

Amortized Analysis

A Motivating Analogy

Doing the Dishes
● What do I do with

a dirty dish or
kitchen utensil?

● Option 1: Wash
it by hand.

● Option 2: Put it
in the dishwasher
rack, then run
the dishwasher if
it’s full.

Doing the Dishes
● What do I do with

a dirty dish or
kitchen utensil?

● Option 1: Wash
it by hand.

● Option 2: Put it
in the dishwasher
rack, then run
the dishwasher if
it’s full.

Doing the Dishes
● What do I do with

a dirty dish or
kitchen utensil?

● Option 1: Wash
it by hand.

● Option 2: Put it
in the dishwasher
rack, then run
the dishwasher if
it’s full.

Doing the Dishes
● Washing every

individual dish and
utensil by hand is
way slower than
using the dishwasher,
but I always have
access to my plates
and kitchen utensils.

● Running the
dishwasher is faster
in aggregate, but
means I may have to
wait a bit for dishes
to be ready.

Key Idea: Design data structures that
trade per-operation efficiency for

overall efficiency.

Where We’re Going
● Amortized Analysis (Today)

● A little accounting trickery never hurt anyone, right?
● Scapegoat Trees (Tuesday)

● Building a balanced BST, lazily.
● Tournament Heaps (Next Thursday)

● A fast, flexible priority queue that’s a great building
block for more complicated structures.

● Abdication Heaps (Next Tuesday)
● A priority queue optimized for graph algorithms that,

at least in theory, leads to optimal implementations.

Outline for Today
● Amortized Analysis

● Trading worst-case efficiency for aggregate
efficiency.

● Examples of Amortization
● Three motivating data structures and algorithms.

● Potential Functions
● Quantifying messiness and formalizing costs.

● Performing Amortized Analyses
● How to show our examples are indeed fast.

Three Examples

Two-Stack Queues Dynamic Arrays

A B C D E F G H I

Building B-Trees

Dynamic Arrays

A B C D E F G H I

Building B-Trees

Two-Stack Queues

The Two-Stack Queue

Out In

The Two-Stack Queue

1
Out In

The Two-Stack Queue

1
Out In

2

The Two-Stack Queue

1
Out In

2
3

The Two-Stack Queue

1
Out In

2
3
4

The Two-Stack Queue

1
Out In

2
3

4

The Two-Stack Queue

1
Out In

2
3

4

The Two-Stack Queue

1
In

2
3

4
Out

The Two-Stack Queue

1
In

2

3

4
Out

The Two-Stack Queue

1
In

2

3

4
Out

The Two-Stack Queue

1
In

23
4

Out

The Two-Stack Queue

1
In

2

3
4

Out

The Two-Stack Queue

1
In

2

3
4

Out

The Two-Stack Queue

1
In

2
3
4

Out

The Two-Stack Queue

1

In

2
3
4

Out

The Two-Stack Queue

1

In

2
3
4

Out

The Two-Stack Queue

1

In

2
3
4

Out

The Two-Stack Queue

1

In

2
3
4

Out

The Two-Stack Queue

In

2
3
4

Out

11

The Two-Stack Queue

In

2

3
4

Out

1

The Two-Stack Queue

In

3
4

Out

1 21 2

The Two-Stack Queue

3
4

Out

5
In

1 2

The Two-Stack Queue

3
4

Out

5
In

6

1 2

The Two-Stack Queue

3

4
Out

5
In

6

1 2

The Two-Stack Queue

4
Out

5
In

6

1 2 3

The Two-Stack Queue

4
Out

5
In

6
7

1 2 3

The Two-Stack Queue

4

Out

5
In

6
7

1 2 3

The Two-Stack Queue

Out

5
In

6
7

1 2 3 41 2 3 4

The Two-Stack Queue

Out

5
In

6

7

1 2 3 4

The Two-Stack Queue

Out

5
In

6

7

1 2 3 4

The Two-Stack Queue

5
In

6
7

Out

1 2 3 4

The Two-Stack Queue

5
In

6

7
Out

1 2 3 4

The Two-Stack Queue

5
In

6

7
Out

1 2 3 4

The Two-Stack Queue

5
In

6
7

Out

1 2 3 4

The Two-Stack Queue

5

In

6
7

Out

1 2 3 4

The Two-Stack Queue

5

In

6
7

Out

1 2 3 4

The Two-Stack Queue

5

In

6
7

Out

1 2 3 4

The Two-Stack Queue

5

In

6
7

Out

1 2 3 4

The Two-Stack Queue

In

6
7

Out

1 2 3 4 5

The Two-Stack Queue

Clean
Dishes

Dirty
Dishes

The Two-Stack Queue

1
Clean
Dishes

Dirty
Dishes

The Two-Stack Queue

1
Clean
Dishes

Dirty
Dishes

2

The Two-Stack Queue

1
Clean
Dishes

Dirty
Dishes

2
3

The Two-Stack Queue

1
Clean
Dishes

Dirty
Dishes

2
3
4

Our dirty dishes
are piling up

because we didn’t
do any work to

clean them when
we added them in.

The Two-Stack Queue

1
Clean
Dishes

Dirty
Dishes

2
3

4

The Two-Stack Queue

1
Clean
Dishes

Dirty
Dishes

2
3

4

The Two-Stack Queue

1
Dirty

Dishes

2
3

4
Clean
Dishes

The Two-Stack Queue

1
Dirty

Dishes

2

3

4
Clean
Dishes

The Two-Stack Queue

1
Dirty

Dishes

2

3

4
Clean
Dishes

The Two-Stack Queue

1
Dirty

Dishes

23
4

Clean
Dishes

The Two-Stack Queue

1
Dirty

Dishes

2

3
4

Clean
Dishes

The Two-Stack Queue

1
Dirty

Dishes

2

3
4

Clean
Dishes

The Two-Stack Queue

1
Dirty

Dishes

2
3
4

Clean
Dishes

The Two-Stack Queue

1

Dirty
Dishes

2
3
4

Clean
Dishes

The Two-Stack Queue

1

Dirty
Dishes

2
3
4

Clean
Dishes

The Two-Stack Queue

1

Dirty
Dishes

2
3
4

Clean
Dishes

The Two-Stack Queue

1

Dirty
Dishes

2
3
4

Clean
Dishes

We just cleaned up
our entire mess

and are back to a
pristine state.

The Two-Stack Queue

1

Dirty
Dishes

2
3
4

Clean
Dishes

The Two-Stack Queue

1

Dirty
Dishes

2
3
4

Clean
Dishes

The Two-Stack Queue

Dirty
Dishes

2
3
4

Clean
Dishes

1

The Two-Stack Queue

Dirty
Dishes

2

3
4

Clean
Dishes

1

The Two-Stack Queue

Dirty
Dishes

3
4

Clean
Dishes

1 21 2

The Two-Stack Queue

3
4

Clean
Dishes

5
Dirty

Dishes

1 2

We need to do some
“cleanup” on this before it’ll
be useful. It’s fast to add it

here because we’re
deferring that work.

The Two-Stack Queue

3
4

Clean
Dishes

5
Dirty

Dishes

6

1 2

The Two-Stack Queue

3

4
Clean
Dishes

5
Dirty

Dishes

6

1 2

The Two-Stack Queue

4
Clean
Dishes

5
Dirty

Dishes

6

1 2 3

The Two-Stack Queue

4
Clean
Dishes

5
Dirty

Dishes

6
7

1 2 3

The Two-Stack Queue

4

Clean
Dishes

5
Dirty

Dishes

6
7

1 2 3

The Two-Stack Queue

Clean
Dishes

5
Dirty

Dishes

6
7

1 2 3 41 2 3 4

The Two-Stack Queue

Clean
Dishes

5
Dirty

Dishes

6

7

1 2 3 4

The Two-Stack Queue

Clean
Dishes

5
Dirty

Dishes

6

7

1 2 3 4

The Two-Stack Queue

5
Dirty

Dishes

6
7

Clean
Dishes

1 2 3 4

The Two-Stack Queue

5
Dirty

Dishes

6

7
Clean
Dishes

1 2 3 4

The Two-Stack Queue

5
Dirty

Dishes

6

7
Clean
Dishes

1 2 3 4

The Two-Stack Queue

5
Dirty

Dishes

6
7

Clean
Dishes

1 2 3 4

The Two-Stack Queue

5

Dirty
Dishes

6
7

Clean
Dishes

1 2 3 4

The Two-Stack Queue

5

Dirty
Dishes

6
7

Clean
Dishes

1 2 3 4

The Two-Stack Queue

5

Dirty
Dishes

6
7

Clean
Dishes

1 2 3 4

The Two-Stack Queue

5

Dirty
Dishes

6
7

Clean
Dishes

1 2 3 4

The Two-Stack Queue

Dirty
Dishes

6
7

Clean
Dishes

1 2 3 4 5

The Two-Stack Queue
● Maintain an In stack and an Out stack.
● To enqueue an element, push it onto the

In stack.
● To dequeue an element:

● If the Out stack is nonempty, pop it.
● If the Out stack is empty, pop elements from

the In stack, pushing them into the Out
stack. Then dequeue as usual.

The Two-Stack Queue
● Each enqueue takes time O(1).

● Just push an item onto the In stack.
● Dequeues can vary in their runtime.

● Could be O(1) if the Out stack isn’t empty.
● Could be Θ(n) if the Out stack is empty.

1 2
3

n–1
...

n

Out In

The Two-Stack Queue
● Each enqueue takes time O(1).

● Just push an item onto the In stack.
● Dequeues can vary in their runtime.

● Could be O(1) if the Out stack isn’t empty.
● Could be Θ(n) if the Out stack is empty.

n
n–1

3
...

2

Out In

The Two-Stack Queue
● Each enqueue takes time O(1).

● Just push an item onto the In stack.
● Dequeues can vary in their runtime.

● Could be O(1) if the Out stack isn’t empty.
● Could be Θ(n) if the Out stack is empty.

n
n–1

3
...

Out In

The Two-Stack Queue
● Intuition: We only do expensive dequeues after a

long run of cheap enqueues.
● Think “dishwasher:” we very slowly introduce a lot

of dirty dishes to get cleaned up all at once.
● Provided we clean up all the dirty dishes at once,

and provided that dirty dishes accumulate slowly,
this is a fast strategy!

In
n
n–1

3
...

Out

The Two-Stack Queue
● Key Fact: Any series of n operations on an (initially

empty) two-stack queue will take time O(n).
● Why?
● Each item is pushed into at most two stacks and

popped from at most two stacks.
● Adding up the work done per element across all n

operations, we can do at most O(n) work.

In
n
n–1

3
...

Out

The Two-Stack Queue
● Key Fact: Any series of n operations on an (initially

empty) two-stack queue will take time O(n).
● Why?
● Each item is pushed into at most two stacks and

popped from at most two stacks.
● Adding up the work done per element across all n

operations, we can do at most O(n) work.

In
n
n–1

3
...

Out

Formulate a hypothesis! 😃

The Two-Stack Queue
● Key Fact: Any series of n operations on an (initially

empty) two-stack queue will take time O(n).
● Why?
● Each item is pushed into at most two stacks and

popped from at most two stacks.
● Adding up the work done per element across all n

operations, we can do at most O(n) work.

In
n
n–1

3
...

Out

Discuss with your
neighbors! 😃

The Two-Stack Queue
● Key Fact: Any series of n operations on an (initially

empty) two-stack queue will take time O(n).
● Why?
● Each item is pushed into at most two stacks and

popped from at most two stacks.
● Adding up the work done per element across all n

operations, we can do at most O(n) work.

In
n
n–1

3
...

Out

The Two-Stack Queue
● It’s correct but misleading to say the cost of a dequeue is O(n).

● This is comparatively rare.
● It’s wrong, but useful, to pretend the cost of a dequeue is O(1).

● Some operations take more time than this.
● However, if we pretend each operation takes time O(1), then the sum

of all the costs never underestimates the total.
● Question: What’s an honest, accurate way to describe the

runtime of the two-stack queue?

In
n
n–1

3
...

Out

Two-Stack Queues Dynamic Arrays

A B C D E F G H I

Building B-Trees

 Building B-Trees

Two-Stack Queues Dynamic Arrays

A B C D E F G H I

Dynamic Arrays

H

H

● A dynamic array is the most common way to
implement a list of values.

● Maintain an array slightly bigger than the one
you need. When you run out of space, double
the array size and copy the elements over.

Dynamic Arrays

H

● A dynamic array is the most common way to
implement a list of values.

● Maintain an array slightly bigger than the one
you need. When you run out of space, double
the array size and copy the elements over.

Dynamic Arrays

H He

● A dynamic array is the most common way to
implement a list of values.

● Maintain an array slightly bigger than the one
you need. When you run out of space, double
the array size and copy the elements over.

Dynamic Arrays

H He

H He

● A dynamic array is the most common way to
implement a list of values.

● Maintain an array slightly bigger than the one
you need. When you run out of space, double
the array size and copy the elements over.

Dynamic Arrays

H He

● A dynamic array is the most common way to
implement a list of values.

● Maintain an array slightly bigger than the one
you need. When you run out of space, double
the array size and copy the elements over.

Dynamic Arrays

H He Li Be

● A dynamic array is the most common way to
implement a list of values.

● Maintain an array slightly bigger than the one
you need. When you run out of space, double
the array size and copy the elements over.

Dynamic Arrays

H He Li Be

H He Li Be

● A dynamic array is the most common way to
implement a list of values.

● Maintain an array slightly bigger than the one
you need. When you run out of space, double
the array size and copy the elements over.

Dynamic Arrays

H He Li Be

● A dynamic array is the most common way to
implement a list of values.

● Maintain an array slightly bigger than the one
you need. When you run out of space, double
the array size and copy the elements over.

Dynamic Arrays

H He Li Be B C N O

● A dynamic array is the most common way to
implement a list of values.

● Maintain an array slightly bigger than the one
you need. When you run out of space, double
the array size and copy the elements over.

Dynamic Arrays

H He Li Be B C N O

H He Li Be B C N O

● A dynamic array is the most common way to
implement a list of values.

● Maintain an array slightly bigger than the one
you need. When you run out of space, double
the array size and copy the elements over.

Dynamic Arrays

H He Li Be B C N O

● A dynamic array is the most common way to
implement a list of values.

● Maintain an array slightly bigger than the one
you need. When you run out of space, double
the array size and copy the elements over.

Dynamic Arrays

H He Li Be B C N O F Ne Na Mg Al Si P S

● A dynamic array is the most common way to
implement a list of values.

● Maintain an array slightly bigger than the one
you need. When you run out of space, double
the array size and copy the elements over.

Dynamic Arrays

H He Li Be B C N O F Ne Na Mg Al Si P S

● Most appends to a dynamic array take time O(1).
● Infrequently, we do Θ(n) work to copy all n elements from

the old array to a new one.
● Think “dishwasher:”

● We slowly accumulate “messes” (filled slots).
● We periodically do a large “cleanup” (copying the array).

● Claim: The cost of doing n appends to an initially empty
dynamic array is always O(n).

Dynamic Arrays
● Claim: Appending n elements always takes time O(n).
● The array doubles at sizes 20, 21, 22, …, etc.
● The very last doubling is at the largest power of two less

than n. This is at most 2⌊log₂ n⌋. (Do you see why?)
● Total work done across all doubling is at most

 20 + 21 + … + 2⌊log₂ n⌋ = 2⌊log₂ n⌋ + 1 – 1
 ≤ 2log₂ n + 1

 = 2n.
H He Li Be B C N O F Ne Na Mg Al Si P S

Dynamic Arrays
● It’s correct but misleading to say the cost of an append is O(n).

● This is comparatively rare.
● It’s wrong, but useful, to pretend that the cost of an append is

O(1).
● Some operations take more time than this.
● However, pretending each operation takes O(1) time never

underestimates the true runtime.
● Question: What’s an honest, accurate way to describe the

runtime of the dynamic array?

H He Li Be B C N O F Ne Na Mg Al Si P S

Two-Stack Queues Dynamic Arrays

A B C D E F G H I

Building B-Trees

Dynamic Arrays

A B C D E F G H I

Two-Stack Queues

Building B-Trees

Building B-Trees
● You’re given a sorted list of n values and a value of b.
● What’s the most efficient way to construct a B-tree of order

b holding these n values?
● One Option: Think really hard, calculate the shape of a B-

tree of order b with n elements in it, then place the items
into that B-tree in sorted order.

● Is there an easier option?

0 2 4 6

1 5

108 12 13

9 11

3 7

Building B-Trees
● Idea 1: Insert the items into an empty B-tree

in sorted order.
● Cost: Ω(n logb n), due to the top-down search.
● Can we do better?

Building B-Trees
● Idea 1: Insert the items into an empty B-tree

in sorted order.
● Cost: Ω(n logb n), due to the top-down search.
● Can we do better?

0

Building B-Trees
● Idea 1: Insert the items into an empty B-tree

in sorted order.
● Cost: Ω(n logb n), due to the top-down search.
● Can we do better?

0 1

Building B-Trees
● Idea 1: Insert the items into an empty B-tree

in sorted order.
● Cost: Ω(n logb n), due to the top-down search.
● Can we do better?

0 21

Building B-Trees
● Idea 1: Insert the items into an empty B-tree

in sorted order.
● Cost: Ω(n logb n), due to the top-down search.
● Can we do better?

0 21 3

Building B-Trees
● Idea 1: Insert the items into an empty B-tree

in sorted order.
● Cost: Ω(n logb n), due to the top-down search.
● Can we do better?

0 21 3

Building B-Trees
● Idea 1: Insert the items into an empty B-tree

in sorted order.
● Cost: Ω(n logb n), due to the top-down search.
● Can we do better?

0 2

1

3

Building B-Trees
● Idea 1: Insert the items into an empty B-tree

in sorted order.
● Cost: Ω(n logb n), due to the top-down search.
● Can we do better?

0 2

1

3

Building B-Trees
● Idea 1: Insert the items into an empty B-tree

in sorted order.
● Cost: Ω(n logb n), due to the top-down search.
● Can we do better?

0 2

1

3 4

Building B-Trees
● Idea 1: Insert the items into an empty B-tree

in sorted order.
● Cost: Ω(n logb n), due to the top-down search.
● Can we do better?

0 2

1

3 4 5

Building B-Trees
● Idea 1: Insert the items into an empty B-tree

in sorted order.
● Cost: Ω(n logb n), due to the top-down search.
● Can we do better?

0 2

1

3 4 5

Building B-Trees
● Idea 1: Insert the items into an empty B-tree

in sorted order.
● Cost: Ω(n logb n), due to the top-down search.
● Can we do better?

0 2

1 3

4 5

Building B-Trees
● Idea 1: Insert the items into an empty B-tree

in sorted order.
● Cost: Ω(n logb n), due to the top-down search.
● Can we do better?

0 2

1 3

4 5

Building B-Trees
● Idea 1: Insert the items into an empty B-tree

in sorted order.
● Cost: Ω(n logb n), due to the top-down search.
● Can we do better?

0 2

1 3

4 5 6

Building B-Trees
● Idea 1: Insert the items into an empty B-tree

in sorted order.
● Cost: Ω(n logb n), due to the top-down search.
● Can we do better?

0 2

1 3

4 5 6 7

Building B-Trees
● Idea 1: Insert the items into an empty B-tree

in sorted order.
● Cost: Ω(n logb n), due to the top-down search.
● Can we do better?

0 2

1 3

4 5 6 7

Building B-Trees
● Idea 1: Insert the items into an empty B-tree

in sorted order.
● Cost: Ω(n logb n), due to the top-down search.
● Can we do better?

0 2

1 3

4

5

6 7

Building B-Trees
● Idea 1: Insert the items into an empty B-tree

in sorted order.
● Cost: Ω(n logb n), due to the top-down search.
● Can we do better?

0 2

1 3

4

5

6 7

Building B-Trees
● Idea 1: Insert the items into an empty B-tree

in sorted order.
● Cost: Ω(n logb n), due to the top-down search.
● Can we do better?

0 2

1 3

4

5

6 7 8

Building B-Trees
● Idea 1: Insert the items into an empty B-tree

in sorted order.
● Cost: Ω(n logb n), due to the top-down search.
● Can we do better?

0 2

1 3

4

5

6 7 8 9

Building B-Trees
● Idea 1: Insert the items into an empty B-tree

in sorted order.
● Cost: Ω(n logb n), due to the top-down search.
● Can we do better?

0 2

1 3

4

5

6 7 8 9

Building B-Trees
● Idea 1: Insert the items into an empty B-tree

in sorted order.
● Cost: Ω(n logb n), due to the top-down search.
● Can we do better?

0 2

1 3

4

5

6

7

8 9

Building B-Trees
● Idea 1: Insert the items into an empty B-tree

in sorted order.
● Cost: Ω(n logb n), due to the top-down search.
● Can we do better?

0 2

1 3

4

5

6

7

8 9

Building B-Trees
● Idea 1: Insert the items into an empty B-tree

in sorted order.
● Cost: Ω(n logb n), due to the top-down search.
● Can we do better?

0 2

1

3

4

5

6

7

8 9

Building B-Trees
● Idea 1: Insert the items into an empty B-tree

in sorted order.
● Cost: Ω(n logb n), due to the top-down search.
● Can we do better?

0 2

1

3

4

5

6

7

8 9

Building B-Trees
● Idea 1: Insert the items into an empty B-tree

in sorted order.
● Cost: Ω(n logb n), due to the top-down search.
● Can we do better?

0 2

1

3

4

5

6

7

8 9

Building B-Trees
● Idea 2: Since all insertions will happen at the

rightmost leaf, store a pointer to that leaf. Add new
values by appending to this leaf, then doing any
necessary splits.

● Question: How fast is this?

0 2

1

3

4

5

6

7

8 9

Building B-Trees
● Idea 2: Since all insertions will happen at the

rightmost leaf, store a pointer to that leaf. Add new
values by appending to this leaf, then doing any
necessary splits.

● Question: How fast is this?

0 2

1

3

4

5

6

7

8 9 10

Building B-Trees
● Idea 2: Since all insertions will happen at the

rightmost leaf, store a pointer to that leaf. Add new
values by appending to this leaf, then doing any
necessary splits.

● Question: How fast is this?

0 2

1

3

4

5

6

7

8 9 10 11

Building B-Trees
● Idea 2: Since all insertions will happen at the

rightmost leaf, store a pointer to that leaf. Add new
values by appending to this leaf, then doing any
necessary splits.

● Question: How fast is this?

0 2

1

3

4

5

6

7

8 9 10 11

Building B-Trees
● Idea 2: Since all insertions will happen at the

rightmost leaf, store a pointer to that leaf. Add new
values by appending to this leaf, then doing any
necessary splits.

● Question: How fast is this?

0 2

1

3

4

5

6

7

8

9

10 11

Building B-Trees
● Idea 2: Since all insertions will happen at the

rightmost leaf, store a pointer to that leaf. Add new
values by appending to this leaf, then doing any
necessary splits.

● Question: How fast is this?

0 2

1

3

4

5

6

7

8

9

10 11

Building B-Trees
● Idea 2: Since all insertions will happen at the

rightmost leaf, store a pointer to that leaf. Add new
values by appending to this leaf, then doing any
necessary splits.

● Question: How fast is this?

0 2

1

3

4

5

6

7

8

9

10 11 12

Building B-Trees
● Idea 2: Since all insertions will happen at the

rightmost leaf, store a pointer to that leaf. Add new
values by appending to this leaf, then doing any
necessary splits.

● Question: How fast is this?

0 2

1

3

4

5

6

7

8

9

10 11 12 13

Building B-Trees
● Idea 2: Since all insertions will happen at the

rightmost leaf, store a pointer to that leaf. Add new
values by appending to this leaf, then doing any
necessary splits.

● Question: How fast is this?

0 2

1

3

4

5

6

7

8

9

10 11 12 13

Building B-Trees
● Idea 2: Since all insertions will happen at the

rightmost leaf, store a pointer to that leaf. Add new
values by appending to this leaf, then doing any
necessary splits.

● Question: How fast is this?

0 2

1

3

4

5

6

7

8

9

10

11

12 13

Building B-Trees
● Idea 2: Since all insertions will happen at the

rightmost leaf, store a pointer to that leaf. Add new
values by appending to this leaf, then doing any
necessary splits.

● Question: How fast is this?

0 2

1

3

4

5

6

7

8

9

10

11

12 13

Building B-Trees
● Idea 2: Since all insertions will happen at the

rightmost leaf, store a pointer to that leaf. Add new
values by appending to this leaf, then doing any
necessary splits.

● Question: How fast is this?

0 2

1

3

4

5

6

7

8

9

10

11

12 13

Building B-Trees
● Idea 2: Since all insertions will happen at the

rightmost leaf, store a pointer to that leaf. Add new
values by appending to this leaf, then doing any
necessary splits.

● Question: How fast is this?

0 2

1

3

4

5

6

7

8

9

10

11

12 13

Building B-Trees
● Idea 2: Since all insertions will happen at the

rightmost leaf, store a pointer to that leaf. Add new
values by appending to this leaf, then doing any
necessary splits.

● Question: How fast is this?

0 2

1

3

4

5

6

7

8

9

10

11

12 13

Building B-Trees
● The cost of an insert varies based on the shape of the tree.

● If no splits are required, the cost is O(1).
● If one split is required, the cost is O(b).
● If we have to split all the way up, the cost is O(b logb n).

● Using our worst-case cost across n inserts gives a runtime
bound of O(nb logb n)

● Claim: The cost of n inserts is always O(n).

0 2

1

3

4

5

6

7

8

9

10

11

12 13

Building B-Trees
● Of all the n insertions into the tree, a roughly 1/b fraction

will split a node in the bottom layer of the tree (a leaf).
● Of those, roughly a 1/b fraction will split a node in the

layer above that.
● Of those, roughly a 1/b fraction will split a node in the

layer above that.
● (etc.)

0 2

1

3

4

5

6

7

8

9

10

11

12 13

Building B-Trees
● Total number of splits:

● Total cost of those splits: Θ(n).

n
b⋅(1 + 1

b⋅(1 + 1
b⋅(1 + 1

b⋅(...))))

= n
b⋅(1+ 1

b + 1
b2 + 1

b3 + 1
b4 + ...)

= n
b⋅Θ (1)

= Θ (nb)

Building B-Trees
● Total number of splits:

● Total cost of those splits: Θ(n).

n
b⋅(1 + 1

b⋅(1 + 1
b⋅(1 + 1

b⋅(...))))

= n
b⋅(1+ 1

b + 1
b2 + 1

b3 + 1
b4 + ...)

= n
b⋅Θ (1)

= Θ (nb)

Building B-Trees
● Total number of splits:

● Total cost of those splits: Θ(n).

n
b⋅(1 + 1

b⋅(1 + 1
b⋅(1 + 1

b⋅(...))))

= n
b⋅(1+ 1

b + 1
b2 + 1

b3 + 1
b4 + ...)

= n
b⋅Θ (1)

= Θ (nb)

Building B-Trees
● Total number of splits:

● Total cost of those splits: Θ(n).

n
b⋅(1 + 1

b⋅(1 + 1
b⋅(1 + 1

b⋅(...))))

= n
b⋅(1+ 1

b + 1
b2 + 1

b3 + 1
b4 + ...)

= n
b⋅Θ (1)

= Θ (nb)

Building B-Trees
● Total number of splits:

● Total cost of those splits: Θ(n).

n
b⋅(1 + 1

b⋅(1 + 1
b⋅(1 + 1

b⋅(...))))

= n
b⋅(1+ 1

b + 1
b2 + 1

b3 + 1
b4 + ...)

= n
b⋅Θ (1)

= Θ (nb)

Building B-Trees
● Total number of splits:

● Total cost of those splits: Θ(n).

n
b⋅(1 + 1

b⋅(1 + 1
b⋅(1 + 1

b⋅(...))))

= n
b⋅(1+ 1

b + 1
b2 + 1

b3 + 1
b4 + ...)

= n
b⋅Θ (1)

= Θ (nb)

Building B-Trees
● It is correct but misleading to say the cost of an insert is

O(b logb n).
● This is comparatively rare.

● It is wrong, but useful, to pretend that the cost of an insert is O(1).
● Some operations take more time than this.
● However, pretending each insert takes time O(1) never underestimates

the total amount of work done across all operations.
● Question: What’s an honest, accurate way to describe the cost of

inserting one more value?

0 2

1

3

4

5

6

7

8

9

10

11

12 13

Amortized Analysis

The Setup
● We now have three examples of data

structures where
● individual operations may be slow, but
● any series of operations is fast.

● Giving weak upper bounds on the cost of
each operation is not useful for making
predictions.

● How can we clearly communicate when a
situation like this one exists?

Key Idea: Backcharge expensive
operations to cheaper ones.

w
or

k

time

Key Idea: Backcharge expensive
operations to cheaper ones.

w
or

k

time

Key Idea: Backcharge expensive
operations to cheaper ones.

w
or

k

time

Key Idea: Backcharge expensive
operations to cheaper ones.

w
or

k

time

Key Idea: Backcharge expensive
operations to cheaper ones.

w
or

k

time

Key Idea: Backcharge expensive
operations to cheaper ones.

w
or

k

time

Key Idea: Backcharge expensive
operations to cheaper ones.

w
or

k

time

Key Idea: Backcharge expensive
operations to cheaper ones.

w
or

k

time

Key Idea: Backcharge expensive
operations to cheaper ones.

w
or

k

time

Key Idea: Backcharge expensive
operations to cheaper ones.

w
or

k

time

Key Idea: Backcharge expensive
operations to cheaper ones.

w
or

k

time

w
or

k

time

w
or

k

time

w
or

k

time

w
or

k

w
or

k

time

w
or

k

w
or

k

time

w
or

k

These are the real costs of the
operations. Most operations are

fast, but we can’t get a nice upper
bound on any one operation cost.

w
or

k

time

w
or

k

w
or

k

time

w
or

k

These are the amortized costs of
the operations. Each operation is

still reasonably fast, and all of them
are nicely bounded from above.

Amortized Analysis
● Key Idea: Assign each operation a (fake!) cost

called its amortized cost such that, for any
series of operations performed, the following is
true:

● Amortized costs shift work backwards from
expensive operations onto cheaper ones.
● Cheap operations are artificially made more

expensive to pay for future cleanup work.
● Expensive operations are artificially made cheaper

by shifting the work backwards.

∑ amortized -cost ≥ ∑ real-cost

Where We’re Going
● The amortized cost of

an enqueue or dequeue
into a two-stack queue
is O(1).

● Any sequence of n
operations on a two-
stack queue will take
time

n · O(1) = O(n).
● However, each

individual operation
may take more than
O(1) time to complete.

Two-Stack Queues

Dynamic Arrays

A B C D E F G H I

Where We’re Going
● The amortized cost

of appending to a
dynamic array is O(1).

● Any sequence of n
appends to a dynamic
array will take time

n · O(1) = O(n).
● However, each

individual operation
may take more than
O(1) time to complete.

Building B-Trees

Where We’re Going
● The amortized cost of

inserting a new element
at the end of a B-tree,
assuming we have a
pointer to the rightmost
leaf, is O(1).

● Any sequence of n
appends will take time

n · O(1) = O(n).
● However, each

individual operation
may take more than
O(1) time to complete.

Formalizing This Idea

Assigning Amortized Costs
● The approach we’ve taken so far for assigning

amortized costs is called an aggregate analysis.
● Directly compute the maximum possible work done across

any sequence of operations, then divide that by the
number of operations.

● This approach works well here, but it doesn’t scale
well to more complex data structures.
● What if different operations contribute to / clean up

messes in different ways?
● What if it’s not clear what sequence is the worst-case

sequence of operations?
● In practice, we tend to use a different strategy called

the potential method to assign amortized costs.

Potential Functions
● To assign amortized

costs, we’ll need to
measure how “messy”
the data structure is.

● For each data
structure, we define a
potential function Φ
such that
● Φ is small when the data

structure is “clean,” and
● Φ is large when the data

structure is “messy.”

In

Out

High Φ Two-Stack Queue

In

Out

Low Φ Two-Stack Queue

Potential Functions
● To assign amortized

costs, we’ll need to
measure how “messy”
the data structure is.

● For each data
structure, we define a
potential function Φ
such that
● Φ is small when the data

structure is “clean,” and
● Φ is large when the data

structure is “messy.”

Low Φ Dynamic Array

High Φ Dynamic Array

H He Li Be

H He Li Be B C N O

Potential Functions
● Once we’ve chosen a potential function Φ, we define

the amortized cost of an operation to be
amortized-cost = real-cost + k · ΔΦ

where k is a constant under our control and ΔΦ is
the difference between Φ just after the operation
finishes and Φ just before the operation started:

ΔΦ = Φafter - Φbefore

● Intuitively:
● If Φ increases, the data structure got “messier,” and the

amortized cost is higher than the real cost.
● If Φ decreases, the data structure got “cleaner,” and the

amortized cost is lower than the real cost.

Why This Works

∑ amortized -cost = ∑ (real -cost + k⋅ΔΦ)

= ∑ real -cost + k⋅∑ ΔΦ

= ∑ real -cost + k⋅(Φend−Φstart)

≥ ∑ real -cost

Why This Works

∑ amortized -cost = ∑ (real -cost + k⋅ΔΦ)

= ∑ real -cost + k⋅∑ ΔΦ

= ∑ real -cost + k⋅(Φend−Φstart)

≥ ∑ real -cost

Why This Works

∑ amortized -cost = ∑ (real -cost + k⋅ΔΦ)

= ∑ real -cost + k⋅∑ ΔΦ

= ∑ real -cost + k⋅(Φend−Φstart)

≥ ∑ real -cost

Why This Works

∑ amortized -cost = ∑ (real -cost + k⋅ΔΦ)

= ∑ real -cost + k⋅∑ ΔΦ

= ∑ real -cost + k⋅(Φend−Φstart)

≥ ∑ real -costThink “fundamental theorem of calculus,”
but for discrete derivatives!

∫
a

b

f '(x)dx = f (b)− f (a) ∑
x=a

b

Δ f (x) = f (b+1)− f (a)

Look up finite calculus if you’re curious to learn more!

Why This Works

∑ amortized -cost = ∑ (real -cost + k⋅ΔΦ)

= ∑ real -cost + k⋅∑ ΔΦ

= ∑ real -cost + k⋅(Φend−Φstart)

≥ ∑ real -costThink “fundamental theorem of calculus,”
but for discrete derivatives!

∫
a

b

f '(x)dx = f (b)− f (a) ∑
x=a

b

Δ f (x) = f (b+1)− f (a)

Look up finite calculus if you’re curious to learn more!

Why This Works

∑ amortized -cost = ∑ (real -cost + k⋅ΔΦ)

= ∑ real -cost + k⋅∑ ΔΦ

= ∑ real -cost + k⋅(Φend−Φstart)

≥ ∑ real -cost

Why This Works

∑ amortized -cost = ∑ (real -cost + k⋅ΔΦ)

= ∑ real -cost + k⋅∑ ΔΦ

= ∑ real -cost + k⋅(Φend−Φstart)

≥ ∑ real -cost

Why This Works

Let’s make two assumptions:

Φ ≥ 0.
Φstart = 0.

∑ amortized -cost = ∑ (real -cost + k⋅ΔΦ)

= ∑ real -cost + k⋅∑ ΔΦ

= ∑ real -cost + k⋅(Φend−Φstart)

≥ ∑ real -cost

Why This Works

Let’s make two assumptions:

Φ ≥ 0.
Φstart = 0.

∑ amortized -cost = ∑ (real -cost + k⋅ΔΦ)

= ∑ real -cost + k⋅∑ ΔΦ

= ∑ real -cost + k⋅(Φend−Φstart)

≥ ∑ real -cost

Why This Works

∑ amortized -cost = ∑ (real -cost + k⋅ΔΦ)

= ∑ real -cost + k⋅∑ ΔΦ

= ∑ real -cost + k⋅(Φend−Φstart)

≥ ∑ real -cost

Assigning costs this
way will never, in any

circumstance,
overestimate the total
amount of work done.

The Story So Far
● We will assign amortized costs to each operation

such that

● To do so, define a potential function Φ such that
● Φ measures how “messy” the data structure is,
● Φstart = 0, and
● Φ ≥ 0.

● Then, define amortized costs of operations as
amortized-cost = real-cost + k · ΔΦ

for a choice of k under our control.

∑ amortized -cost ≥ ∑ real-cost

Two-Stack Queues Dynamic Arrays

A B C D E F G H I

Building B-Trees

Dynamic Arrays

A B C D E F G H I

Building B-Trees

Two-Stack Queues

The Two-Stack Queue

Out In

The Two-Stack Queue

Out In

Φ = height of In stack

The Two-Stack Queue

1
Out In

Φ = height of In stack

The Two-Stack Queue

1
Out In

Φ = height of In stack

 amortized-cost = real-cost + k · ΔΦ

The Two-Stack Queue

1
Out In

Φ = height of In stack

 amortized-cost = real-cost + k · ΔΦ
= O(1) + k · 1

The Two-Stack Queue

1
Out In

Φ = height of In stack

 amortized-cost = real-cost + k · ΔΦ
= O(1) + k · 1
= O(1)

The Two-Stack Queue

1
Out In

2

Φ = height of In stack

The Two-Stack Queue

1
Out In

2

Φ = height of In stack

 amortized-cost = real-cost + k · ΔΦ
= O(1) + k · 1
= O(1)

The Two-Stack Queue

1
Out In

2
3

Φ = height of In stack

The Two-Stack Queue

1
Out In

2
3

Φ = height of In stack

 amortized-cost = real-cost + k · ΔΦ
= O(1) + k · 1
= O(1)

The Two-Stack Queue

1
Out In

2
3
4

Φ = height of In stack

The Two-Stack Queue

1
Out In

2
3
4

Φ = height of In stack

 amortized-cost = real-cost + k · ΔΦ
= O(1) + k · 1
= O(1)

The Two-Stack Queue

1
Out In

2
3

4

Φ = height of In stack

The Two-Stack Queue

1
Out In

2
3

4

Φ = height of In stack

The Two-Stack Queue

1
In

2
3

4
Out

Φ = height of In stack

The Two-Stack Queue

1
In

2

3

4
Out

Φ = height of In stack

The Two-Stack Queue

1
In

2

3

4
Out

Φ = height of In stack

The Two-Stack Queue

1
In

23
4

Out

Φ = height of In stack

The Two-Stack Queue

1
In

2

3
4

Out

Φ = height of In stack

The Two-Stack Queue

1
In

2

3
4

Out

Φ = height of In stack

The Two-Stack Queue

1
In

2
3
4

Out

Φ = height of In stack

The Two-Stack Queue

1

In

2
3
4

Out

Φ = height of In stack

The Two-Stack Queue

1

In

2
3
4

Out

Φ = height of In stack

The Two-Stack Queue

1

In

2
3
4

Out

Φ = height of In stack

The Two-Stack Queue

1

In

2
3
4

Out

Φ = height of In stack

The Two-Stack Queue

In

2
3
4

Out

Φ = height of In stack

The Two-Stack Queue

In

2
3
4

Out

Φ = height of In stack

 amortized-cost = real-cost + k · ΔΦ

The Two-Stack Queue

In

2
3
4

Out

Φ = height of In stack

 amortized-cost = real-cost + k · ΔΦ
= O(h) + k · -h // h = height of In stack

The Two-Stack Queue

In

2
3
4

Out

Φ = height of In stack

 amortized-cost = real-cost + k · ΔΦ
= O(h) + k · -h // h = height of In stack
= O(1) // Choose k strategically

The Two-Stack Queue

In

2
3
4

Out

Φ = height of In stack

The Two-Stack Queue

In

2

3
4

Out

Φ = height of In stack

The Two-Stack Queue

In

3
4

Out

Φ = height of In stack

The Two-Stack Queue

In

3
4

Out

Φ = height of In stack

 amortized-cost = real-cost + k · ΔΦ

The Two-Stack Queue

In

3
4

Out

Φ = height of In stack

 amortized-cost = real-cost + k · ΔΦ
= O(1) + k · 0

The Two-Stack Queue

In

3
4

Out

Φ = height of In stack

 amortized-cost = real-cost + k · ΔΦ
= O(1) + k · 0
= O(1)

The Two-Stack Queue

In

3
4

Out

Φ = height of In stack

The Two-Stack Queue

3
4

Out

5
In

Φ = height of In stack

The Two-Stack Queue

3
4

Out

5
In

Φ = height of In stack

 amortized-cost = real-cost + k · ΔΦ
= O(1) + k · 1
= O(1)

The Two-Stack Queue

3
4

Out

5
In

6

Φ = height of In stack

The Two-Stack Queue

3
4

Out

5
In

6

Φ = height of In stack

 amortized-cost = real-cost + k · ΔΦ
= O(1) + k · 1
= O(1)

The Two-Stack Queue

3

4
Out

5
In

6

Φ = height of In stack

The Two-Stack Queue

4
Out

5
In

6

Φ = height of In stack

The Two-Stack Queue

4
Out

5
In

6

Φ = height of In stack

 amortized-cost = real-cost + k · ΔΦ
= O(1) + k · 0
= O(1)

The Two-Stack Queue

4
Out

5
In

6

Φ = height of In stack

The Two-Stack Queue

4
Out

5
In

6
7

Φ = height of In stack

The Two-Stack Queue

4
Out

5
In

6
7

Φ = height of In stack

 amortized-cost = real-cost + k · ΔΦ
= O(1) + k · 1
= O(1)

The Two-Stack Queue

4
Out

5
In

6
7

Φ = height of In stack

The Two-Stack Queue

4

Out

5
In

6
7

Φ = height of In stack

The Two-Stack Queue

Out

5
In

6
7

Φ = height of In stack

The Two-Stack Queue

Out

5
In

6
7

Φ = height of In stack

 amortized-cost = real-cost + k · ΔΦ
= O(1) + k · 0
= O(1)

The Two-Stack Queue

Out

5
In

6

7

Φ = height of In stack

The Two-Stack Queue

Out

5
In

6

7

Φ = height of In stack

The Two-Stack Queue

5
In

6
7

Out

Φ = height of In stack

The Two-Stack Queue

5
In

6

7
Out

Φ = height of In stack

The Two-Stack Queue

5
In

6

7
Out

Φ = height of In stack

The Two-Stack Queue

5
In

6
7

Out

Φ = height of In stack

The Two-Stack Queue

5

In

6
7

Out

Φ = height of In stack

The Two-Stack Queue

5

In

6
7

Out

Φ = height of In stack

The Two-Stack Queue

5

In

6
7

Out

Φ = height of In stack

The Two-Stack Queue

5

In

6
7

Out

Φ = height of In stack

The Two-Stack Queue

In

6
7

Out

Φ = height of In stack

The Two-Stack Queue

In

6
7

Out

Φ = height of In stack

 amortized-cost = real-cost + k · ΔΦ
= O(h) + k · -h // h = height of In stack
= O(1) // Choose k strategically

Theorem: The amortized cost of any enqueue or dequeue operation on
a two-stack queue is O(1).

Proof: Let Φ be the height of the In stack in the two-stack queue. Each
enqueue operation does a single push and increases the height of the In
stack by one. Therefore, its amortized cost is

O(1) + k · ΔΦ = O(1) + k · 1 = O(1).

Now, consider a dequeue operation. If the Out stack is nonempty, then
the dequeue does O(1) work and does not change Φ. Its cost is therefore

O(1) + k · ΔΦ = O(1) + k · 0 = O(1).

Otherwise, the Out stack is empty. Suppose the In stack has height h.
The dequeue does O(h) work to pop the elements from the In stack and
push them onto the Out stack, followed by one additional pop for the
dequeue. This is O(h) total work.

At the beginning of this operation, we have Φ = h. At the end of this
operation, we have Φ = 0. Therefore, ΔΦ = -h, so the amortized cost of
the operation is

O(h) + k · -h = O(1),

assuming we pick k to cancel out the constant factor hidden in the O(h)
term. ■

Two-Stack Queues Dynamic Arrays

A B C D E F G H I

Building B-Trees

 Building B-Trees

Two-Stack Queues Dynamic Arrays

A B C D E F G H I

Analyzing Dynamic Arrays
● Goal: Choose a potential function Φ such

that the amortized cost of an append is
O(1).

● Initial (wrong!) guess: Set Φ to be the
number of free slots left in the array.

FH He Li Be B C N O

Dynamic Arrays

H He Li Be

Φ = number of free slots

Dynamic Arrays

BH He Li Be

Φ = number of free slots

Dynamic Arrays

BH He Li Be

Φ = number of free slots

 amortized-cost = real-cost + k · ΔΦ

Dynamic Arrays

BH He Li Be

Φ = number of free slots

 amortized-cost = real-cost + k · ΔΦ
= O(1) + k · -1

Dynamic Arrays

BH He Li Be

Φ = number of free slots

 amortized-cost = real-cost + k · ΔΦ
= O(1) + k · -1
= O(1)

Dynamic Arrays

B CH He Li Be

Φ = number of free slots

Dynamic Arrays

B CH He Li Be

Φ = number of free slots

 amortized-cost = real-cost + k · ΔΦ
= O(1) + k · -1
= O(1)

Dynamic Arrays

B C NH He Li Be

Φ = number of free slots

Dynamic Arrays

B C NH He Li Be

Φ = number of free slots

 amortized-cost = real-cost + k · ΔΦ
= O(1) + k · -1
= O(1)

Dynamic Arrays

B C N OH He Li Be

Φ = number of free slots

Dynamic Arrays

B C N OH He Li Be

Φ = number of free slots

 amortized-cost = real-cost + k · ΔΦ
= O(1) + k · -1
= O(1)

Dynamic Arrays

H He Li Be B C N O

H He Li Be B C N O

Φ = number of free slots

Dynamic Arrays

H He Li Be B C N O

Φ = number of free slots

Dynamic Arrays

FH He Li Be B C N O

Φ = number of free slots

Dynamic Arrays

FH He Li Be B C N O

Φ = number of free slots
With this choice of Φ, what

is the amortized cost
of an append to an array

of size n when no free
slots are left?

Formulate a
hypothesis! 😃

Dynamic Arrays

FH He Li Be B C N O

Φ = number of free slots
With this choice of Φ, what

is the amortized cost
of an append to an array

of size n when no free
slots are left?

Discuss with your
neighbors! 😃

Dynamic Arrays

FH He Li Be B C N O

Φ = number of free slots

Dynamic Arrays

FH He Li Be B C N O

Φ = number of free slots

 amortized-cost = real-cost + k · ΔΦ

Dynamic Arrays

FH He Li Be B C N O

Φ = number of free slots

 amortized-cost = real-cost + k · ΔΦ
= O(n) + k · Θ(n)

Dynamic Arrays

FH He Li Be B C N O

Φ = number of free slots

 amortized-cost = real-cost + k · ΔΦ
= O(n) + k · Θ(n)
= O(n)

Analyzing Dynamic Arrays
● Intuition: Φ should measure how

“messy” the data structure is.
● Having lots of free slots means there’s very

little mess.
● Having few free slots means there’s a lot of

mess.
● We basically got our potential function

backwards. Oops. 😃
● Question: What should Φ be?

Analyzing Dynamic Arrays
● The amortized cost of an append is

amortized-cost = real-cost + k · ΔΦ.
● When we double the array size, our real cost is Θ(n). We

need ΔΦ to be something like -n.
● Goal: Pick Φ so that

● when there are no slots left, Φ ≈ n, and
● right after we double the array size, Φ ≈ 0.

● With some trial and error, we can come up with
Φ = #elems - #free-slots

H He Li Be B C N O

Dynamic Arrays

H He Li Be

Φ = #elems – #free-slots

Dynamic Arrays

BH He Li Be

Φ = #elems – #free-slots

Dynamic Arrays

BH He Li Be

Φ = #elems – #free-slots

 amortized-cost = real-cost + k · ΔΦ

Dynamic Arrays

BH He Li Be

Φ = #elems – #free-slots

 amortized-cost = real-cost + k · ΔΦ
= O(1) + k · 2

Dynamic Arrays

BH He Li Be

Φ = #elems – #free-slots

 amortized-cost = real-cost + k · ΔΦ
= O(1) + k · 2
= O(1)

Dynamic Arrays

B CH He Li Be

Φ = #elems – #free-slots

Dynamic Arrays

B CH He Li Be

Φ = #elems – #free-slots

 amortized-cost = real-cost + k · ΔΦ
= O(1) + k · 2
= O(1)

Dynamic Arrays

B C NH He Li Be

Φ = #elems – #free-slots

Dynamic Arrays

B C NH He Li Be

Φ = #elems – #free-slots

 amortized-cost = real-cost + k · ΔΦ
= O(1) + k · 2
= O(1)

Dynamic Arrays

B C N OH He Li Be

Φ = #elems – #free-slots

Dynamic Arrays

B C N OH He Li Be

Φ = #elems – #free-slots

 amortized-cost = real-cost + k · ΔΦ
= O(1) + k · 2
= O(1)

Dynamic Arrays

H He Li Be B C N O

H He Li Be B C N O

Φ = #elems – #free-slots

Dynamic Arrays

H He Li Be B C N O

Φ = #elems – #free-slots

Dynamic Arrays

FH He Li Be B C N O

Φ = #elems – #free-slots

Dynamic Arrays

FH He Li Be B C N O

Φ = #elems – #free-slots

 amortized-cost = real-cost + k · ΔΦ

Dynamic Arrays

FH He Li Be B C N O

Φ = #elems – #free-slots

 amortized-cost = real-cost + k · ΔΦ
= O(n) + k · -Θ(n)

Dynamic Arrays

FH He Li Be B C N O

Φ = #elems – #free-slots

 amortized-cost = real-cost + k · ΔΦ
= O(n) + k · -Θ(n)
= O(1) // Pick k well

A Caveat
● We require that Φstart = 0 and that Φ ≥ 0.
● What happens when we have a newly-created

dynamic array?

● Quick fix: This is an edge case, so set
Φ = max{0, #elems - #free-slots }

Φ = -4

Theorem: The amortized cost of an append to a dynamic array is O(1).

Proof: Suppose the dynamic array has initial capacity 2C = O(1). Then,
define Φ = max{ 0, n - #free-slots }, where n is the number of elements
stored in the dynamic array. Note that for n < C that an append simply
fills in a free slot and leaves Φ = 0, so the amortized cost of such an
append is O(1). Otherwise, we have n > C and Φ = n - #free-slots.

Consider any append. If the append does not trigger a resize, it does
O(1) work, increases n by one, and decreases #free-slots by one, so the
amortized cost is

O(1) + k · ΔΦ = O(1) + k · 2 = O(1).

Otherwise, the operation copies n elements into a new array twice as
large as before, increasing the number of free slots to n, then fills one of
those slots. Just before the operation we had Φ = n, and just after the
operation we have Φ = 2. Therefore, the amortized cost is

O(n) + k · ΔΦ = O(n) + k · (2 – n) = O(n) – nk + 2k,

which can be made to equal O(1) by choosing the the k term to match
the constant hidden in the O(n) term. ■

Some Exercises
● Suppose we grow the array not by a factor of

two, but by a fixed constant α > 1. Find a
choice of Φ so that the amortized cost of an
append is O(1).

● Suppose we also allow elements to be
removed from the array, and when it’s ¼ full
we shrink it by a factor of two. Find a choice
of Φ so the amortized cost of appending or
removing the last element is O(1).

Two-Stack Queues Dynamic Arrays

A B C D E F G H I

Building B-Trees

Two-Stack Queues Dynamic Arrays

A B C D E F G H I

Building B-Trees

Building B-Trees
● Algorithm: Store a pointer to the rightmost

leaf. To add an item, append it to the
rightmost leaf, splitting and kicking the
median key up if we are out of space.

0 2

1

3

4

5

6

7

8 9 10

Building B-Trees
● Algorithm: Store a pointer to the rightmost

leaf. To add an item, append it to the
rightmost leaf, splitting and kicking the
median key up if we are out of space.

0 2

1

3

4

5

6

7

8 9 10 11

Building B-Trees
● Algorithm: Store a pointer to the rightmost

leaf. To add an item, append it to the
rightmost leaf, splitting and kicking the
median key up if we are out of space.

0 2

1

3

4

5

6

7

8 9 10 11

Building B-Trees
● Algorithm: Store a pointer to the rightmost

leaf. To add an item, append it to the
rightmost leaf, splitting and kicking the
median key up if we are out of space.

0 2

1

3

4

5

6

7

8

9

10 11

Building B-Trees
● Algorithm: Store a pointer to the rightmost

leaf. To add an item, append it to the
rightmost leaf, splitting and kicking the
median key up if we are out of space.

0 2

1

3

4

5

6

7

8

9

10 11

Building B-Trees
● Algorithm: Store a pointer to the rightmost

leaf. To add an item, append it to the
rightmost leaf, splitting and kicking the
median key up if we are out of space.

0 2

1

3

4

5

6

7

8

9

10 11 12

Building B-Trees
● Algorithm: Store a pointer to the rightmost

leaf. To add an item, append it to the
rightmost leaf, splitting and kicking the
median key up if we are out of space.

0 2

1

3

4

5

6

7

8

9

10 11 12 13

Building B-Trees
● Algorithm: Store a pointer to the rightmost

leaf. To add an item, append it to the
rightmost leaf, splitting and kicking the
median key up if we are out of space.

0 2

1

3

4

5

6

7

8

9

10 11 12 13

Building B-Trees
● Algorithm: Store a pointer to the rightmost

leaf. To add an item, append it to the
rightmost leaf, splitting and kicking the
median key up if we are out of space.

0 2

1

3

4

5

6

7

8

9

10

11

12 13

Building B-Trees
● Algorithm: Store a pointer to the rightmost

leaf. To add an item, append it to the
rightmost leaf, splitting and kicking the
median key up if we are out of space.

0 2

1

3

4

5

6

7

8

9

10

11

12 13

Building B-Trees
● Algorithm: Store a pointer to the rightmost

leaf. To add an item, append it to the
rightmost leaf, splitting and kicking the
median key up if we are out of space.

0 2

1

3

4

5

6

7

8

9

10

11

12 13

Building B-Trees
● Algorithm: Store a pointer to the rightmost

leaf. To add an item, append it to the
rightmost leaf, splitting and kicking the
median key up if we are out of space.

0 2

1

3

4

5

6

7

8

9

10

11

12 13

Building B-Trees
● What is the actual cost of appending an element?

● Suppose that we perform splits at L layers in the tree.
● Each split takes time Θ(b) to copy and move keys around.
● Total cost: Θ(bL).

● Goal: Pick a potential function Φ so that we can
offset this cost and make each append cost
amortized O(1).

0 2

1

3

4

5

6

7

8

9

10

11

12 13

Building B-Trees
● Our potential function should, intuitively, quantify how

“messy” our data structure is.
● Some observations:

● We only care about nodes in the right spine of the tree.
● Nodes in the right spine slowly have keys added to them.

When they split, they lose (about) half of their keys.
● Idea: Set Φ to be the number of keys in the right spine

of the tree.

0 2

1

4

5

6 8 10

3 7

9 11

12 13

Building B-Trees
● Let Φ be the number of keys on the right spine.
● Each split moves (roughly) half the keys from

the split node into a node off the right spine.
Change in potential per split: -Θ(b).
Net ΔΦ: -Θ(bL).

0 2

1

3

4

5

6

7

8

9

10 11 12

Building B-Trees
● Let Φ be the number of keys on the right spine.
● Each split moves (roughly) half the keys from

the split node into a node off the right spine.
● Change in potential per split: -Θ(b).
● Net ΔΦ: -Θ(bL).

0 2

1

3

4

5

6

7

8

9

10 11 12 13

Building B-Trees
● Let Φ be the number of keys on the right spine.
● Each split moves (roughly) half the keys from

the split node into a node off the right spine.
● Change in potential per split: -Θ(b).
● Net ΔΦ: -Θ(bL).

0 2

1

3

4

5

6

7

8

9

10 11 12 13

Building B-Trees
● Let Φ be the number of keys on the right spine.
● Each split moves (roughly) half the keys from

the split node into a node off the right spine.
● Change in potential per split: -Θ(b).
● Net ΔΦ: -Θ(bL).

0 2

1

3

4

5

6

7

8

9

10

11

12 13

Building B-Trees
● Let Φ be the number of keys on the right spine.
● Each split moves (roughly) half the keys from

the split node into a node off the right spine.
● Change in potential per split: -Θ(b).
● Net ΔΦ: -Θ(bL).

0 2

1

3

4

5

6

7

8

9

10

11

12 13

Building B-Trees
● Let Φ be the number of keys on the right spine.
● Each split moves (roughly) half the keys from

the split node into a node off the right spine.
● Change in potential per split: -Θ(b).
● Net ΔΦ: -Θ(bL).

0 2

1

3

4

5

6

7

8

9

10

11

12 13

Building B-Trees
● Let Φ be the number of keys on the right spine.
● Each split moves (roughly) half the keys from

the split node into a node off the right spine.
● Change in potential per split: -Θ(b).
● Net ΔΦ: -Θ(bL).

0 2

1

3

4

5

6

7

8

9

10

11

12 13

Building B-Trees
● Actual cost of an append that does L

splits: O(bL).
● ΔΦ for that operation: -Θ(bL).
● Amortized cost: O(1).

0 2

1

3

4

5

6

7

8

9

10

11

12 13

Theorem: The amortized cost of appending to a B-tree by inserting
it into the rightmost leaf node and applying fixup rules is O(1).

Proof: Assume we are working with a B-tree of order b. Let Φ be
the number of nodes on the right spine of the B-tree.

Suppose we insert a value into the tree using the algorithm
described above. Suppose this causes L nodes to be split. Each of
those splits requires Θ(b) work for a net total of Θ(bL) work.

Each of those L splits moves Θ(b) keys off of the right spine of the
tree, decreasing Φ by Θ(b) for a net drop in potential of -Θ(bL). In
the layer just above the last split, we add one more key into a node,
increasing Φ by one. Therefore, ΔΦ = -Θ(bL).

Overall, this tells us that the amortized cost of inserting a key this
way is

Θ(bL) + k · ΔΦ = Θ(bL) – k · Θ(bL),

which can be made to be O(1) by choosing k to equate the constants
hidden in the O and Θ terms. ■

More to Explore
● You can implement a deque (a doubly-ended queue)

using a B-tree with pointers to the first and last leaves.
● This is sometimes called a finger tree.
● Finger trees are used extensively in purely functional

programming languages.
● By extending the analysis from here, you can show the

amortized cost of appending or removing from each end of
the finger tree is O(1).

● Red/black trees are modeled on 2-3-4 trees. You can
build a red/black tree from n sorted keys in time O(n)
this way.
● Great exercise: Explore how to do this, and work out what

choice of Φ to make.

To Summarize

Amortized Analysis
● Some data structures accumulate messes slowly,

then clean up those messes in single, large steps.
● We can assign amortized costs to operations.

These are fake costs such that summing up the
amortized costs never underestimates the sum of
the real costs.

● To do so, we define a potential function Φ that,
intuitively, measures how “messy” the data
structure is. We then set

amortized-cost = real-cost + k · ΔΦ.
● For simplicity, we assume that Φ is nonnegative and

that Φ for an empty data structure is zero.

Next Time
● Scapegoat Trees

● Building a balanced BST, lazily.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186
	Slide 187
	Slide 188
	Slide 189
	Slide 190
	Slide 191
	Slide 192
	Slide 193
	Slide 194
	Slide 195
	Slide 196
	Slide 197
	Slide 198
	Slide 199
	Slide 200
	Slide 201
	Slide 202
	Slide 203
	Slide 204
	Slide 205
	Slide 206
	Slide 207
	Slide 208
	Slide 209
	Slide 210
	Slide 211
	Slide 212
	Slide 213
	Slide 214
	Slide 215
	Slide 216
	Slide 217
	Slide 218
	Slide 219
	Slide 220
	Slide 221
	Slide 222
	Slide 223
	Slide 224
	Slide 225
	Slide 226
	Slide 227
	Slide 228
	Slide 229
	Slide 230
	Slide 231
	Slide 232
	Slide 233
	Slide 234
	Slide 235
	Slide 236
	Slide 237
	Slide 238
	Slide 239
	Slide 240
	Slide 241
	Slide 242
	Slide 243
	Slide 244
	Slide 245
	Slide 246
	Slide 247
	Slide 248
	Slide 249
	Slide 250
	Slide 251
	Slide 252
	Slide 253
	Slide 254
	Slide 255
	Slide 256
	Slide 257
	Slide 258
	Slide 259
	Slide 260
	Slide 261
	Slide 262
	Slide 263
	Slide 264
	Slide 265
	Slide 266
	Slide 267
	Slide 268
	Slide 269
	Slide 270
	Slide 271
	Slide 272
	Slide 273
	Slide 274
	Slide 275
	Slide 276
	Slide 277
	Slide 278
	Slide 279
	Slide 280
	Slide 281
	Slide 282
	Slide 283
	Slide 284
	Slide 285
	Slide 286
	Slide 287
	Slide 288
	Slide 289
	Slide 290
	Slide 291
	Slide 292
	Slide 293
	Slide 294
	Slide 295
	Slide 296
	Slide 297
	Slide 298
	Slide 299
	Slide 300
	Slide 301
	Slide 302
	Slide 303
	Slide 304
	Slide 305
	Slide 306
	Slide 307
	Slide 308
	Slide 309
	Slide 310
	Slide 311
	Slide 312
	Slide 313
	Slide 314
	Slide 315
	Slide 316
	Slide 317
	Slide 318
	Slide 319
	Slide 320
	Slide 321
	Slide 322
	Slide 323
	Slide 324
	Slide 325
	Slide 326
	Slide 327
	Slide 328
	Slide 329
	Slide 330
	Slide 331
	Slide 332
	Slide 333
	Slide 334
	Slide 335
	Slide 336
	Slide 337
	Slide 338
	Slide 339
	Slide 340
	Slide 341
	Slide 342
	Slide 343
	Slide 344
	Slide 345
	Slide 346
	Slide 347
	Slide 348
	Slide 349
	Slide 350

