

Range Minimum Queries
Part Two

Recap from Last Time

41 59 26 5331 41 59 26 53 58 97 93

The RMQ Problem
● The Range Minimum Query (RMQ)

problem is the following:
Given a fixed array A and two indices

i ≤ j, what is the smallest element out of
A[i], A[i + 1], …, A[j – 1], A[j]?

31 58 97 93

Some Notation
● We'll say that an RMQ data structure has time

complexity ⟨p(n), q(n)⟩ if
● preprocessing takes time at most p(n) and
● queries take time at most q(n).

● Last time, we saw structures with the following
runtimes:

● ⟨O(n2), O(1)⟩ (full preprocessing)
● ⟨O(n log n), O(1)⟩ (sparse table)
● ⟨O(n log log n), O(1)⟩ (hybrid approach)
● ⟨O(n), O(n1/2)⟩ (blocking)
● ⟨O(n), O(log n)⟩ (hybrid approach)
● ⟨O(n), O(log log n)⟩ (hybrid approach)

The Framework

31 41 59 26 53 58 97 93 23 84 62 64 33 83 27

Block-Level
RMQ

Block-Level
RMQ

Block-Level
RMQ

Block-Level
RMQ

Block-Level
RMQ

Summary
RMQ

31 26 23 62 27

● Split the input into blocks of size b.
● Form an array of the block minima.
● Construct a “summary” RMQ structure over the block minima.
● Construct “block” RMQ structures for each block.
● Aggregate the results together.

The Framework

31 41 59 26 53 58 97 93 23 84 62 64 33 83 27

Block-Level
RMQ

Block-Level
RMQ

Block-Level
RMQ

Block-Level
RMQ

Block-Level
RMQ

Summary
RMQ

31 26 23 62 27

● Split the input into blocks of size b.
● Form an array of the block minima.
● Construct a “summary” RMQ structure over the block minima.
● Construct “block” RMQ structures for each block.
● Aggregate the results together.

The Framework

31 41 59 26 53 58 97 93 23 84 62 64 33 83 27

Block-Level
RMQ

Block-Level
RMQ

Block-Level
RMQ

Block-Level
RMQ

Block-Level
RMQ

Summary
RMQ

31 26 23 62 27

● Split the input into blocks of size b.
● Form an array of the block minima.
● Construct a “summary” RMQ structure over the block minima.
● Construct “block” RMQ structures for each block.
● Aggregate the results together.

The Framework

31 41 59 26 53 58 97 93 23 84 62 64 33 83 27

Block-Level
RMQ

Block-Level
RMQ

Block-Level
RMQ

Block-Level
RMQ

Block-Level
RMQ

Summary
RMQ

31 26 23 62 27

● Suppose we use a ⟨p₁(n), q₁(n)⟩-time RMQ solution
for the summary and a ⟨p₂(n), q₂(n)⟩-time RMQ
solution within each block. Let the block size be b.

● In the hybrid structure, the preprocessing time is
O(n + p₁(n / b) + (n / b) p₂(b))

The Framework

31 41 59 26 53 58 97 93 23 84 62 64 33 83 27

Block-Level
RMQ

Block-Level
RMQ

Block-Level
RMQ

Block-Level
RMQ

Block-Level
RMQ

Summary
RMQ

31 26 23 62 27

● Suppose we use a ⟨p₁(n), q₁(n)⟩-time RMQ solution
for the summary and a ⟨p₂(n), q₂(n)⟩-time RMQ
solution within each block. Let the block size be b.

● In the hybrid structure, the query time is
O(q₁(n / b) + q₂(b))

Is there an ⟨O(n), O(1)⟩ solution to RMQ?

Yes!

New Stuff!

An Observation

The Limits of Hybrids
● The preprocessing time on a hybrid structure is

 O(n + p₁(n / b) + (n / b) p₂(b)).
● The query time is

 O(q₁(n / b) + q₂(b)).
●

p₂(n) = O(n) q₂(n) = O(1)
● Problem: We can’t build an optimal RMQ

structure unless we already have one!
● Or can we?

The Limits of Hybrids
● The preprocessing time on a hybrid structure is

 O(n + p₁(n / b) + (n / b) p₂(b)).
● The query time is

 O(q₁(n / b) + q₂(b)).
● What do p₂(b) and q₂(b) need to be if we want

to build a ⟨O(n), O(1)⟩ RMQ structure?
p₂(b) = O(b) q₂(b) = O(1)

● Problem: We can’t build an optimal RMQ
structure unless we already have one!

● Or can we?

Formulate a hypothesis,
but don’t post anything

in chat just yet. 😃

The Limits of Hybrids
● The preprocessing time on a hybrid structure is

 O(n + p₁(n / b) + (n / b) p₂(b)).
● The query time is

 O(q₁(n / b) + q₂(b)).
● What do p₂(b) and q₂(b) need to be if we want

to build a ⟨O(n), O(1)⟩ RMQ structure?
p₂(b) = O(b) q₂(b) = O(1)

● Problem: We can’t build an optimal RMQ
structure unless we already have one!

● Or can we?

Now, private chat me
your best guess. Not
sure? Just answer “??”

The Limits of Hybrids
● The preprocessing time on a hybrid structure is

O(n + p₁(n / b) + (n / b) p₂(b)).
● The query time is

O(q₁(n / b) + q₂(b)).
● What do p₂(b) and q₂(b) need to be if we want

to build a ⟨O(n), O(1)⟩ RMQ structure?
p₂(b) = O(b) q₂(b) = O(1)

● Problem: We can’t build an optimal RMQ
structure unless we already have one!

● Or can we?

The Limits of Hybrids
The preprocessing time on a hybrid structure is

O(n + p₁(n / b) + (n / b) p₂(b)).
The query time is

O(q₁(n / b) + q₂(b)).
What do p₂(b) and q₂(b) need to be if we want
to build a ⟨O(n), O(1)⟩ RMQ structure?

p₂(b) = O(b) q₂(b) = O(1)
Problem: We can’t build an optimal RMQ
structure unless we already have one!
Or can we?

Construct an RMQ
structure for each block.

Each block has size b.

Number of blocks: O(n / b).

A Key Difference
● Our original problem is

Solve RMQ on a single array in time
⟨O(n), O(1)⟩

● The new problem is
Solve RMQ on a large number of small
arrays with O(1) query time and total

preprocessing time O(n).
● These are not the same problem.
● Question: Why is this second problem any

easier than the first?

An Observation

10 30 20 40 166 361 261 464

30 20 40 361 261 46410 30 20 40 166 361 261 464

An Observation

10 166

30 20 40 361 261 46410 30 20 40 166 361 261 464

An Observation

10 166

30 20 40 361 261 46430 20 40 361 261 46410 166

An Observation

10 166

30 36110 16630 20 40 361 261 46420 40 261 46410 166

An Observation

30 36110 16630 20 40 361 261 46420 40 261 46410 166

An Observation

30 20 361 26110 16630 20 361 26110 16640 46440 464

An Observation

30 20 361 26110 16630 20 40 361 261 46440 46410 166

An Observation

30 20 361 26110 16630 20 40 361 261 46440 46410 166

An Observation

30 20 361 26110 16630 20 361 26110 16640 46440 464

An Observation

Claim: The indices of the
answers to any range

minimum queries on these
two arrays are the same.

Modifying RMQ
● From this point forward, let's have

RMQA(i, j) denote the index of the
minimum value in the range rather than
the value itself.

● Observation: If RMQ structures return
indices rather than values, we can use a
single RMQ structure for both of these
arrays:

30 20 361 26110 16630 20 361 26110 16640 46440 464

Where We’re Going

22 29 55 35 19 60 43 67 91 44 35 53 74 71 11

Block-Level
RMQ

Block-Level
RMQ

Block-Level
RMQ

Summary
RMQ

22 19 43 35 11

● Suppose we use an ⟨O(n log n), O(1)⟩ sparse table for the top
and the ⟨O(n2), O(1)⟩ precompute-all structures for the blocks.

● However, whenever possible, we share block-level RMQ
structures across multiple blocks.

● Assuming there aren’t “too many” different types of blocks,
and assuming we can find and group blocks efficiently, this
overall strategy might let us reach a ⟨O(n), O(1)⟩ solution!

Two Big Questions

How can we tell when two blocks
can share RMQ structures?

(Without an answer, this whole approach doesn’t work!)

How many block types are there,
as a function of b?

(Without an answer, we can’t measure efficiency!)

How can we tell when two blocks
can share RMQ structures?

(Without an answer, this whole approach doesn’t work!)

How many block types are there,
as a function of b?

(Without an answer, we can’t measure efficiency!)

How can we tell when two blocks
can share RMQ structures?

(Without an answer, this whole approach doesn’t work!)

How many block types are there,
as a function of b?

(We need to tune b to ensure that many blocks are
shared. What value of b should we pick?)

The Adventure Begins!

Some Notation
● Let B₁ and B₂ be blocks of length b.
● We'll say that B₁ and B₂ have the same block

type (denoted B₁ ~ B₂) if the following holds:
For all 0 ≤ i ≤ j < b:

RMQB₁(i, j) = RMQB₂(i, j)
● Intuitively, the RMQ answers for B₁ are always

the same as the RMQ answers for B₂.
● If we build an RMQ to answer queries on some

block B₁, we can reuse that RMQ structure on
some other block B₂ iff B₁ ~ B₂.

Detecting Block Types
● For this approach to work, we need to be

able to check whether two blocks have the
same block type.

● Problem: Our formal definition of B₁ ~ B₂ is
defined in terms of RMQ.
● Not particularly useful a priori; we don't want to

have to compute RMQ structures on B₁ and B₂ to
decide whether they have the same block type!

● Is there a simpler way to determine whether
two blocks have the same type?

An Initial Idea
● Since the elements of the array are ordered

and we're looking for the smallest value in
certain ranges, we might look at the
permutation types of the blocks.

Claim: If B₁ and B₂ have the same permutation
on their elements, then B₁ ~ B₂.

31 41 59

12 2 5

16 18 3

66 26 6

27 18 28

60 22 14

66 73 84

72 99 27

An Initial Idea
● Since the elements of the array are ordered

and we're looking for the smallest value in
certain ranges, we might look at the
permutation types of the blocks.

Claim: If B₁ and B₂ have the same permutation
on their elements, then B₁ ~ B₂.

31 41 59

12 2 5

16 18 3

66 26 6

27 18 28

60 22 14

66 73 84

72 99 27

1 2 3 2 3 1 2 1 3 1 2 3

3 1 2 3 2 1 3 2 1 2 3 1

An Initial Idea
● Since the elements of the array are ordered

and we're looking for the smallest value in
certain ranges, we might look at the
permutation types of the blocks.

● Claim: If B₁ and B₂ have the same permutation

on their elements, then B₁ ~ B₂.

31 41 59

12 2 5

16 18 3

66 26 6

27 18 28

60 22 14

66 73 84

72 99 27

1 2 3 2 3 1 2 1 3 1 2 3

3 1 2 3 2 1 3 2 1 2 3 1

Some Problems
● There are two main problems with this approach.
● Problem One: It's possible for two blocks to have

different permutations but the same block type.
All three of these blocks have the same block type
but different permutation types:

Problem Two: The number of possible
permutations of a block is b!.

b has to be absolutely minuscule for b! to be small.
Is there a better criterion we can use?

Some Problems
● There are two main problems with this approach.
● Problem One: It's possible for two blocks to have

different permutations but the same block type.
● All three of these blocks have the same block type

but different permutation types:

Problem Two: The number of possible
permutations of a block is b!.

b has to be absolutely minuscule for b! to be small.
Is there a better criterion we can use?

261 268 161 161 261 167

4 5 1 1 4 3

167 166

3 2

166 268

2 5

167 261 161

3 4 1

268 166

5 2

Some Problems
● There are two main problems with this approach.
● Problem One: It's possible for two blocks to have

different permutations but the same block type.
● All three of these blocks have the same block type

but different permutation types:

● Problem Two: The number of possible
permutations of a block is b!.

● b has to be absolutely minuscule for b! to be small.
Is there a better criterion we can use?

261 268 161 161 261 167

4 5 1 1 4 3

167 166

3 2

166 268

2 5

167 261 161

3 4 1

268 166

5 2

Some Problems
● There are two main problems with this approach.
● Problem One: It's possible for two blocks to have

different permutations but the same block type.
● All three of these blocks have the same block type

but different permutation types:

● Problem Two: The number of possible
permutations of a block is b!.

● b has to be absolutely minuscule for b! to be small.
● Is there a better criterion we can use?

261 268 161 161 261 167

4 5 1 1 4 3

167 166

3 2

166 268

2 5

167 261 161

3 4 1

268 166

5 2

An Observation
● Claim: If B₁ ~ B₂, the minimum elements of B₁

and B₂ must occur at the same position.

Claim: This property must hold recursively on
the subarrays to the left and right of the
minimum.

An Observation
● Claim: If B₁ ~ B₂, the minimum elements of B₁

and B₂ must occur at the same position.

Claim: This property must hold recursively on
the subarrays to the left and right of the
minimum.

261 268 161 167 166

An Observation
● Claim: If B₁ ~ B₂, the minimum elements of B₁

and B₂ must occur at the same position.

Claim: This property must hold recursively on
the subarrays to the left and right of the
minimum.

261 268 161 167 166

14 22 11 43 35

75 35 80 85 83

6 5 3 9 7

An Observation
● Claim: If B₁ ~ B₂, the minimum elements of B₁

and B₂ must occur at the same position.

Claim: This property must hold recursively on
the subarrays to the left and right of the
minimum.

261 268 161 167 166

14 22 11 43 35

75 35 80 85 83

6 5 3 9 7

An Observation
● Claim: If B₁ ~ B₂, the minimum elements of B₁

and B₂ must occur at the same position.

Claim: This property must hold recursively on
the subarrays to the left and right of the
minimum.

261 268 161 167 166

14 22 11 43 35

75 35 80 85 83

6 5 3 9 7

An Observation
● Claim: If B₁ ~ B₂, the minimum elements of B₁

and B₂ must occur at the same position.

Claim: This property must hold recursively on
the subarrays to the left and right of the
minimum.

261 268 161 167 166

14 22 11 43 35

75 35 80 85 83

6 5 3 9 7

An Observation
● Claim: If B₁ ~ B₂, the minimum elements of B₁

and B₂ must occur at the same position.

Claim: This property must hold recursively on
the subarrays to the left and right of the
minimum.

261 268 161 167 166

14 22 11 43 35

6 5 3 9 7

An Observation
● Claim: If B₁ ~ B₂, the minimum elements of B₁

and B₂ must occur at the same position.

Claim: This property must hold recursively on
the subarrays to the left and right of the
minimum.

261 268 161 167 166

14 22 11 43 35

6 5 3 9 7

An Observation
● Claim: If B₁ ~ B₂, the minimum elements of B₁

and B₂ must occur at the same position.

● Claim: This property must hold recursively on
the subarrays to the left and right of the
minimum.

261 268 161 167 166

14 22 11 43 35

6 5 3 9 7

161 167 166

11 43 35

3 9 7

An Observation
● Claim: If B₁ ~ B₂, the minimum elements of B₁

and B₂ must occur at the same position.

● Claim: This property must hold recursively on
the subarrays to the left and right of the
minimum.

261 268

14 22

6 5

161 167 166

11 43 35

3 9 7

An Observation
● Claim: If B₁ ~ B₂, the minimum elements of B₁

and B₂ must occur at the same position.

● Claim: This property must hold recursively on
the subarrays to the left and right of the
minimum.

261 268

14 22

6 5

161 167 166

11 43 35

3 9 7

An Observation
● Claim: If B₁ ~ B₂, the minimum elements of B₁

and B₂ must occur at the same position.

● Claim: This property must hold recursively on
the subarrays to the left and right of the
minimum.

261 268

14 22

6 5

161 167 166

11 43 35

An Observation
● Claim: If B₁ ~ B₂, the minimum elements of B₁

and B₂ must occur at the same position.

● Claim: This property must hold recursively on
the subarrays to the left and right of the
minimum.

261 268

14 22

161 167 166

11 43 35

An Observation
● Claim: If B₁ ~ B₂, the minimum elements of B₁

and B₂ must occur at the same position.

● Claim: This property must hold recursively on
the subarrays to the left and right of the
minimum.

261 268

14 22

161 167 166

11 43 35

An Observation
● Claim: If B₁ ~ B₂, the minimum elements of B₁

and B₂ must occur at the same position.

● Claim: This property must hold recursively on
the subarrays to the left and right of the
minimum.

261 268

14 22

261 268 161 167 166

14 22 11 43 35

Cartesian Trees
● A Cartesian tree for an array is

a binary tree built as follows:
● The root of the tree is the

minimum element of the array.
● Its left and right subtrees are

formed by recursively building
Cartesian trees for the
subarrays to the left and right
of the minimum.

● (Base case: if the array is
empty, the Cartesian tree is
empty.)

● This is mechanical description
of Cartesian trees; it defines
Cartesian trees by showing how
to make them.

26 28 16 17 33

16

26

28

17

33

1 2 3 4 5

1

2

3

4

5

Cartesian Trees
● A Cartesian tree can also be

defined as follows:
The Cartesian tree for an

array is a binary tree obeying
the min-heap property whose
inorder traversal gives back

the original array.
● This is called an operational

description; it says what
properties the tree has rather
than how to find it.

● Having multiple descriptions of
the same object is incredibly
useful – this will be a recurring
theme this quarter!

26 28 16 17 33

16

26

28

17

33

1 2 3 4 5

1

2

3

4

5

Cartesian Trees and RMQ
● Theorem: Let B₁ and B₂ be blocks of length b. Then

B₁ ~ B₂ iff B₁ and B₂ have isomorphic Cartesian trees.

2 5 1 3 4

1

2

5

3

4

2 3 1 4 5

1

2

3

4

5

“same
shape”

Cartesian Trees and RMQ
● Theorem: Let B₁ and B₂ be blocks of length b. Then

B₁ ~ B₂ iff B₁ and B₂ have isomorphic Cartesian trees.
● Proof sketch:

● (⇒) Induction. B₁ and B₂ have equal RMQs, so
corresponding ranges have minima at the same positions.

Cartesian Trees and RMQ
● Theorem: Let B₁ and B₂ be blocks of length b. Then

B₁ ~ B₂ iff B₁ and B₂ have isomorphic Cartesian trees.
● Proof sketch:

● (⇒) Induction. B₁ and B₂ have equal RMQs, so
corresponding ranges have minima at the same positions.

Cartesian Trees and RMQ
● Theorem: Let B₁ and B₂ be blocks of length b. Then

B₁ ~ B₂ iff B₁ and B₂ have isomorphic Cartesian trees.
● Proof sketch:

● (⇒) Induction. B₁ and B₂ have equal RMQs, so
corresponding ranges have minima at the same positions.

Cartesian Trees and RMQ
● Theorem: Let B₁ and B₂ be blocks of length b. Then

B₁ ~ B₂ iff B₁ and B₂ have isomorphic Cartesian trees.
● Proof sketch:

● (⇒) Induction. B₁ and B₂ have equal RMQs, so
corresponding ranges have minima at the same positions.

Cartesian Trees and RMQ
● Theorem: Let B₁ and B₂ be blocks of length b. Then

B₁ ~ B₂ iff B₁ and B₂ have isomorphic Cartesian trees.
● Proof sketch:

● (⇒) Induction. B₁ and B₂ have equal RMQs, so
corresponding ranges have minima at the same positions.

Cartesian Trees and RMQ
● Theorem: Let B₁ and B₂ be blocks of length b. Then

B₁ ~ B₂ iff B₁ and B₂ have isomorphic Cartesian trees.
● Proof sketch:

● (⇒) Induction. B₁ and B₂ have equal RMQs, so
corresponding ranges have minima at the same positions.

Cartesian Trees and RMQ
● Theorem: Let B₁ and B₂ be blocks of length b. Then

B₁ ~ B₂ iff B₁ and B₂ have isomorphic Cartesian trees.
● Proof sketch:

● (⇒) Induction. B₁ and B₂ have equal RMQs, so
corresponding ranges have minima at the same positions.

Cartesian Trees and RMQ
● Theorem: Let B₁ and B₂ be blocks of length b. Then

B₁ ~ B₂ iff B₁ and B₂ have isomorphic Cartesian trees.
● Proof sketch:

● (⇐) Induction. It's possible to answer RMQ using a
recursive walk on the Cartesian tree.

Cartesian Trees and RMQ
● Theorem: Let B₁ and B₂ be blocks of length b. Then

B₁ ~ B₂ iff B₁ and B₂ have isomorphic Cartesian trees.
● Proof sketch:

● (⇐) Induction. It's possible to answer RMQ using a
recursive walk on the Cartesian tree.

31 41 59 26 53 58 97 23 93 84 33 64 62 83 27

Cartesian Trees and RMQ
● Theorem: Let B₁ and B₂ be blocks of length b. Then

B₁ ~ B₂ iff B₁ and B₂ have isomorphic Cartesian trees.
● Proof sketch:

● (⇐) Induction. It's possible to answer RMQ using a
recursive walk on the Cartesian tree.

31 41 59 26 53 58 97 23 93 84 33 64 62 83 27

23

26

62

27

83

3331

41

59

53

58

97 64

84

93

Cartesian Trees and RMQ
● Theorem: Let B₁ and B₂ be blocks of length b. Then

B₁ ~ B₂ iff B₁ and B₂ have isomorphic Cartesian trees.
● Proof sketch:

● (⇐) Induction. It's possible to answer RMQ using a
recursive walk on the Cartesian tree.

31 41 59 26 53 58 97 23 93 84 33 64 62 83 27

23

26

62

27

83

3331

41

59

53

58

97 64

84

93

Cartesian Trees and RMQ
● Theorem: Let B₁ and B₂ be blocks of length b. Then

B₁ ~ B₂ iff B₁ and B₂ have isomorphic Cartesian trees.
● Proof sketch:

● (⇐) Induction. It's possible to answer RMQ using a
recursive walk on the Cartesian tree.

31 41 59 26 53 58 97 23 93 84 33 64 62 83 27

23

26

62

27

83

3331

41

59

53

58

97 64

84

93

Cartesian Trees and RMQ
● Theorem: Let B₁ and B₂ be blocks of length b. Then

B₁ ~ B₂ iff B₁ and B₂ have isomorphic Cartesian trees.
● Proof sketch:

● (⇐) Induction. It's possible to answer RMQ using a
recursive walk on the Cartesian tree.

31 41 59 26 53 58 97 23 93 84 33 64 62 83 27

23

26

62

27

83

3331

41

59

53

58

97 64

84

93

Cartesian Trees and RMQ
● Theorem: Let B₁ and B₂ be blocks of length b. Then

B₁ ~ B₂ iff B₁ and B₂ have isomorphic Cartesian trees.
● Proof sketch:

● (⇐) Induction. It's possible to answer RMQ using a
recursive walk on the Cartesian tree.

31 41 59 26 53 58 97 23 93 84 33 64 62 83 27

23

26

62

27

83

3331

41

59

53

58

97 64

84

93

Cartesian Trees and RMQ
● Theorem: Let B₁ and B₂ be blocks of length b. Then

B₁ ~ B₂ iff B₁ and B₂ have isomorphic Cartesian trees.
● Proof sketch:

● (⇐) Induction. It's possible to answer RMQ using a
recursive walk on the Cartesian tree.

31 41 59 26 53 58 23 93 84 33 64 62 83 27

23

26

62

27

83

3331

41

59

53

58

97 64

84

93

97

Cartesian Trees and RMQ
● Theorem: Let B₁ and B₂ be blocks of length b. Then

B₁ ~ B₂ iff B₁ and B₂ have isomorphic Cartesian trees.
● Proof sketch:

● (⇐) Induction. It's possible to answer RMQ using a
recursive walk on the Cartesian tree.

31 41 59 26 23 93 84 33 64 62 83 27

23

26

62

27

83

3331

41

59

53

58

97 64

84

93

53 58 97

How can we tell when two blocks
can share RMQ structures?

When those blocks have isomorphic Cartesian trees!
But how do we check that?

How many block types are there,
as a function of b?

¯_(ツ)_/¯

How can we tell when two blocks
can share RMQ structures?

When those blocks have isomorphic Cartesian trees!
But how do we check that?

How many block types are there,
as a function of b?

¯_(ツ)_/¯

How can we tell when two blocks
can share RMQ structures?

When those blocks have isomorphic Cartesian trees!
But how do we check that?

How many block types are there,
as a function of b?

¯_(ツ)_/¯

How can we tell when two blocks
can share RMQ structures?

When those blocks have isomorphic Cartesian trees!
But how do we check that?

How many block types are there,
as a function of b?

¯_(ツ)_/¯

How quickly can we build a Cartesian tree?

Building Cartesian Trees
● Here's a naïve algorithm for constructing Cartesian trees:

● Find the minimum value.
● Recursively build a Cartesian tree for the array to the left of the

minimum.
● Recursively build a Cartesian tree with the elements to the right

of the minimum.
● Return the overall tree.

● How efficient is this approach?

261 161

161

261 166

167268

268 167 166261 161 167 166268

Building Cartesian Trees
● This algorithm works by

● doing a linear scan over the array to find the minimum value, then
● recursively processing the left and right halves on the array.

● This is a divide-and-conquer algorithm! Here’s a runtime
recurrence:

T(n) = T(nleft) + T(nright) + O(n)
● Question: What does this recurrence solve to? (Hint: where

have you seen this recurrence?)
● This is the same recurrence relation that comes up in the

analysis of quicksort!
● If the min is always in the middle, runtime is Θ(n log n).
● If the min is always all the way to the side, runtime is Θ(n2).

● Can we do better?

Building Cartesian Trees
● This algorithm works by

● doing a linear scan over the array to find the minimum value, then
● recursively processing the left and right halves on the array.

● This is a divide-and-conquer algorithm! Here’s a runtime
recurrence:

T(n) = T(nleft) + T(nright) + O(n)
● Question: What does this recurrence solve to? (Hint: where

have you seen this recurrence?)
● This is the same recurrence relation that comes up in the

analysis of quicksort!
● If the min is always in the middle, runtime is Θ(n log n).
● If the min is always all the way to the side, runtime is Θ(n2).

● Can we do better?

Formulate a hypothesis, but
don’t post anything in

chat just yet. 😃

Building Cartesian Trees
● This algorithm works by

● doing a linear scan over the array to find the minimum value, then
● recursively processing the left and right halves on the array.

● This is a divide-and-conquer algorithm! Here’s a runtime
recurrence:

T(n) = T(nleft) + T(nright) + O(n)
● Question: What does this recurrence solve to? (Hint: where

have you seen this recurrence?)
● This is the same recurrence relation that comes up in the

analysis of quicksort!
● If the min is always in the middle, runtime is Θ(n log n).
● If the min is always all the way to the side, runtime is Θ(n2).

● Can we do better?

Now, private chat your
best guess to me.

Not sure? Just answer “??” 😃

Building Cartesian Trees
● This algorithm works by

● doing a linear scan over the array to find the minimum value, then
● recursively processing the left and right halves on the array.

● This is a divide-and-conquer algorithm! Here’s a runtime
recurrence:

T(n) = T(nleft) + T(nright) + O(n)
● Question: What does this recurrence solve to? (Hint: where

have you seen this recurrence?)
● This is the same recurrence relation that comes up in the

analysis of quicksort!
● If the min is always in the middle, runtime is Θ(n log n).
● If the min is always all the way to the side, runtime is Θ(n2).

● Can we do better?

A Better Approach
● It's possible to build a

Cartesian tree over an
array of length k faster
than the naive
algorithm.

● High-level idea: Build
a Cartesian tree for the
first element, then the
first two, then the first
three, then the first
four, etc.

93 84 33 64 62 83

93

84

33

64

62

83

A Better Approach
● It's possible to build a

Cartesian tree over an
array of length k faster
than the naive
algorithm.

● High-level idea: Build
a Cartesian tree for the
first element, then the
first two, then the first
three, then the first
four, etc.

6393 84 33 64 62 83

93

84

33

64

62

83

63

A Better Approach
● It's possible to build a

Cartesian tree over an
array of length k faster
than the naive
algorithm.

● High-level idea: Build
a Cartesian tree for the
first element, then the
first two, then the first
three, then the first
four, etc.

6393 84 33 64 62 83

93

84

33

64

62

83

63

Observation 1: After adding this
node, it must be the rightmost node
in the tree. (An inorder traversal of

a Cartesian tree gives back the
original array.)

A Better Approach
● It's possible to build a

Cartesian tree over an
array of length k faster
than the naive
algorithm.

● High-level idea: Build
a Cartesian tree for the
first element, then the
first two, then the first
three, then the first
four, etc.

6393 84 33 64 62 83

93

84

64 83

63

Observation 1: After adding this
node, it must be the rightmost node
in the tree. (An inorder traversal of

a Cartesian tree gives back the
original array.)

33

62

A Better Approach
● It's possible to build a

Cartesian tree over an
array of length k faster
than the naive
algorithm.

● High-level idea: Build
a Cartesian tree for the
first element, then the
first two, then the first
three, then the first
four, etc.

6393 84 33 64 62 83

93

84

64 83

63

33

62

Observation 2: Cartesian
trees are min-heaps (each
node’s value is at least as

large as its parent’s).

A Better Approach
● It's possible to build a

Cartesian tree over an
array of length k faster
than the naive
algorithm.

● High-level idea: Build
a Cartesian tree for the
first element, then the
first two, then the first
three, then the first
four, etc.

6393 84 33 64 62 83

93

84

64

83

63

33

62

Observation 2: Cartesian
trees are min-heaps (each
node’s value is at least as

large as its parent’s).

A Better Approach
● It's possible to build a

Cartesian tree over an
array of length k faster
than the naive
algorithm.

● High-level idea: Build
a Cartesian tree for the
first element, then the
first two, then the first
three, then the first
four, etc.

6393 84 33 64 62 83

93

84

64

83

63

33

62

Observation 2: Cartesian
trees are min-heaps (each
node’s value is at least as

large as its parent’s).

A Better Approach
● It's possible to build a

Cartesian tree over an
array of length k faster
than the naive
algorithm.

● High-level idea: Build
a Cartesian tree for the
first element, then the
first two, then the first
three, then the first
four, etc.

6393 84 33 64 62 83

93

84

64

83

33

62

Observation 2: Cartesian
trees are min-heaps (each
node’s value is at least as

large as its parent’s).

63

A Better Approach
● It's possible to build a

Cartesian tree over an
array of length k faster
than the naive
algorithm.

● High-level idea: Build
a Cartesian tree for the
first element, then the
first two, then the first
three, then the first
four, etc.

6393 84 33 64 62 83

93

84

64

83

33

62

63

58

58

A Better Approach
● It's possible to build a

Cartesian tree over an
array of length k faster
than the naive
algorithm.

● High-level idea: Build
a Cartesian tree for the
first element, then the
first two, then the first
three, then the first
four, etc.

6393 84 33 64 62 83

93

84

64

83

33

62

63

58

58

A Better Approach
● It's possible to build a

Cartesian tree over an
array of length k faster
than the naive
algorithm.

● High-level idea: Build
a Cartesian tree for the
first element, then the
first two, then the first
three, then the first
four, etc.

6393 84 33 64 62 83

93

84

64

83

33

62

63

58

58

A Better Approach
● It's possible to build a

Cartesian tree over an
array of length k faster
than the naive
algorithm.

● High-level idea: Build
a Cartesian tree for the
first element, then the
first two, then the first
three, then the first
four, etc.

6393 84 33 64 62 83

93

84

64

83

33

62

63

58

58

A Better Approach
● It's possible to build a

Cartesian tree over an
array of length k faster
than the naive
algorithm.

● High-level idea: Build
a Cartesian tree for the
first element, then the
first two, then the first
three, then the first
four, etc.

6393 84 33 64 62 83

93

84

64

83

33

62

63

58

58

63

A Better Approach
● We can implement this

algorithm efficiently by
maintaining a stack of the
nodes in the right spine.

● Pop the stack until the new
value is no bigger than the
stack top (or the stack is
empty). Remember the last
node popped this way.

● Rewire the tree by
● making the stack top point to

the new node, and
● making the most-recently-

popped node the new node’s
left child.

6393 84 33 64 62 83 5863

Last Popped

A Better Approach
● We can implement this

algorithm efficiently by
maintaining a stack of the
nodes in the right spine.

● Pop the stack until the new
value is no bigger than the
stack top (or the stack is
empty). Remember the last
node popped this way.

● Rewire the tree by
● making the stack top point to

the new node, and
● making the most-recently-

popped node the new node’s
left child.

6393 84 33 64 62 83 5863

93

Last Popped

A Better Approach
● We can implement this

algorithm efficiently by
maintaining a stack of the
nodes in the right spine.

● Pop the stack until the new
value is no bigger than the
stack top (or the stack is
empty). Remember the last
node popped this way.

● Rewire the tree by
● making the stack top point to

the new node, and
● making the most-recently-

popped node the new node’s
left child.

6393 84 33 64 62 83 5863

93

93

Last Popped

A Better Approach
● We can implement this

algorithm efficiently by
maintaining a stack of the
nodes in the right spine.

● Pop the stack until the new
value is no bigger than the
stack top (or the stack is
empty). Remember the last
node popped this way.

● Rewire the tree by
● making the stack top point to

the new node, and
● making the most-recently-

popped node the new node’s
left child.

6393 84 33 64 62 83 5863

93

84

Last Popped

93

A Better Approach
● We can implement this

algorithm efficiently by
maintaining a stack of the
nodes in the right spine.

● Pop the stack until the new
value is no bigger than the
stack top (or the stack is
empty). Remember the last
node popped this way.

● Rewire the tree by
● making the stack top point to

the new node, and
● making the most-recently-

popped node the new node’s
left child.

6393 84 33 64 62 83 5863

93

84

Last Popped

93 93

A Better Approach
● We can implement this

algorithm efficiently by
maintaining a stack of the
nodes in the right spine.

● Pop the stack until the new
value is no bigger than the
stack top (or the stack is
empty). Remember the last
node popped this way.

● Rewire the tree by
● making the stack top point to

the new node, and
● making the most-recently-

popped node the new node’s
left child.

6393 84 33 64 62 83 5863

93

84

Last Popped

93

A Better Approach
● We can implement this

algorithm efficiently by
maintaining a stack of the
nodes in the right spine.

● Pop the stack until the new
value is no bigger than the
stack top (or the stack is
empty). Remember the last
node popped this way.

● Rewire the tree by
● making the stack top point to

the new node, and
● making the most-recently-

popped node the new node’s
left child.

6393 84 33 64 62 83 5863

93

84

84

Last Popped

93

A Better Approach
● We can implement this

algorithm efficiently by
maintaining a stack of the
nodes in the right spine.

● Pop the stack until the new
value is no bigger than the
stack top (or the stack is
empty). Remember the last
node popped this way.

● Rewire the tree by
● making the stack top point to

the new node, and
● making the most-recently-

popped node the new node’s
left child.

6393 84 33 64 62 83 5863

93

84

84

Last Popped

A Better Approach
● We can implement this

algorithm efficiently by
maintaining a stack of the
nodes in the right spine.

● Pop the stack until the new
value is no bigger than the
stack top (or the stack is
empty). Remember the last
node popped this way.

● Rewire the tree by
● making the stack top point to

the new node, and
● making the most-recently-

popped node the new node’s
left child.

6393 84 33 64 62 83 5863

93

84

33

84

Last Popped

A Better Approach
● We can implement this

algorithm efficiently by
maintaining a stack of the
nodes in the right spine.

● Pop the stack until the new
value is no bigger than the
stack top (or the stack is
empty). Remember the last
node popped this way.

● Rewire the tree by
● making the stack top point to

the new node, and
● making the most-recently-

popped node the new node’s
left child.

6393 84 33 64 62 83 5863

93

33

84

Last Popped
84 84

A Better Approach
● We can implement this

algorithm efficiently by
maintaining a stack of the
nodes in the right spine.

● Pop the stack until the new
value is no bigger than the
stack top (or the stack is
empty). Remember the last
node popped this way.

● Rewire the tree by
● making the stack top point to

the new node, and
● making the most-recently-

popped node the new node’s
left child.

6393 84 33 64 62 83 5863

93

33

84

Last Popped
84

A Better Approach
● We can implement this

algorithm efficiently by
maintaining a stack of the
nodes in the right spine.

● Pop the stack until the new
value is no bigger than the
stack top (or the stack is
empty). Remember the last
node popped this way.

● Rewire the tree by
● making the stack top point to

the new node, and
● making the most-recently-

popped node the new node’s
left child.

6393 84 33 64 62 83 5863

93

33

33

84

Last Popped
84

A Better Approach
● We can implement this

algorithm efficiently by
maintaining a stack of the
nodes in the right spine.

● Pop the stack until the new
value is no bigger than the
stack top (or the stack is
empty). Remember the last
node popped this way.

● Rewire the tree by
● making the stack top point to

the new node, and
● making the most-recently-

popped node the new node’s
left child.

6393 84 33 64 62 83 5863

93

84

33

33

Last Popped

A Better Approach
● We can implement this

algorithm efficiently by
maintaining a stack of the
nodes in the right spine.

● Pop the stack until the new
value is no bigger than the
stack top (or the stack is
empty). Remember the last
node popped this way.

● Rewire the tree by
● making the stack top point to

the new node, and
● making the most-recently-

popped node the new node’s
left child.

6393 84 33 64 62 83 5863

93

84

33

33

64

Last Popped

A Better Approach
● We can implement this

algorithm efficiently by
maintaining a stack of the
nodes in the right spine.

● Pop the stack until the new
value is no bigger than the
stack top (or the stack is
empty). Remember the last
node popped this way.

● Rewire the tree by
● making the stack top point to

the new node, and
● making the most-recently-

popped node the new node’s
left child.

6393 84 33 64 62 83 5863

93

84

33

33

64

64Last Popped

A Better Approach
● We can implement this

algorithm efficiently by
maintaining a stack of the
nodes in the right spine.

● Pop the stack until the new
value is no bigger than the
stack top (or the stack is
empty). Remember the last
node popped this way.

● Rewire the tree by
● making the stack top point to

the new node, and
● making the most-recently-

popped node the new node’s
left child.

6393 84 33 64 62 83 5863

93

84

33

33

64

64

62

Last Popped

A Better Approach
● We can implement this

algorithm efficiently by
maintaining a stack of the
nodes in the right spine.

● Pop the stack until the new
value is no bigger than the
stack top (or the stack is
empty). Remember the last
node popped this way.

● Rewire the tree by
● making the stack top point to

the new node, and
● making the most-recently-

popped node the new node’s
left child.

6393 84 33 64 62 83 5863

93

84

33

33

64

62

Last Popped
64

64

A Better Approach
● We can implement this

algorithm efficiently by
maintaining a stack of the
nodes in the right spine.

● Pop the stack until the new
value is no bigger than the
stack top (or the stack is
empty). Remember the last
node popped this way.

● Rewire the tree by
● making the stack top point to

the new node, and
● making the most-recently-

popped node the new node’s
left child.

6393 84 33 64 62 83 5863

93

84

33

33

64

62

Last Popped
64

A Better Approach
● We can implement this

algorithm efficiently by
maintaining a stack of the
nodes in the right spine.

● Pop the stack until the new
value is no bigger than the
stack top (or the stack is
empty). Remember the last
node popped this way.

● Rewire the tree by
● making the stack top point to

the new node, and
● making the most-recently-

popped node the new node’s
left child.

6393 84 33 64 62 83 5863

93

84

33

33

64

62

62

Last Popped
64

A Better Approach
● We can implement this

algorithm efficiently by
maintaining a stack of the
nodes in the right spine.

● Pop the stack until the new
value is no bigger than the
stack top (or the stack is
empty). Remember the last
node popped this way.

● Rewire the tree by
● making the stack top point to

the new node, and
● making the most-recently-

popped node the new node’s
left child.

6393 84 33 64 62 83 5863

93

84

33

33

64

62

83

62

Last Popped

A Better Approach
● We can implement this

algorithm efficiently by
maintaining a stack of the
nodes in the right spine.

● Pop the stack until the new
value is no bigger than the
stack top (or the stack is
empty). Remember the last
node popped this way.

● Rewire the tree by
● making the stack top point to

the new node, and
● making the most-recently-

popped node the new node’s
left child.

6393 84 33 64 62 83 5863

93

84

33

33

64

62

83

62

Last Popped

A Better Approach
● We can implement this

algorithm efficiently by
maintaining a stack of the
nodes in the right spine.

● Pop the stack until the new
value is no bigger than the
stack top (or the stack is
empty). Remember the last
node popped this way.

● Rewire the tree by
● making the stack top point to

the new node, and
● making the most-recently-

popped node the new node’s
left child.

6393 84 33 64 62 83 5863

93

84

33

33

64

62

83

62

Last Popped

A Better Approach
● We can implement this

algorithm efficiently by
maintaining a stack of the
nodes in the right spine.

● Pop the stack until the new
value is no bigger than the
stack top (or the stack is
empty). Remember the last
node popped this way.

● Rewire the tree by
● making the stack top point to

the new node, and
● making the most-recently-

popped node the new node’s
left child.

6393 84 33 64 62 83 5863

93

84

33

33

64

62

83

83

62

Last Popped

A Better Approach
● We can implement this

algorithm efficiently by
maintaining a stack of the
nodes in the right spine.

● Pop the stack until the new
value is no bigger than the
stack top (or the stack is
empty). Remember the last
node popped this way.

● Rewire the tree by
● making the stack top point to

the new node, and
● making the most-recently-

popped node the new node’s
left child.

6393 84 33 64 62 83 5863

93

84

33

33

64

62

83

83

63

62

Last Popped

A Better Approach
● We can implement this

algorithm efficiently by
maintaining a stack of the
nodes in the right spine.

● Pop the stack until the new
value is no bigger than the
stack top (or the stack is
empty). Remember the last
node popped this way.

● Rewire the tree by
● making the stack top point to

the new node, and
● making the most-recently-

popped node the new node’s
left child.

6393 84 33 64 62 83 5863

93

84

33

33

64

62

83

63

62

Last Popped
83

83

A Better Approach
● We can implement this

algorithm efficiently by
maintaining a stack of the
nodes in the right spine.

● Pop the stack until the new
value is no bigger than the
stack top (or the stack is
empty). Remember the last
node popped this way.

● Rewire the tree by
● making the stack top point to

the new node, and
● making the most-recently-

popped node the new node’s
left child.

6393 84 33 64 62 83 5863

93

84

33

33

64

62

83

63

62

Last Popped
83

A Better Approach
● We can implement this

algorithm efficiently by
maintaining a stack of the
nodes in the right spine.

● Pop the stack until the new
value is no bigger than the
stack top (or the stack is
empty). Remember the last
node popped this way.

● Rewire the tree by
● making the stack top point to

the new node, and
● making the most-recently-

popped node the new node’s
left child.

6393 84 33 64 62 83 5863

93

84

33

33

64

62

83

63

62

Last Popped
83

A Better Approach
● We can implement this

algorithm efficiently by
maintaining a stack of the
nodes in the right spine.

● Pop the stack until the new
value is no bigger than the
stack top (or the stack is
empty). Remember the last
node popped this way.

● Rewire the tree by
● making the stack top point to

the new node, and
● making the most-recently-

popped node the new node’s
left child.

6393 84 33 64 62 83 5863

93

84

33

33

64

62

83

63

63

62

Last Popped

A Better Approach
● We can implement this

algorithm efficiently by
maintaining a stack of the
nodes in the right spine.

● Pop the stack until the new
value is no bigger than the
stack top (or the stack is
empty). Remember the last
node popped this way.

● Rewire the tree by
● making the stack top point to

the new node, and
● making the most-recently-

popped node the new node’s
left child.

6393 84 33 64 62 83 5863

93

84

33

33

64

62

83

63

63

58

62

Last Popped

A Better Approach
● We can implement this

algorithm efficiently by
maintaining a stack of the
nodes in the right spine.

● Pop the stack until the new
value is no bigger than the
stack top (or the stack is
empty). Remember the last
node popped this way.

● Rewire the tree by
● making the stack top point to

the new node, and
● making the most-recently-

popped node the new node’s
left child.

6393 84 33 64 62 83 5863

93

84

33

33

64

62

83

63

58

62

Last Popped
63

63

A Better Approach
● We can implement this

algorithm efficiently by
maintaining a stack of the
nodes in the right spine.

● Pop the stack until the new
value is no bigger than the
stack top (or the stack is
empty). Remember the last
node popped this way.

● Rewire the tree by
● making the stack top point to

the new node, and
● making the most-recently-

popped node the new node’s
left child.

6393 84 33 64 62 83 5863

93

84

33

33

64

83

63

58

62

Last Popped
63

62
62

A Better Approach
● We can implement this

algorithm efficiently by
maintaining a stack of the
nodes in the right spine.

● Pop the stack until the new
value is no bigger than the
stack top (or the stack is
empty). Remember the last
node popped this way.

● Rewire the tree by
● making the stack top point to

the new node, and
● making the most-recently-

popped node the new node’s
left child.

6393 84 33 64 62 83 5863

93

84

33

33

64

83

63

58

62

Last Popped
62

A Better Approach
● We can implement this

algorithm efficiently by
maintaining a stack of the
nodes in the right spine.

● Pop the stack until the new
value is no bigger than the
stack top (or the stack is
empty). Remember the last
node popped this way.

● Rewire the tree by
● making the stack top point to

the new node, and
● making the most-recently-

popped node the new node’s
left child.

6393 84 33 64 62 83 5863

93

84

33

33

64

83

63

58

62

Last Popped
62

A Better Approach
● We can implement this

algorithm efficiently by
maintaining a stack of the
nodes in the right spine.

● Pop the stack until the new
value is no bigger than the
stack top (or the stack is
empty). Remember the last
node popped this way.

● Rewire the tree by
● making the stack top point to

the new node, and
● making the most-recently-

popped node the new node’s
left child.

6393 84 33 64 62 83 5863

93

84

33

33

64

83

63

58

62

Last Popped
62

A Better Approach
● We can implement this

algorithm efficiently by
maintaining a stack of the
nodes in the right spine.

● Pop the stack until the new
value is no bigger than the
stack top (or the stack is
empty). Remember the last
node popped this way.

● Rewire the tree by
● making the stack top point to

the new node, and
● making the most-recently-

popped node the new node’s
left child.

6393 84 33 64 62 83 5863

93

84

33

33

64

62

83

63

58

58

Last Popped

A Better Approach
● How fast is this new

approach on an array of k
elements?

● Adding each element to
the tree might take time
O(k), since we may have
to pop O(k) elements off
the stack.

● Since there are k
elements, that gives a
time bound of O(k2).

● Question: Is this bound
tight?

6393 84 33 64 62 83 5863

93

84

33

33

64

62

83

63

58

58

A Better Approach
● Claim: This algorithm

takes time O(k) on an
array of size k.

● Idea: Each element is
pushed onto the stack at
most once, when it’s
created. Each element
can therefore be popped
at most once.

● Therefore, there are at
O(k) pushes and O(k)
pops, so the runtime is
O(k).

6393 84 33 64 62 83 5863

93

84

33

33

64

62

83

63

58

58

How can we tell when two blocks
can share RMQ structures?

When those blocks have isomorphic Cartesian trees!
And we can check this in time O(b)!

But there are lots of pairs of blocks to check!

How many block types are there,
as a function of b?

¯_(ツ)_/¯

How can we tell when two blocks
can share RMQ structures?

When those blocks have isomorphic Cartesian trees!
And we can check this in time O(b)!

But there are lots of pairs of blocks to check!

How many block types are there,
as a function of b?

¯_(ツ)_/¯

Theorem: The number of distinct
Cartesian tree shapes for arrays of

length b is at most 4b.

In case you're curious, the actual number is

 ,

which is roughly equal to

 .

Look up the Catalan numbers for more information!

4b

b3 /2
√π

1
b+1 (2b

b)

Proof Approach
● Our stack-based algorithm for generating

Cartesian trees produces a Cartesian
tree for every possible input array.

● Therefore, if we can count the number of
possible executions of that algorithm, we
can count the number of Cartesian trees.

● Using a simple counting scheme, we can
show that there are at most 4b possible
executions.

Cartesian Tree Numbers
● There are at most 2b stack

operations during the
execution of the algorithm: b
pushes and no more than b
pops.

● Represent the execution of the
algorithm as a 2b-bit number,
where 1 means “push” and 0
means “pop.” We'll pad the
end with 0's (pretend we pop
everything from the stack).

● This number is the Cartesian
tree number of a block.

6393 84 33 64 62 83 5863

0 means pop; 1 means push

Cartesian Tree Numbers

6393 84 33 64 62 83 5863

93

0 means pop; 1 means push

● There are at most 2b stack
operations during the
execution of the algorithm: b
pushes and no more than b
pops.

● Represent the execution of the
algorithm as a 2b-bit number,
where 1 means “push” and 0
means “pop.” We'll pad the
end with 0's (pretend we pop
everything from the stack).

● This number is the Cartesian
tree number of a block.

Cartesian Tree Numbers

6393 84 33 64 62 83 5863

93

93

● There are at most 2b stack
operations during the
execution of the algorithm: b
pushes and no more than b
pops.

● Represent the execution of the
algorithm as a 2b-bit number,
where 1 means “push” and 0
means “pop.” We'll pad the
end with 0's (pretend we pop
everything from the stack).

● This number is the Cartesian
tree number of a block.

1
0 means pop; 1 means push

Cartesian Tree Numbers

6393 84 33 64 62 83 5863

93

93

84

● There are at most 2b stack
operations during the
execution of the algorithm: b
pushes and no more than b
pops.

● Represent the execution of the
algorithm as a 2b-bit number,
where 1 means “push” and 0
means “pop.” We'll pad the
end with 0's (pretend we pop
everything from the stack).

● This number is the Cartesian
tree number of a block.

1
0 means pop; 1 means push

Cartesian Tree Numbers

6393 84 33 64 62 83 5863

93

84

● There are at most 2b stack
operations during the
execution of the algorithm: b
pushes and no more than b
pops.

● Represent the execution of the
algorithm as a 2b-bit number,
where 1 means “push” and 0
means “pop.” We'll pad the
end with 0's (pretend we pop
everything from the stack).

● This number is the Cartesian
tree number of a block.

1 0
0 means pop; 1 means push

Cartesian Tree Numbers

6393 84 33 64 62 83 5863

93

84

● There are at most 2b stack
operations during the
execution of the algorithm: b
pushes and no more than b
pops.

● Represent the execution of the
algorithm as a 2b-bit number,
where 1 means “push” and 0
means “pop.” We'll pad the
end with 0's (pretend we pop
everything from the stack).

● This number is the Cartesian
tree number of a block.

1 0
0 means pop; 1 means push

Cartesian Tree Numbers

6393 84 33 64 62 83 5863

93

84

84

● There are at most 2b stack
operations during the
execution of the algorithm: b
pushes and no more than b
pops.

● Represent the execution of the
algorithm as a 2b-bit number,
where 1 means “push” and 0
means “pop.” We'll pad the
end with 0's (pretend we pop
everything from the stack).

● This number is the Cartesian
tree number of a block.

1 0 1
0 means pop; 1 means push

Cartesian Tree Numbers

6393 84 33 64 62 83 5863

93

84

84

● There are at most 2b stack
operations during the
execution of the algorithm: b
pushes and no more than b
pops.

● Represent the execution of the
algorithm as a 2b-bit number,
where 1 means “push” and 0
means “pop.” We'll pad the
end with 0's (pretend we pop
everything from the stack).

● This number is the Cartesian
tree number of a block.

1 0 1
0 means pop; 1 means push

Cartesian Tree Numbers

6393 84 33 64 62 83 5863

93

84

33

84

● There are at most 2b stack
operations during the
execution of the algorithm: b
pushes and no more than b
pops.

● Represent the execution of the
algorithm as a 2b-bit number,
where 1 means “push” and 0
means “pop.” We'll pad the
end with 0's (pretend we pop
everything from the stack).

● This number is the Cartesian
tree number of a block.

1 0 1
0 means pop; 1 means push

Cartesian Tree Numbers

6393 84 33 64 62 83 5863

93

33

84

● There are at most 2b stack
operations during the
execution of the algorithm: b
pushes and no more than b
pops.

● Represent the execution of the
algorithm as a 2b-bit number,
where 1 means “push” and 0
means “pop.” We'll pad the
end with 0's (pretend we pop
everything from the stack).

● This number is the Cartesian
tree number of a block.

1 0 1 0
0 means pop; 1 means push

Cartesian Tree Numbers

6393 84 33 64 62 83 5863

93

33

84

● There are at most 2b stack
operations during the
execution of the algorithm: b
pushes and no more than b
pops.

● Represent the execution of the
algorithm as a 2b-bit number,
where 1 means “push” and 0
means “pop.” We'll pad the
end with 0's (pretend we pop
everything from the stack).

● This number is the Cartesian
tree number of a block.

1 0 1 0
0 means pop; 1 means push

Cartesian Tree Numbers

6393 84 33 64 62 83 5863

93

33

33

84

● There are at most 2b stack
operations during the
execution of the algorithm: b
pushes and no more than b
pops.

● Represent the execution of the
algorithm as a 2b-bit number,
where 1 means “push” and 0
means “pop.” We'll pad the
end with 0's (pretend we pop
everything from the stack).

● This number is the Cartesian
tree number of a block.

1 0 1 0 1
0 means pop; 1 means push

Cartesian Tree Numbers

6393 84 33 64 62 83 5863

93

84

33

33

● There are at most 2b stack
operations during the
execution of the algorithm: b
pushes and no more than b
pops.

● Represent the execution of the
algorithm as a 2b-bit number,
where 1 means “push” and 0
means “pop.” We'll pad the
end with 0's (pretend we pop
everything from the stack).

● This number is the Cartesian
tree number of a block.

1 0 1 0 1
0 means pop; 1 means push

Cartesian Tree Numbers

6393 84 33 64 62 83 5863

93

84

33

33

64

● There are at most 2b stack
operations during the
execution of the algorithm: b
pushes and no more than b
pops.

● Represent the execution of the
algorithm as a 2b-bit number,
where 1 means “push” and 0
means “pop.” We'll pad the
end with 0's (pretend we pop
everything from the stack).

● This number is the Cartesian
tree number of a block.

1 0 1 0 1
0 means pop; 1 means push

Cartesian Tree Numbers

6393 84 33 64 62 83 5863

93

84

33

33

64

● There are at most 2b stack
operations during the
execution of the algorithm: b
pushes and no more than b
pops.

● Represent the execution of the
algorithm as a 2b-bit number,
where 1 means “push” and 0
means “pop.” We'll pad the
end with 0's (pretend we pop
everything from the stack).

● This number is the Cartesian
tree number of a block.

1 0 1 0 1
0 means pop; 1 means push

Cartesian Tree Numbers

6393 84 33 64 62 83 5863

93

84

33

33

64

● There are at most 2b stack
operations during the
execution of the algorithm: b
pushes and no more than b
pops.

● Represent the execution of the
algorithm as a 2b-bit number,
where 1 means “push” and 0
means “pop.” We'll pad the
end with 0's (pretend we pop
everything from the stack).

● This number is the Cartesian
tree number of a block.

1 0 1 0 1
0 means pop; 1 means push

Cartesian Tree Numbers

6393 84 33 64 62 83 5863

93

84

33

33

64

64

● There are at most 2b stack
operations during the
execution of the algorithm: b
pushes and no more than b
pops.

● Represent the execution of the
algorithm as a 2b-bit number,
where 1 means “push” and 0
means “pop.” We'll pad the
end with 0's (pretend we pop
everything from the stack).

● This number is the Cartesian
tree number of a block.

1 0 1 0 1 1
0 means pop; 1 means push

Cartesian Tree Numbers

6393 84 33 64 62 83 5863

93

84

33

33

64

64

62

● There are at most 2b stack
operations during the
execution of the algorithm: b
pushes and no more than b
pops.

● Represent the execution of the
algorithm as a 2b-bit number,
where 1 means “push” and 0
means “pop.” We'll pad the
end with 0's (pretend we pop
everything from the stack).

● This number is the Cartesian
tree number of a block.

1 0 1 0 1 1
0 means pop; 1 means push

Cartesian Tree Numbers

6393 84 33 64 62 83 5863

93

84

33

33

64

62

● There are at most 2b stack
operations during the
execution of the algorithm: b
pushes and no more than b
pops.

● Represent the execution of the
algorithm as a 2b-bit number,
where 1 means “push” and 0
means “pop.” We'll pad the
end with 0's (pretend we pop
everything from the stack).

● This number is the Cartesian
tree number of a block.

1 0 1 0 1 1 0
0 means pop; 1 means push

Cartesian Tree Numbers

6393 84 33 64 62 83 5863

93

84

33

33

64

62

● There are at most 2b stack
operations during the
execution of the algorithm: b
pushes and no more than b
pops.

● Represent the execution of the
algorithm as a 2b-bit number,
where 1 means “push” and 0
means “pop.” We'll pad the
end with 0's (pretend we pop
everything from the stack).

● This number is the Cartesian
tree number of a block.

1 0 1 0 1 1 0
0 means pop; 1 means push

Cartesian Tree Numbers

6393 84 33 64 62 83 5863

93

84

33

33

64

62

● There are at most 2b stack
operations during the
execution of the algorithm: b
pushes and no more than b
pops.

● Represent the execution of the
algorithm as a 2b-bit number,
where 1 means “push” and 0
means “pop.” We'll pad the
end with 0's (pretend we pop
everything from the stack).

● This number is the Cartesian
tree number of a block.

1 0 1 0 1 1 0
0 means pop; 1 means push

Cartesian Tree Numbers

6393 84 33 64 62 83 5863

93

84

33

33

64

62

62

● There are at most 2b stack
operations during the
execution of the algorithm: b
pushes and no more than b
pops.

● Represent the execution of the
algorithm as a 2b-bit number,
where 1 means “push” and 0
means “pop.” We'll pad the
end with 0's (pretend we pop
everything from the stack).

● This number is the Cartesian
tree number of a block.

1 0 1 0 1 1 0 1
0 means pop; 1 means push

Cartesian Tree Numbers

6393 84 33 64 62 83 5863

93

84

33

33

64

62

83

62

● There are at most 2b stack
operations during the
execution of the algorithm: b
pushes and no more than b
pops.

● Represent the execution of the
algorithm as a 2b-bit number,
where 1 means “push” and 0
means “pop.” We'll pad the
end with 0's (pretend we pop
everything from the stack).

● This number is the Cartesian
tree number of a block.

1 0 1 0 1 1 0 1
0 means pop; 1 means push

Cartesian Tree Numbers

6393 84 33 64 62 83 5863

93

84

33

33

64

62

83

62

● There are at most 2b stack
operations during the
execution of the algorithm: b
pushes and no more than b
pops.

● Represent the execution of the
algorithm as a 2b-bit number,
where 1 means “push” and 0
means “pop.” We'll pad the
end with 0's (pretend we pop
everything from the stack).

● This number is the Cartesian
tree number of a block.

1 0 1 0 1 1 0 1
0 means pop; 1 means push

Cartesian Tree Numbers

6393 84 33 64 62 83 5863

93

84

33

33

64

62

83

62

● There are at most 2b stack
operations during the
execution of the algorithm: b
pushes and no more than b
pops.

● Represent the execution of the
algorithm as a 2b-bit number,
where 1 means “push” and 0
means “pop.” We'll pad the
end with 0's (pretend we pop
everything from the stack).

● This number is the Cartesian
tree number of a block.

1 0 1 0 1 1 0 1
0 means pop; 1 means push

Cartesian Tree Numbers

6393 84 33 64 62 83 5863

93

84

33

33

64

62

83

83

62

● There are at most 2b stack
operations during the
execution of the algorithm: b
pushes and no more than b
pops.

● Represent the execution of the
algorithm as a 2b-bit number,
where 1 means “push” and 0
means “pop.” We'll pad the
end with 0's (pretend we pop
everything from the stack).

● This number is the Cartesian
tree number of a block.

1 0 1 0 1 1 0 1 1
0 means pop; 1 means push

Cartesian Tree Numbers

6393 84 33 64 62 83 5863

93

84

33

33

64

62

83

83

63

62

● There are at most 2b stack
operations during the
execution of the algorithm: b
pushes and no more than b
pops.

● Represent the execution of the
algorithm as a 2b-bit number,
where 1 means “push” and 0
means “pop.” We'll pad the
end with 0's (pretend we pop
everything from the stack).

● This number is the Cartesian
tree number of a block.

1 0 1 0 1 1 0 1 1
0 means pop; 1 means push

Cartesian Tree Numbers

6393 84 33 64 62 83 5863

93

84

33

33

64

62

83

63

62

● There are at most 2b stack
operations during the
execution of the algorithm: b
pushes and no more than b
pops.

● Represent the execution of the
algorithm as a 2b-bit number,
where 1 means “push” and 0
means “pop.” We'll pad the
end with 0's (pretend we pop
everything from the stack).

● This number is the Cartesian
tree number of a block.

1 0 1 0 1 1 0 1 1 0
0 means pop; 1 means push

Cartesian Tree Numbers

6393 84 33 64 62 83 5863

93

84

33

33

64

62

83

63

62

● There are at most 2b stack
operations during the
execution of the algorithm: b
pushes and no more than b
pops.

● Represent the execution of the
algorithm as a 2b-bit number,
where 1 means “push” and 0
means “pop.” We'll pad the
end with 0's (pretend we pop
everything from the stack).

● This number is the Cartesian
tree number of a block.

1 0 1 0 1 1 0 1 1 0
0 means pop; 1 means push

Cartesian Tree Numbers

6393 84 33 64 62 83 5863

93

84

33

33

64

62

83

63

62

● There are at most 2b stack
operations during the
execution of the algorithm: b
pushes and no more than b
pops.

● Represent the execution of the
algorithm as a 2b-bit number,
where 1 means “push” and 0
means “pop.” We'll pad the
end with 0's (pretend we pop
everything from the stack).

● This number is the Cartesian
tree number of a block.

1 0 1 0 1 1 0 1 1 0
0 means pop; 1 means push

Cartesian Tree Numbers

6393 84 33 64 62 83 5863

93

84

33

33

64

62

83

63

63

62

● There are at most 2b stack
operations during the
execution of the algorithm: b
pushes and no more than b
pops.

● Represent the execution of the
algorithm as a 2b-bit number,
where 1 means “push” and 0
means “pop.” We'll pad the
end with 0's (pretend we pop
everything from the stack).

● This number is the Cartesian
tree number of a block.

1 0 1 0 1 1 0 1 1 0 1
0 means pop; 1 means push

Cartesian Tree Numbers

6393 84 33 64 62 83 5863

93

84

33

33

64

62

83

63

63

58

62

● There are at most 2b stack
operations during the
execution of the algorithm: b
pushes and no more than b
pops.

● Represent the execution of the
algorithm as a 2b-bit number,
where 1 means “push” and 0
means “pop.” We'll pad the
end with 0's (pretend we pop
everything from the stack).

● This number is the Cartesian
tree number of a block.

1 0 1 0 1 1 0 1 1 0 1
0 means pop; 1 means push

Cartesian Tree Numbers

6393 84 33 64 62 83 5863

93

84

33

33

64

62

83

63

58

62

● There are at most 2b stack
operations during the
execution of the algorithm: b
pushes and no more than b
pops.

● Represent the execution of the
algorithm as a 2b-bit number,
where 1 means “push” and 0
means “pop.” We'll pad the
end with 0's (pretend we pop
everything from the stack).

● This number is the Cartesian
tree number of a block.

1 0 1 0 1 1 0 1 1 0 1 0
0 means pop; 1 means push

Cartesian Tree Numbers

6393 84 33 64 62 83 5863

93

84

33

33

64

83

63

58

62

● There are at most 2b stack
operations during the
execution of the algorithm: b
pushes and no more than b
pops.

● Represent the execution of the
algorithm as a 2b-bit number,
where 1 means “push” and 0
means “pop.” We'll pad the
end with 0's (pretend we pop
everything from the stack).

● This number is the Cartesian
tree number of a block.

1 0 1 0 1 1 0 1 1 0 1 0
0 means pop; 1 means push

0

Cartesian Tree Numbers

6393 84 33 64 62 83 5863

93

84

33

33

64

83

63

58

62

● There are at most 2b stack
operations during the
execution of the algorithm: b
pushes and no more than b
pops.

● Represent the execution of the
algorithm as a 2b-bit number,
where 1 means “push” and 0
means “pop.” We'll pad the
end with 0's (pretend we pop
everything from the stack).

● This number is the Cartesian
tree number of a block.

1 0 1 0 1 1 0 1 1 0 1 0
0 means pop; 1 means push

0

Cartesian Tree Numbers

6393 84 33 64 62 83 5863

93

84

33

33

64

83

63

58

62

● There are at most 2b stack
operations during the
execution of the algorithm: b
pushes and no more than b
pops.

● Represent the execution of the
algorithm as a 2b-bit number,
where 1 means “push” and 0
means “pop.” We'll pad the
end with 0's (pretend we pop
everything from the stack).

● This number is the Cartesian
tree number of a block.

1 0 1 0 1 1 0 1 1 0 1 0
0 means pop; 1 means push

0

Cartesian Tree Numbers

6393 84 33 64 62 83 5863

93

84

33

33

64

62

83

63

58

58

● There are at most 2b stack
operations during the
execution of the algorithm: b
pushes and no more than b
pops.

● Represent the execution of the
algorithm as a 2b-bit number,
where 1 means “push” and 0
means “pop.” We'll pad the
end with 0's (pretend we pop
everything from the stack).

● This number is the Cartesian
tree number of a block.

1 0 1 0 1 1 0 1 1 0 1 0
0 means pop; 1 means push

0 1

Cartesian Tree Numbers

6393 84 33 64 62 83 5863

93

84

33

33

64

62

83

63

58

● There are at most 2b stack
operations during the
execution of the algorithm: b
pushes and no more than b
pops.

● Represent the execution of the
algorithm as a 2b-bit number,
where 1 means “push” and 0
means “pop.” We'll pad the
end with 0's (pretend we pop
everything from the stack).

● This number is the Cartesian
tree number of a block.

1 0 1 0 1 1 0 1 1 0 1 0
0 means pop; 1 means push

0 1 0

Cartesian Tree Numbers

6393 84 33 64 62 83 5863

93

84

33

64

62

83

63

58

● There are at most 2b stack
operations during the
execution of the algorithm: b
pushes and no more than b
pops.

● Represent the execution of the
algorithm as a 2b-bit number,
where 1 means “push” and 0
means “pop.” We'll pad the
end with 0's (pretend we pop
everything from the stack).

● This number is the Cartesian
tree number of a block.

1 0 1 0 1 1 0 1 1 0 1 0
0 means pop; 1 means push

0 1 0 0

Cartesian Tree Numbers

6393 84 33 64 62 83 5863

93

84

33

64

62

83

63

58

● There are at most 2b stack
operations during the
execution of the algorithm: b
pushes and no more than b
pops.

● Represent the execution of the
algorithm as a 2b-bit number,
where 1 means “push” and 0
means “pop.” We'll pad the
end with 0's (pretend we pop
everything from the stack).

● This number is the Cartesian
tree number of a block.

1 0 1 0 1 1 0 1 1 0 1 0 0 1 0 0 (44,452)

Cartesian Tree Numbers

6393 84 33 64 62 83 5863

93

84

33

64

62

83

63

58

● Two blocks can share an
RMQ structure iff they
have the same Cartesian
tree.

● Observation: If all we care
about is finding blocks that
can share RMQ structures,
we never need to build
Cartesian trees! Instead,
we can just compute the
Cartesian tree number for
each block.

1 0 1 0 1 1 0 1 1 0 1 0 0 1 0 0 (44,452)

Treeless Tree Numbers

27 18 28 18 28 45 90 45 23 53 60 28 74 71 35

Treeless Tree Numbers

27 18 28 18 28 45 90 45 23 53 60 28 74 71 35

Treeless Tree Numbers

27 18 28 18 28 45

1

90 45 23 53 60 28 74 71 35

27

Treeless Tree Numbers

27 18 28 18 28 45

1

90 45 23 53 60 28 74 71 35

27

Treeless Tree Numbers

27 18 28 18 28 45

1 0

90 45 23 53 60 28 74 71 35

Treeless Tree Numbers

27 18 28 18 28 45

1 0 1

90 45 23 53 60 28 74 71 35

18

Treeless Tree Numbers

27 18 28 18 28 45

1 0 1

90 45 23 53 60 28 74 71 35

18

Treeless Tree Numbers

27 18 28 18 28 45

1 0 1 1

90 45 23 53 60 28 74 71 35

18 28

Treeless Tree Numbers

27 18 28 18 28 45

1 0 1 1

90 45 23 53 60 28 74 71 35

18 28

Treeless Tree Numbers

27 18 28 18 28 45

1 0 1 1 0

90 45 23 53 60 28 74 71 35

18

Treeless Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1

90 45 23 53 60 28 74 71 35

18 18

Treeless Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1

90 45 23 53 60 28 74 71 35

18 18

Treeless Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1

90 45 23 53 60 28 74 71 35

18 18 28

Treeless Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1

90 45 23 53 60 28 74 71 35

18 18 28

Treeless Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1

90 45 23 53 60 28 74 71 35

18 18 28 45

Treeless Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1

90 45 23 53 60 28 74 71 35

18 18 28 45

Treeless Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1

90 45 23 53 60 28 74 71 35

18 18 28 45 90

Treeless Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1

90 45 23 53 60 28 74 71 35

18 18 28 45 90

Treeless Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0

90 45 23 53 60 28 74 71 35

18 18 28 45

Treeless Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1

90 45 23 53 60 28 74 71 35

18 18 28 45 45

Treeless Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1

90 45 23 53 60 28 74 71 35

18 18 28 45 45

Treeless Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

18 18 28 45

Treeless Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0

18 18 28

Treeless Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0

18 18

Treeless Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1

18 18 23

Treeless Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1

18 18 23

Treeless Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1 1

18 18 23 53

Treeless Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1 1

18 18 23 53

Treeless Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1 1 1

18 18 23 53 60

Treeless Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1 1 1

18 18 23 53 60

Treeless Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1 1 1 0

18 18 23 53

Treeless Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1 1 1 0 0

18 18 23

Treeless Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1 1 1 0 0 1

18 18 23 28

Treeless Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1 1 1 0 0 1

18 18 23 28

Treeless Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1 1 1 0 0 1 1

18 18 23 28 74

Treeless Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1 1 1 0 0 1 1

18 18 23 28 74

Treeless Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1 1 1 0 0 1 1 0

18 18 23 28

Treeless Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1 1 1 0 0 1 1 0 1

18 18 23 28 71

Treeless Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1 1 1 0 0 1 1 0 1

18 18 23 28 71

Treeless Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1 1 1 0 0 1 1 0 1 0

18 18 23 28

Treeless Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1 1 1 0 0 1 1 0 1 0 1

18 18 23 28 35

Treeless Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1 1 1 0 0 1 1 0 1 0 1 0

18 18 23 28

Treeless Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1 1 1 0 0 1 1 0 1 0 1 0 0

18 18 23

Treeless Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1 1 1 0 0 1 1 0 1 0 1 0 0 0

18 18

Treeless Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1 1 1 0 0 1 1 0 1 0 1 0 0 0 0

18

Treeless Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1 1 1 0 0 1 1 0 1 0 1 0 0 0 0 0

Treeless Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1 1 1 0 0 1 1 0 1 0 1 0 0 0 0 0

(770,238,112)

How can we tell when two blocks
can share RMQ structures?

When they have the same Cartesian tree number!
And we can check this in time O(b)!

How many block types are there,
as a function of b?

At most 4b, because of the above algorithm!

How can we tell when two blocks
can share RMQ structures?

When they have the same Cartesian tree number!
And we can check this in time O(b)!

How many block types are there,
as a function of b?

At most 4b, because of the above algorithm!

How can we tell when two blocks
can share RMQ structures?

When they have the same Cartesian tree number!
And we can check this in time O(b)!

And it’s easier to store numbers than trees!

How many block types are there,
as a function of b?

At most 4b, because of the above algorithm!

How can we tell when two blocks
can share RMQ structures?

When they have the same Cartesian tree number!
And we can check this in time O(b)!

And it’s easier to store numbers than trees!

How many block types are there,
as a function of b?

At most 4b, because of the above algorithm!

How can we tell when two blocks
can share RMQ structures?

When they have the same Cartesian tree number!
And we can check this in time O(b)!

And it’s easier to store numbers than trees!

How many block types are there,
as a function of b?

At most 4b, because of the above algorithm!

Putting it all Together

66 13 59 75 55 39 25 17 31 84 44 22

Summary RMQ
(Sparse Table)

13 39 17 22

000000

000001

111111

…

66 13 59 75 55 39 25 17 31 84 44 22

Summary RMQ
(Sparse Table)

13 39 17 22

000000

000001

111111

…

101100

Block-level
RMQ

…

66 13 59 75 55 39 25 17 31 84 44 22

Summary RMQ
(Sparse Table)

13 39 17 22

000000

000001

111111

…

101100

Block-level
RMQ

…

101100

66 13 59 75 55 39 25 17 31 84 44 22

Summary RMQ
(Sparse Table)

13 39 17 22

000000

000001

111111

…

101100

Block-level
RMQ

…

101100

101010

…

Block-level
RMQ

66 13 59 75 55 39 25 17 31 84 44 22

Summary RMQ
(Sparse Table)

13 39 17 22

000000

000001

111111

…

101100

Block-level
RMQ

…

101100

101010

…

Block-level
RMQ

66 13 59 75 55 39 25 17 31 84 44 22

Summary RMQ
(Sparse Table)

13 39 17 22

000000

000001

111111

…

101100

Block-level
RMQ

…

101100

101010

…

Block-level
RMQ

66 13 59 75 55 39 25 17 31 84 44 22

Summary RMQ
(Sparse Table)

13 39 17 22

000000

000001

111111

…

101100

Block-level
RMQ

…

101100

101010

…

Block-level
RMQ

66 13 59 75 55 39 25 17 31 84 44 22

Summary RMQ
(Sparse Table)

13 39 17 22

Block-level
RMQ

Block-level
RMQ

How Efficient is This?

We’re using the hybrid approach,
and all the types we’re using have

constant query times.

Query time: O(1)

O(n + (n / b) log (n / b) + b2 4b)

Our preprocessing time is

O(n + (n / b) log (n / b) + b2 4b)

Our preprocessing time is

Construct at most 4b block-
level RMQ structures at a

cost of O(b2) each.

Build a sparse
table on blocks of

size n / b.

Compute block minima;
compute Cartesian tree
numbers of each block.

O(n + (n / b) log (n / b) + b2 4b)

Our preprocessing time is

O(n + (n / b) log n + b2 4b)

This term grows
exponentially in n unless

we pick b = O(log n).

This term will be
superlinear unless we

pick b = Ω(log n).

Our preprocessing time is

O(n + (n / b) log n + b2 4b)

Suppose we pick
b = k log₄ n

for some constant k.

Our preprocessing time is

O(n + (n / b) log n + b2 4b)

Suppose we pick
b = k log₄ n

for some constant k.

Our preprocessing time is

O(n + (n / k log₄ n) log n + b2 4b)

Suppose we pick
b = k log₄ n

for some constant k.

Our preprocessing time is

O(n + (n / k log₄ n) log n + b2 4b)

Suppose we pick
b = k log₄ n

for some constant k.

Our preprocessing time is

O(n + (n / log n) log n + b2 4b)

Suppose we pick
b = k log₄ n

for some constant k.

Our preprocessing time is

O(n + (n / log n) log n + b2 4b)

Suppose we pick
b = k log₄ n

for some constant k.

Our preprocessing time is

O(n + n + b2 4b)

Suppose we pick
b = k log₄ n

for some constant k.

Our preprocessing time is

O(n + n + b2 4b)

Suppose we pick
b = k log₄ n

for some constant k.

Our preprocessing time is

O(n + n + b2 4b)

Suppose we pick
b = k log₄ n

for some constant k.

Our preprocessing time is

O(n + n + b2 4k log₄ n)

Suppose we pick
b = k log₄ n

for some constant k.

Our preprocessing time is

O(n + n + b2 4 log₄ nᵏ)

Suppose we pick
b = k log₄ n

for some constant k.

Our preprocessing time is

O(n + n + b2 4 log₄ nᵏ)

Suppose we pick
b = k log₄ n

for some constant k.

Our preprocessing time is

O(n + n + b2 nk)

Suppose we pick
b = k log₄ n

for some constant k.

Our preprocessing time is

O(n + n + (k log₄ n)2 nk)

Suppose we pick
b = k log₄ n

for some constant k.

Our preprocessing time is

O(n + n + (k log₄ n)2 nk)

Suppose we pick
b = k log₄ n

for some constant k.

Our preprocessing time is

O(n + n + (log n)2 nk)

Suppose we pick
b = k log₄ n

for some constant k.

Our preprocessing time is

O(n + n + (log n)2 nk)

Suppose we pick
b = k log₄ n

for some constant k.

Our preprocessing time is

O(n + n + (log n)2 nk)

Suppose we pick
b = k log₄ n

for some constant k.
Now, set k = ½.

Our preprocessing time is

O(n + n + (log n)2 n1/2)

Suppose we pick
b = k log₄ n

for some constant k.
Now, set k = ½.

Our preprocessing time is

O(n + n + n)

Suppose we pick
b = k log₄ n

for some constant k.
Now, set k = ½.

Our preprocessing time is

O(n)

Suppose we pick
b = k log₄ n

for some constant k.
Now, set k = ½.

Our preprocessing time is

The Fischer-Heun Structure
● This data structure is called the Fischer-Heun

structure. It uses a modified version of our hybrid
RMQ framework:
● Set b = ½ log₄ n = ¼ log₂ n.
● Split the input into blocks of size b. Compute an array of

minimum values from each block.
● Build a sparse table on that array of minima.
● Build per-block RMQ structures for each block, using

Cartesian tree numbers to avoid recomputing RMQ
structures unnecessarily.

● Make queries using the standard hybrid solution
approach.

● This is an ⟨O(n), O(1)⟩ solution to RMQ!

The Method of Four Russians
● The technique employed here is an example of the

Method of Four Russians or a Four Russians
Speedup.
● Break the problem of size n into subproblems of size b, plus

some top-level problem of size n / b.
– This is called a macro/micro decomposition.

● Solve all possible subproblems of size b.
– Here, we only solved the subproblems that actually came up in the

original array, but that’s just an optimization.
● Solve the overall problem by combining solutions to the

micro and macro problems.
● Think of it as “divide, precompute, and conquer.”
● Curious about the name? It comes from a paper by

Арлазаров, Диниц, Кронрод, and Фараджев.

More to Explore
● Lowest Common Ancestors

● Given a tree, preprocess the tree so that queries of the form
“what is the lowest common ancestor of these two nodes?” can
be answered as quickly as possible. This reduces to RMQ, and is
one of the main places it’s used.

● Succinct RMQ
● Our ⟨O(n), O(1)⟩ solution to RMQ uses only O(n) words of

memory. How few bits of memory are needed? Later work by
Fischer and Heun (and others!) has reduced this to 2n + o(n)
bits, using some very clever techniques.

● Durocher’s RMQ Structure
● A professor teaching a data structures class found a way to solve

RMQ in time ⟨O(n), O(1)⟩ using some of the techniques we’ve
seen, but without needing the Four Russians speedup. The paper
is very accessible and shows off some really clever techniques.

Why Study RMQ?
● I chose RMQ as our first problem for a few reasons:

● See different approaches to the same problem. Each
approach we covered introduces some generalizable idea
that we’ll see later in the quarter.

● Build data structures out of other data structures.
Many modern data structures use other data structures
as building blocks, and it's very evident here.

● See the Method of Four Russians. This trick looks like
magic the first few times you see it and shows up in lots
of places.

● Explore modern data structures. This is relatively
recent data structure (2005), and I wanted to show you
that the field is still very active!

● So what's next?

Next Time
● Balanced Trees

● The perennial data structure workhorse.
● B-Trees

● A simple, flexible balanced tree.
● 2-3-4 Trees

● Need to code up a balanced tree? Try this one. 😃
● A Glimpse of Red/Black Trees

● Where did these things come from, anyway?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186
	Slide 187
	Slide 188
	Slide 189
	Slide 190
	Slide 191
	Slide 192
	Slide 193
	Slide 194
	Slide 195
	Slide 196
	Slide 197
	Slide 198
	Slide 199
	Slide 200
	Slide 201
	Slide 202
	Slide 203
	Slide 204
	Slide 205
	Slide 206
	Slide 207
	Slide 208
	Slide 209
	Slide 210
	Slide 211
	Slide 212
	Slide 213
	Slide 214
	Slide 215
	Slide 216
	Slide 217
	Slide 218
	Slide 219
	Slide 220
	Slide 221
	Slide 222
	Slide 223
	Slide 224
	Slide 225
	Slide 226
	Slide 227
	Slide 228
	Slide 229
	Slide 230
	Slide 231
	Slide 232
	Slide 233
	Slide 234
	Slide 235
	Slide 236
	Slide 237
	Slide 238
	Slide 239
	Slide 240
	Slide 241
	Slide 242
	Slide 243
	Slide 244
	Slide 245
	Slide 246
	Slide 247
	Slide 248
	Slide 249
	Slide 250
	Slide 251
	Slide 252
	Slide 253
	Slide 254
	Slide 255
	Slide 256
	Slide 257
	Slide 258
	Slide 259
	Slide 260
	Slide 261
	Slide 262
	Slide 263
	Slide 264
	Slide 265
	Slide 266
	Slide 267
	Slide 268
	Slide 269
	Slide 270
	Slide 271
	Slide 272
	Slide 273
	Slide 274
	Slide 275
	Slide 276

