● The query time is

 O(q₁(n / b) + q₂(b)). 
● What do p₂(b) and q₂(b) need to be if we want 

to build a ⟨O(n), O(1)⟩ RMQ structure?
p₂(b) = O(b)          q₂(b) = O(1)

● Problem: We can’t build an optimal RMQ 
structure unless we already have one!

● Or can we?

Formulate a hypothesis,
but don’t post anything

in chat just yet. 😃



  

The Limits of Hybrids
● The preprocessing time on a hybrid structure is

 O(n + p₁(n / b) + (n / b) p₂(b)). 
● The query time is

 O(q₁(n / b) + q₂(b)). 
● What do p₂(b) and q₂(b) need to be if we want 

to build a ⟨O(n), O(1)⟩ RMQ structure?
p₂(b) = O(b)          q₂(b) = O(1)

● Problem: We can’t build an optimal RMQ 
structure unless we already have one!

● Or can we?

Now, private chat me
your best guess. Not
sure? Just answer “??”
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The Limits of Hybrids
The preprocessing time on a hybrid structure is

O(n + p₁(n / b) + (n / b) p₂(b)).
The query time is

O(q₁(n / b) + q₂(b)).
What do p₂(b) and q₂(b) need to be if we want 
to build a ⟨O(n), O(1)⟩ RMQ structure?

p₂(b) = O(b)          q₂(b) = O(1)
Problem: We can’t build an optimal RMQ 
structure unless we already have one!
Or can we?

Construct an RMQ 
structure for each block.

Each block has size b.

Number of blocks: O(n / b).



  

A Key Difference
● Our original problem is

Solve RMQ on a single array in time 
⟨O(n), O(1)⟩  

● The new problem is
Solve RMQ on a large number of small 
arrays with O(1) query time and total 

preprocessing time O(n).
● These are not the same problem.
● Question: Why is this second problem any 

easier than the first?



  

An Observation
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An Observation

Claim: The indices of the 
answers to any range 

minimum queries on these 
two arrays are the same.



  

Modifying RMQ
● From this point forward, let's have 

RMQA(i, j) denote the index of the 
minimum value in the range rather than 
the value itself.

● Observation: If RMQ structures return 
indices rather than values, we can use a 
single RMQ structure for both of these 
arrays:
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Where We’re Going
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● Suppose we use an ⟨O(n log n), O(1)⟩ sparse table for the top 
and the ⟨O(n2), O(1)⟩ precompute-all structures for the blocks.

● However, whenever possible, we share block-level RMQ 
structures across multiple blocks.

● Assuming there aren’t “too many” different types of blocks, 
and assuming we can find and group blocks efficiently, this 
overall strategy might let us reach a ⟨O(n), O(1)⟩ solution!



  

Two Big Questions



  

How can we tell when two blocks
can share RMQ structures?

 

(Without an answer, this whole approach doesn’t work!)

How many block types are there,
as a function of b?

 

(Without an answer, we can’t measure efficiency!)
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How can we tell when two blocks
can share RMQ structures?

 

(Without an answer, this whole approach doesn’t work!)

How many block types are there,
as a function of b?

 

(We need to tune b to ensure that many blocks are 
shared. What value of b should we pick?)



  

The Adventure Begins!



  

Some Notation
● Let B₁ and B₂ be blocks of length b.
● We'll say that B₁ and B₂ have the same block 

type (denoted B₁ ~ B₂) if the following holds:
For all 0 ≤ i ≤ j < b:

RMQB₁(i, j) = RMQB₂(i, j)
● Intuitively, the RMQ answers for B₁ are always 

the same as the RMQ answers for B₂.
● If we build an RMQ to answer queries on some 

block B₁, we can reuse that RMQ structure on 
some other block B₂ iff B₁ ~ B₂.



  

Detecting Block Types
● For this approach to work, we need to be 

able to check whether two blocks have the 
same block type.

● Problem: Our formal definition of B₁ ~ B₂ is 
defined in terms of RMQ.
● Not particularly useful a priori; we don't want to 

have to compute RMQ structures on B₁ and B₂ to 
decide whether they have the same block type!

● Is there a simpler way to determine whether 
two blocks have the same type?



  

An Initial Idea
● Since the elements of the array are ordered 

and we're looking for the smallest value in 
certain ranges, we might look at the 
permutation types of the blocks.
 
 

 
Claim: If B₁ and B₂ have the same permutation 
on their elements, then B₁ ~ B₂.
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Some Problems
● There are two main problems with this approach.
● Problem One: It's possible for two blocks to have 

different permutations but the same block type.
All three of these blocks have the same block type 
but different permutation types:
 
 
Problem Two: The number of possible 
permutations of a block is b!.

b has to be absolutely minuscule for b! to be small.
Is there a better criterion we can use?
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An Observation
● Claim: If B₁ ~ B₂, the minimum elements of B₁ 

and B₂ must occur at the same position.
 
 

 
 
Claim: This property must hold recursively on 
the subarrays to the left and right of the 
minimum.
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Cartesian Trees
● A Cartesian tree for an array is 

a binary tree built as follows:
● The root of the tree is the 

minimum element of the array.
● Its left and right subtrees are 

formed by recursively building 
Cartesian trees for the 
subarrays to the left and right 
of the minimum.

● (Base case: if the array is 
empty, the Cartesian tree is 
empty.)

● This is mechanical description 
of Cartesian trees; it defines 
Cartesian trees by showing how 
to make them.
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Cartesian Trees
● A Cartesian tree can also be 

defined as follows:
The Cartesian tree for an 

array is a binary tree obeying 
the min-heap property whose 
inorder traversal gives back 

the original array.
● This is called an operational 

description; it says what 
properties the tree has rather 
than how to find it.

● Having multiple descriptions of 
the same object is incredibly 
useful – this will be a recurring 
theme this quarter!
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Cartesian Trees and RMQ
● Theorem: Let B₁ and B₂ be blocks of length b. Then 

B₁ ~ B₂ iff B₁ and B₂ have isomorphic Cartesian trees.
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“same     
shape”



  

Cartesian Trees and RMQ
● Theorem: Let B₁ and B₂ be blocks of length b. Then 

B₁ ~ B₂ iff B₁ and B₂ have isomorphic Cartesian trees.
● Proof sketch:

● (⇒) Induction. B₁ and B₂ have equal RMQs, so 
corresponding ranges have minima at the same positions.
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How can we tell when two blocks
can share RMQ structures?

 

When those blocks have isomorphic Cartesian trees!
But how do we check that?

How many block types are there,
as a function of b?
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How quickly can we build a Cartesian tree?



  

Building Cartesian Trees
● Here's a naïve algorithm for constructing Cartesian trees:

● Find the minimum value.
● Recursively build a Cartesian tree for the array to the left of the 

minimum.
● Recursively build a Cartesian tree with the elements to the right 

of the minimum.
● Return the overall tree.

● How efficient is this approach?
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Building Cartesian Trees
● This algorithm works by

● doing a linear scan over the array to find the minimum value, then
● recursively processing the left and right halves on the array.

● This is a divide-and-conquer algorithm! Here’s a runtime 
recurrence:

T(n) = T(nleft) + T(nright) + O(n)
● Question: What does this recurrence solve to? (Hint: where 

have you seen this recurrence?)
● This is the same recurrence relation that comes up in the 

analysis of quicksort!
● If the min is always in the middle, runtime is Θ(n log n).
● If the min is always all the way to the side, runtime is Θ(n2).

● Can we do better?



  

Building Cartesian Trees
● This algorithm works by

● doing a linear scan over the array to find the minimum value, then
● recursively processing the left and right halves on the array.

● This is a divide-and-conquer algorithm! Here’s a runtime 
recurrence:

T(n) = T(nleft) + T(nright) + O(n)
● Question: What does this recurrence solve to? (Hint: where 

have you seen this recurrence?)
● This is the same recurrence relation that comes up in the 

analysis of quicksort!
● If the min is always in the middle, runtime is Θ(n log n).
● If the min is always all the way to the side, runtime is Θ(n2).

● Can we do better?

Formulate a hypothesis, but
don’t post anything in

chat just yet. 😃



  

Building Cartesian Trees
● This algorithm works by

● doing a linear scan over the array to find the minimum value, then
● recursively processing the left and right halves on the array.
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● Can we do better?

Now, private chat your
best guess to me.

Not sure? Just answer “??” 😃
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A Better Approach
● It's possible to build a 

Cartesian tree over an 
array of length k faster 
than the naive 
algorithm.

● High-level idea: Build 
a Cartesian tree for the 
first element, then the 
first two, then the first 
three, then the first 
four, etc.
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in the tree. (An inorder traversal of 

a Cartesian tree gives back the 
original array.)
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node’s value is at least as 

large as its parent’s).
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A Better Approach
● We can implement this 

algorithm efficiently by 
maintaining a stack of the 
nodes in the right spine.

● Pop the stack until the new 
value is no bigger than the 
stack top (or the stack is 
empty). Remember the last 
node popped this way.

● Rewire the tree by
● making the stack top point to 

the new node, and
● making the most-recently-

popped node the new node’s 
left child.
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popped node the new node’s 
left child.
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A Better Approach
● How fast is this new 

approach on an array of k 
elements?

● Adding each element to 
the tree might take time 
O(k), since we may have 
to pop O(k) elements off 
the stack.

● Since there are k 
elements, that gives a 
time bound of O(k2).

● Question: Is this bound 
tight?
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A Better Approach
● Claim: This algorithm 

takes time O(k) on an 
array of size k.

● Idea: Each element is 
pushed onto the stack at 
most once, when it’s 
created. Each element 
can therefore be popped 
at most once.

● Therefore, there are at 
O(k) pushes and O(k) 
pops, so the runtime is 
O(k).
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How can we tell when two blocks
can share RMQ structures?

 

When those blocks have isomorphic Cartesian trees!
And we can check this in time O(b)!

But there are lots of pairs of blocks to check!

How many block types are there,
as a function of b?

 

¯\_(ツ )_/¯



  

How can we tell when two blocks
can share RMQ structures?

 

When those blocks have isomorphic Cartesian trees!
And we can check this in time O(b)!

But there are lots of pairs of blocks to check!

How many block types are there,
as a function of b?
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Theorem: The number of distinct
Cartesian tree shapes for arrays of

length b is at most 4b.

In case you're curious, the actual number is

                   ,
 

which is roughly equal to

              .

Look up the Catalan numbers for more information!

4b

b3 /2
√π

1
b+1 (2b

b )



  

Proof Approach
● Our stack-based algorithm for generating 

Cartesian trees produces a Cartesian 
tree for every possible input array.

● Therefore, if we can count the number of 
possible executions of that algorithm, we 
can count the number of Cartesian trees.

● Using a simple counting scheme, we can 
show that there are at most 4b possible 
executions.



  

Cartesian Tree Numbers
● There are at most 2b stack 

operations during the 
execution of the algorithm: b 
pushes and no more than b 
pops.

● Represent the execution of the 
algorithm as a 2b-bit number, 
where 1 means “push” and 0 
means “pop.” We'll pad the 
end with 0's (pretend we pop 
everything from the stack).

● This number is the Cartesian 
tree number of a block.
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Cartesian Tree Numbers
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0 means pop; 1 means push

● There are at most 2b stack 
operations during the 
execution of the algorithm: b 
pushes and no more than b 
pops.

● Represent the execution of the 
algorithm as a 2b-bit number, 
where 1 means “push” and 0 
means “pop.” We'll pad the 
end with 0's (pretend we pop 
everything from the stack).

● This number is the Cartesian 
tree number of a block.
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pushes and no more than b 
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everything from the stack).
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tree number of a block.

1 0 1
0 means pop; 1 means push
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operations during the 
execution of the algorithm: b 
pushes and no more than b 
pops.

● Represent the execution of the 
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where 1 means “push” and 0 
means “pop.” We'll pad the 
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operations during the 
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end with 0's (pretend we pop 
everything from the stack).

● This number is the Cartesian 
tree number of a block.

1 0 1 0
0 means pop; 1 means push



  

Cartesian Tree Numbers

6393 84 33 64 62 83 5863

93

33

33

84

● There are at most 2b stack 
operations during the 
execution of the algorithm: b 
pushes and no more than b 
pops.

● Represent the execution of the 
algorithm as a 2b-bit number, 
where 1 means “push” and 0 
means “pop.” We'll pad the 
end with 0's (pretend we pop 
everything from the stack).

● This number is the Cartesian 
tree number of a block.
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● There are at most 2b stack 
operations during the 
execution of the algorithm: b 
pushes and no more than b 
pops.

● Represent the execution of the 
algorithm as a 2b-bit number, 
where 1 means “push” and 0 
means “pop.” We'll pad the 
end with 0's (pretend we pop 
everything from the stack).

● This number is the Cartesian 
tree number of a block.

1 0 1 0 1
0 means pop; 1 means push
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● There are at most 2b stack 
operations during the 
execution of the algorithm: b 
pushes and no more than b 
pops.

● Represent the execution of the 
algorithm as a 2b-bit number, 
where 1 means “push” and 0 
means “pop.” We'll pad the 
end with 0's (pretend we pop 
everything from the stack).

● This number is the Cartesian 
tree number of a block.

1 0 1 0 1
0 means pop; 1 means push
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● There are at most 2b stack 
operations during the 
execution of the algorithm: b 
pushes and no more than b 
pops.

● Represent the execution of the 
algorithm as a 2b-bit number, 
where 1 means “push” and 0 
means “pop.” We'll pad the 
end with 0's (pretend we pop 
everything from the stack).

● This number is the Cartesian 
tree number of a block.

1 0 1 0 1
0 means pop; 1 means push
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● There are at most 2b stack 
operations during the 
execution of the algorithm: b 
pushes and no more than b 
pops.

● Represent the execution of the 
algorithm as a 2b-bit number, 
where 1 means “push” and 0 
means “pop.” We'll pad the 
end with 0's (pretend we pop 
everything from the stack).

● This number is the Cartesian 
tree number of a block.

1 0 1 0 1
0 means pop; 1 means push
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● There are at most 2b stack 
operations during the 
execution of the algorithm: b 
pushes and no more than b 
pops.

● Represent the execution of the 
algorithm as a 2b-bit number, 
where 1 means “push” and 0 
means “pop.” We'll pad the 
end with 0's (pretend we pop 
everything from the stack).

● This number is the Cartesian 
tree number of a block.

1 0 1 0 1 1
0 means pop; 1 means push



  

Cartesian Tree Numbers

6393 84 33 64 62 83 5863

93

84

33

33

64

64

62

● There are at most 2b stack 
operations during the 
execution of the algorithm: b 
pushes and no more than b 
pops.

● Represent the execution of the 
algorithm as a 2b-bit number, 
where 1 means “push” and 0 
means “pop.” We'll pad the 
end with 0's (pretend we pop 
everything from the stack).
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tree number of a block.
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0 means pop; 1 means push
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● There are at most 2b stack 
operations during the 
execution of the algorithm: b 
pushes and no more than b 
pops.

● Represent the execution of the 
algorithm as a 2b-bit number, 
where 1 means “push” and 0 
means “pop.” We'll pad the 
end with 0's (pretend we pop 
everything from the stack).

● This number is the Cartesian 
tree number of a block.
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0 means pop; 1 means push



  

Cartesian Tree Numbers

6393 84 33 64 62 83 5863

93

84

33

33

64

62

● There are at most 2b stack 
operations during the 
execution of the algorithm: b 
pushes and no more than b 
pops.

● Represent the execution of the 
algorithm as a 2b-bit number, 
where 1 means “push” and 0 
means “pop.” We'll pad the 
end with 0's (pretend we pop 
everything from the stack).

● This number is the Cartesian 
tree number of a block.

1 0 1 0 1 1 0
0 means pop; 1 means push
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● There are at most 2b stack 
operations during the 
execution of the algorithm: b 
pushes and no more than b 
pops.

● Represent the execution of the 
algorithm as a 2b-bit number, 
where 1 means “push” and 0 
means “pop.” We'll pad the 
end with 0's (pretend we pop 
everything from the stack).
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tree number of a block.
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0 means pop; 1 means push
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everything from the stack).
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0 means pop; 1 means push
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● There are at most 2b stack 
operations during the 
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pushes and no more than b 
pops.
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where 1 means “push” and 0 
means “pop.” We'll pad the 
end with 0's (pretend we pop 
everything from the stack).

● This number is the Cartesian 
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1 0 1 0 1 1 0 1 1 0
0 means pop; 1 means push



  

Cartesian Tree Numbers

6393 84 33 64 62 83 5863

93

84

33

33

64

62

83

63

63

62

● There are at most 2b stack 
operations during the 
execution of the algorithm: b 
pushes and no more than b 
pops.

● Represent the execution of the 
algorithm as a 2b-bit number, 
where 1 means “push” and 0 
means “pop.” We'll pad the 
end with 0's (pretend we pop 
everything from the stack).

● This number is the Cartesian 
tree number of a block.
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● There are at most 2b stack 
operations during the 
execution of the algorithm: b 
pushes and no more than b 
pops.

● Represent the execution of the 
algorithm as a 2b-bit number, 
where 1 means “push” and 0 
means “pop.” We'll pad the 
end with 0's (pretend we pop 
everything from the stack).

● This number is the Cartesian 
tree number of a block.

1 0 1 0 1 1 0 1 1 0 1
0 means pop; 1 means push



  

Cartesian Tree Numbers

6393 84 33 64 62 83 5863

93

84

33

33

64

62

83

63

58

62

● There are at most 2b stack 
operations during the 
execution of the algorithm: b 
pushes and no more than b 
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everything from the stack).
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● There are at most 2b stack 
operations during the 
execution of the algorithm: b 
pushes and no more than b 
pops.

● Represent the execution of the 
algorithm as a 2b-bit number, 
where 1 means “push” and 0 
means “pop.” We'll pad the 
end with 0's (pretend we pop 
everything from the stack).

● This number is the Cartesian 
tree number of a block.

1 0 1 0 1 1 0 1 1 0 1 0
0 means pop; 1 means push
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● There are at most 2b stack 
operations during the 
execution of the algorithm: b 
pushes and no more than b 
pops.

● Represent the execution of the 
algorithm as a 2b-bit number, 
where 1 means “push” and 0 
means “pop.” We'll pad the 
end with 0's (pretend we pop 
everything from the stack).

● This number is the Cartesian 
tree number of a block.
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0 means pop; 1 means push
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● There are at most 2b stack 
operations during the 
execution of the algorithm: b 
pushes and no more than b 
pops.

● Represent the execution of the 
algorithm as a 2b-bit number, 
where 1 means “push” and 0 
means “pop.” We'll pad the 
end with 0's (pretend we pop 
everything from the stack).

● This number is the Cartesian 
tree number of a block.

1 0 1 0 1 1 0 1 1 0 1 0
0 means pop; 1 means push
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● There are at most 2b stack 
operations during the 
execution of the algorithm: b 
pushes and no more than b 
pops.

● Represent the execution of the 
algorithm as a 2b-bit number, 
where 1 means “push” and 0 
means “pop.” We'll pad the 
end with 0's (pretend we pop 
everything from the stack).

● This number is the Cartesian 
tree number of a block.

1 0 1 0 1 1 0 1 1 0 1 0
0 means pop; 1 means push

0 1
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● There are at most 2b stack 
operations during the 
execution of the algorithm: b 
pushes and no more than b 
pops.

● Represent the execution of the 
algorithm as a 2b-bit number, 
where 1 means “push” and 0 
means “pop.” We'll pad the 
end with 0's (pretend we pop 
everything from the stack).

● This number is the Cartesian 
tree number of a block.

1 0 1 0 1 1 0 1 1 0 1 0
0 means pop; 1 means push

0 1 0
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● There are at most 2b stack 
operations during the 
execution of the algorithm: b 
pushes and no more than b 
pops.

● Represent the execution of the 
algorithm as a 2b-bit number, 
where 1 means “push” and 0 
means “pop.” We'll pad the 
end with 0's (pretend we pop 
everything from the stack).

● This number is the Cartesian 
tree number of a block.

1 0 1 0 1 1 0 1 1 0 1 0
0 means pop; 1 means push

0 1 0 0
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● There are at most 2b stack 
operations during the 
execution of the algorithm: b 
pushes and no more than b 
pops.

● Represent the execution of the 
algorithm as a 2b-bit number, 
where 1 means “push” and 0 
means “pop.” We'll pad the 
end with 0's (pretend we pop 
everything from the stack).

● This number is the Cartesian 
tree number of a block.

1 0 1 0 1 1 0 1 1 0 1 0 0 1 0 0 (44,452)
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● Two blocks can share an 
RMQ structure iff they 
have the same Cartesian 
tree.

● Observation: If all we care 
about is finding blocks that 
can share RMQ structures, 
we never need to build 
Cartesian trees! Instead, 
we can just compute the 
Cartesian tree number for 
each block.

1 0 1 0 1 1 0 1 1 0 1 0 0 1 0 0 (44,452)
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1

90 45 23 53 60 28 74 71 35

27



  

Treeless Tree Numbers

27 18 28 18 28 45

1 0

90 45 23 53 60 28 74 71 35



  

Treeless Tree Numbers

27 18 28 18 28 45

1 0 1

90 45 23 53 60 28 74 71 35

18



  

Treeless Tree Numbers

27 18 28 18 28 45

1 0 1

90 45 23 53 60 28 74 71 35

18



  

Treeless Tree Numbers

27 18 28 18 28 45

1 0 1 1

90 45 23 53 60 28 74 71 35

18 28



  

Treeless Tree Numbers

27 18 28 18 28 45

1 0 1 1

90 45 23 53 60 28 74 71 35

18 28



  

Treeless Tree Numbers

27 18 28 18 28 45

1 0 1 1 0

90 45 23 53 60 28 74 71 35

18



  

Treeless Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1

90 45 23 53 60 28 74 71 35

18 18



  

Treeless Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1

90 45 23 53 60 28 74 71 35

18 18



  

Treeless Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1

90 45 23 53 60 28 74 71 35

18 18 28



  

Treeless Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1

90 45 23 53 60 28 74 71 35

18 18 28



  

Treeless Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1

90 45 23 53 60 28 74 71 35

18 18 28 45



  

Treeless Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1

90 45 23 53 60 28 74 71 35

18 18 28 45



  

Treeless Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1

90 45 23 53 60 28 74 71 35

18 18 28 45 90



  

Treeless Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1

90 45 23 53 60 28 74 71 35

18 18 28 45 90



  

Treeless Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0

90 45 23 53 60 28 74 71 35

18 18 28 45



  

Treeless Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1

90 45 23 53 60 28 74 71 35

18 18 28 45 45



  

Treeless Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1

90 45 23 53 60 28 74 71 35

18 18 28 45 45



  

Treeless Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

18 18 28 45



  

Treeless Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0

18 18 28



  

Treeless Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0

18 18



  

Treeless Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1

18 18 23



  

Treeless Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1

18 18 23



  

Treeless Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1 1

18 18 23 53



  

Treeless Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1 1

18 18 23 53



  

Treeless Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1 1 1

18 18 23 53 60



  

Treeless Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1 1 1

18 18 23 53 60



  

Treeless Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1 1 1 0

18 18 23 53



  

Treeless Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1 1 1 0 0

18 18 23



  

Treeless Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1 1 1 0 0 1

18 18 23 28



  

Treeless Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1 1 1 0 0 1

18 18 23 28



  

Treeless Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1 1 1 0 0 1 1

18 18 23 28 74



  

Treeless Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1 1 1 0 0 1 1

18 18 23 28 74



  

Treeless Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1 1 1 0 0 1 1 0

18 18 23 28



  

Treeless Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1 1 1 0 0 1 1 0 1

18 18 23 28 71



  

Treeless Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1 1 1 0 0 1 1 0 1

18 18 23 28 71



  

Treeless Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1 1 1 0 0 1 1 0 1 0

18 18 23 28



  

Treeless Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1 1 1 0 0 1 1 0 1 0 1

18 18 23 28 35



  

Treeless Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1 1 1 0 0 1 1 0 1 0 1 0

18 18 23 28



  

Treeless Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1 1 1 0 0 1 1 0 1 0 1 0 0

18 18 23



  

Treeless Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1 1 1 0 0 1 1 0 1 0 1 0 0 0

18 18



  

Treeless Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1 1 1 0 0 1 1 0 1 0 1 0 0 0 0

18



  

Treeless Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1 1 1 0 0 1 1 0 1 0 1 0 0 0 0 0



  

Treeless Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1 1 1 0 0 1 1 0 1 0 1 0 0 0 0 0

(770,238,112)



  

How can we tell when two blocks
can share RMQ structures?

 

When they have the same Cartesian tree number!
And we can check this in time O(b)!

How many block types are there,
as a function of b?

 

At most 4b, because of the above algorithm!
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How can we tell when two blocks
can share RMQ structures?

 

When they have the same Cartesian tree number!
And we can check this in time O(b)!

And it’s easier to store numbers than trees!

How many block types are there,
as a function of b?

 

At most 4b, because of the above algorithm!



  

How can we tell when two blocks
can share RMQ structures?

 

When they have the same Cartesian tree number!
And we can check this in time O(b)!

And it’s easier to store numbers than trees!

How many block types are there,
as a function of b?

 

At most 4b, because of the above algorithm!



  

Putting it all Together
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How Efficient is This?



  

We’re using the hybrid approach,
and all the types we’re using have

constant query times.

Query time: O(1)



  

O(n + (n / b) log (n / b) + b2 4b)

Our preprocessing time is



  

O(n + (n / b) log (n / b) + b2 4b)

Our preprocessing time is

Construct at most 4b block-
level RMQ structures at a 

cost of O(b2) each.

Build a sparse 
table on blocks of 

size n / b.

Compute block minima; 
compute Cartesian tree 
numbers of each block.



  

O(n + (n / b) log (n / b) + b2 4b)

Our preprocessing time is



  

O(n + (n / b) log n + b2 4b)

This term grows 
exponentially in n unless 

we pick b = O(log n).

This term will be 
superlinear unless we 

pick b = Ω(log n).

Our preprocessing time is



  

O(n + (n / b) log n + b2 4b)

Suppose we pick 
b = k log₄ n

for some constant k.

Our preprocessing time is



  

O(n + (n / b) log n + b2 4b)

Suppose we pick 
b = k log₄ n

for some constant k.

Our preprocessing time is



  

O(n + (n / k log₄ n) log n + b2 4b)

Suppose we pick 
b = k log₄ n

for some constant k.

Our preprocessing time is



  

O(n + (n / k log₄ n) log n + b2 4b)

Suppose we pick 
b = k log₄ n

for some constant k.

Our preprocessing time is



  

O(n + (n / log n) log n + b2 4b)

Suppose we pick 
b = k log₄ n

for some constant k.

Our preprocessing time is



  

O(n + (n / log n) log n + b2 4b)

Suppose we pick 
b = k log₄ n

for some constant k.

Our preprocessing time is



  

O(n + n + b2 4b)

Suppose we pick 
b = k log₄ n

for some constant k.

Our preprocessing time is



  

O(n + n + b2 4b)

Suppose we pick 
b = k log₄ n

for some constant k.

Our preprocessing time is



  

O(n + n + b2 4b)

Suppose we pick 
b = k log₄ n

for some constant k.

Our preprocessing time is



  

O(n + n + b2 4k log₄ n)

Suppose we pick 
b = k log₄ n

for some constant k.

Our preprocessing time is



  

O(n + n + b2 4 log₄ nᵏ)

Suppose we pick 
b = k log₄ n

for some constant k.

Our preprocessing time is



  

O(n + n + b2 4 log₄ nᵏ)

Suppose we pick 
b = k log₄ n

for some constant k.

Our preprocessing time is



  

O(n + n + b2 nk)

Suppose we pick 
b = k log₄ n

for some constant k.

Our preprocessing time is



  

O(n + n + (k log₄ n)2 nk)

Suppose we pick 
b = k log₄ n

for some constant k.

Our preprocessing time is



  

O(n + n + (k log₄ n)2 nk)

Suppose we pick 
b = k log₄ n

for some constant k.

Our preprocessing time is



  

O(n + n + (log n)2 nk)

Suppose we pick 
b = k log₄ n

for some constant k.

Our preprocessing time is



  

O(n + n + (log n)2 nk)

Suppose we pick 
b = k log₄ n

for some constant k.

Our preprocessing time is



  

O(n + n + (log n)2 nk)

Suppose we pick 
b = k log₄ n

for some constant k.
Now, set k = ½.

Our preprocessing time is



  

O(n + n + (log n)2 n1/2)

Suppose we pick 
b = k log₄ n

for some constant k.
Now, set k = ½.

Our preprocessing time is



  

O(n + n + n)

Suppose we pick 
b = k log₄ n

for some constant k.
Now, set k = ½.

Our preprocessing time is



  

O(n)

Suppose we pick 
b = k log₄ n

for some constant k.
Now, set k = ½.

Our preprocessing time is



  

The Fischer-Heun Structure
● This data structure is called the Fischer-Heun 

structure. It uses a modified version of our hybrid 
RMQ framework:
● Set b = ½ log₄ n = ¼ log₂ n.
● Split the input into blocks of size b. Compute an array of 

minimum values from each block.
● Build a sparse table on that array of minima.
● Build per-block RMQ structures for each block, using 

Cartesian tree numbers to avoid recomputing RMQ 
structures unnecessarily.

● Make queries using the standard hybrid solution 
approach.

● This is an ⟨O(n), O(1)⟩ solution to RMQ!



  

The Method of Four Russians
● The technique employed here is an example of the 

Method of Four Russians or a Four Russians 
Speedup.
● Break the problem of size n into subproblems of size b, plus 

some top-level problem of size n / b.
– This is called a macro/micro decomposition.

● Solve all possible subproblems of size b.
– Here, we only solved the subproblems that actually came up in the 

original array, but that’s just an optimization.
● Solve the overall problem by combining solutions to the 

micro and macro problems.
● Think of it as “divide, precompute, and conquer.”
● Curious about the name? It comes from a paper by 

Арлазаров, Диниц, Кронрод, and Фараджев.



  

More to Explore
● Lowest Common Ancestors

● Given a tree, preprocess the tree so that queries of the form 
“what is the lowest common ancestor of these two nodes?” can 
be answered as quickly as possible. This reduces to RMQ, and is 
one of the main places it’s used.

● Succinct RMQ
● Our ⟨O(n), O(1)⟩ solution to RMQ uses only O(n) words of 

memory. How few bits of memory are needed? Later work by 
Fischer and Heun (and others!) has reduced this to 2n + o(n) 
bits, using some very clever techniques.

● Durocher’s RMQ Structure
● A professor teaching a data structures class found a way to solve 

RMQ in time ⟨O(n), O(1)⟩ using some of the techniques we’ve 
seen, but without needing the Four Russians speedup. The paper 
is very accessible and shows off some really clever techniques.



  

Why Study RMQ?
● I chose RMQ as our first problem for a few reasons:

● See different approaches to the same problem. Each 
approach we covered introduces some generalizable idea 
that we’ll see later in the quarter.

● Build data structures out of other data structures. 
Many modern data structures use other data structures 
as building blocks, and it's very evident here.

● See the Method of Four Russians. This trick looks like 
magic the first few times you see it and shows up in lots 
of places.

● Explore modern data structures. This is relatively 
recent data structure (2005), and I wanted to show you 
that the field is still very active!

● So what's next?



  

Next Time
● Balanced Trees

● The perennial data structure workhorse.
● B-Trees

● A simple, flexible balanced tree.
● 2-3-4 Trees

● Need to code up a balanced tree? Try this one. 😃
● A Glimpse of Red/Black Trees

● Where did these things come from, anyway?
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