

Tournament Heaps

Where We’re Going
● Tournament Heaps (Today)

● A simple, flexible, and versatile priority
queue.

● Lazy Tournament Heaps (Today)
● A powerful building block for designing more

advanced data structures.
● Abdication Heaps (Tuesday)

● A heavyweight and theoretically excellent
priority queue.

Review: Priority Queues

Priority Queues
● A priority queue is a data

structure that supports
these operations:
● pq.enqueue(v, k), which

enqueues element v with
key k;

● pq.find-min(), which
returns the element with the
least key; and

● pq.extract-min(), which
removes and returns the
element with the least key.

● They’re useful as building
blocks in a bunch of
algorithms.

Priority Queues
● A priority queue is a data

structure that supports
these operations:
● pq.enqueue(v, k), which

enqueues element v with
key k;

● pq.find-min(), which
returns the element with the
least key; and

● pq.extract-min(), which
removes and returns the
element with the least key.

● They’re useful as building
blocks in a bunch of
algorithms.

Mt. Giluwe

4,368

Pico de Orizaba

5,636

Mt. Sidley

4,285

Kilimanjaro

5,859

Binary Heaps
● Priority queues are frequently implemented as binary

heaps.
● enqueue and extract-min run in time O(log n); find-

min runs in time O(1).
● These heaps are surprisingly fast in practice. It’s tough to

beat their performance!
● d-ary heaps can outperform binary heaps for a well-

tuned value of d, and otherwise only the sequence
heap is known to specifically outperform this family.

● (Is this information incorrect as of 2022? Let me know
and I’ll update it.)

● In that case, why do we need other heaps?

Priority Queues in Practice
● Many graph algorithms directly rely on priority queues

supporting extra operations:
● meld(pq₁, pq₂): Destroy pq₁ and pq₂ and combine their elements

into a single priority queue. (MSTs via Cheriton-Tarjan)
● pq.decrease-key(v, k'): Given a pointer to element v already in

the queue, lower its key to have new value k'. (Shortest paths
via Dijkstra, global min-cut via Stoer-Wagner)

● pq.add-to-all(Δk): Add Δk to the keys of each element in the
priority queue, typically used with meld. (Optimum branchings
via Chu-Edmonds-Liu)

● In lecture, we'll cover tournament heaps to efficiently support
meld and abdication heaps to efficiently support meld and
decrease-key.

● You’ll design a priority queue supporting meld and add-to-
all on the next problem set.

Priority Queues in Practice
Many graph algorithms directly rely on priority queues
supporting extra operations:

● meld(pq₁, pq₂): Destroy pq₁ and pq₂ and combine their elements
into a single priority queue. (MSTs via Cheriton-Tarjan)
pq.decrease-key(v, k'): Given a pointer to element v already in
the queue, lower its key to have new value k'. (Shortest paths
via Dijkstra, global min-cut via Stoer-Wagner)
pq.add-to-all(Δk): Add Δk to the keys of each element in the
priority queue, typically used with meld. (Optimum branchings
via Chu-Edmonds-Liu)

In lecture, we'll cover tournament heaps to efficiently support
meld and abdication heaps to efficiently support meld and
decrease-key.
You’ll design a priority queue supporting meld and add-to-
all on the next problem set.

Meldable Priority Queues

Meldable Priority Queues
● A priority queue supporting the meld operation is

called a meldable priority queue.
● meld(pq₁, pq₂) destructively modifies pq₁ and pq₂

and produces a new priority queue containing all
elements of pq₁ and pq₂.

13
25

16137

24
6

1819

72

Efficiently Meldable Queues
● Standard binary heaps do not efficiently

support meld.
● Intuition: Binary heaps are complete binary

trees, and two complete binary trees cannot
easily be linked to one another.

What things can be combined together
efficiently?

Adding Binary Numbers
● Given the binary representations of two

numbers n and m, we can add those
numbers in time O(log m + log n).

Intuition:
Writing out n in

any “reasonable”
base requires

Θ(log n) digits.

1

1 0

0
1

1

0

1
1

0
1

1

1
1

1
1

0

0
1

1
1

1

0
1

Adding Binary Numbers
● Given the binary representations of two

numbers n and m, we can add those
numbers in time O(log m + log n).

+

1111

A Different Intuition
● Represent n and m as a collection of “packets” whose

sizes are powers of two.
● Adding together n and m can then be thought of as

combining the packets together, eliminating duplicates

1 0
1

1
1

1
1

0
1+

A Different Intuition
● Represent n and m as a collection of “packets” whose

sizes are powers of two.
● Adding together n and m can then be thought of as

combining the packets together, eliminating duplicates

+
1432

16 4 2

1248

Building a Priority Queue
● Idea: Store elements in “packets” whose sizes are

powers of two and meld by “adding” groups of packets.

+

26 53

31 58

64 97

41 93

84 23

62 59

53

58

2664 97

41 93

84 23

62 59

31

Building a Priority Queue
● What properties must our packets have?

● Sizes must be powers of two.
● Can efficiently fuse packets of the same size.

53

58

64

41

97

93

2627

28

18

45

84

62

23

59
As long as the packets
provide O(1) access to
the minimum, we can
execute find-min in

time O(log n).

Building a Priority Queue
● What properties must our packets have?

● Sizes must be powers of two.
● Can efficiently fuse packets of the same size.
● Can efficiently find the minimum element of

each packet.

53

58

64

41

97

93

2627

28

18

45

84

62

23

59

Inserting into the Queue
● If we can efficiently meld two priority queues, we

can efficiently enqueue elements to the queue.
● Idea: Meld together the queue and a new queue

with a single packet.

53

58

2627

28

18

45

84

62

23

59

Inserting into the Queue
● If we can efficiently meld two priority queues, we

can efficiently enqueue elements to the queue.
● Idea: Meld together the queue and a new queue

with a single packet.

53

58

2627

28

18

45

84

62

23

59

14

Inserting into the Queue
● If we can efficiently meld two priority queues, we

can efficiently enqueue elements to the queue.
● Idea: Meld together the queue and a new queue

with a single packet.

27

28

18

45

84

62

23

59

53

14

58

26

Time required:
O(log n) fuses.

Deleting the Minimum
● Our analogy with arithmetic breaks down when we try

to remove the minimum element.
● After losing an element, the packet will not necessarily

hold a number of elements that is a power of two.

53

58

64

41

97

93

27

28 45

84

62

23

59

Deleting the Minimum
● If we have a packet with 2k elements in it and

remove a single element, we are left with 2k – 1
remaining elements.

Idea: “Fracture” the packet into k – 1 smaller
packets, then add them back in.

27

28 45

84

62

23

59

Deleting the Minimum
● If we have a packet with 2k elements in it and

remove a single element, we are left with 2k – 1
remaining elements.

● Fun fact: 2k – 1 = 20 + 21 + 22 + … + 2k-1.
● Idea: “Fracture” the packet into k smaller

packets, then add them back in.

27

28 45

84

62

23

59

Fracturing Packets
● We can extract-min by fracturing the packet

containing the minimum and adding the fragments
back in.

53

58

64

41

97

93

27

28 45

84

62

23

59

Fracturing Packets
● We can extract-min by fracturing the packet

containing the minimum and adding the fragments
back in.

● Runtime is O(log n) fuses in meld, plus fracture cost.

27

28

64

41

97

93

45

84

62

23

59

53

58

+

Building a Priority Queue
● What properties must our packets have?

● Size is a power of two.
● Can efficiently fuse packets of the same size.
● Can efficiently find the minimum element of each packet.
● Can efficiently “fracture” a packet of 2k nodes into

packets of 20, 21, 22, 23, …, 2k-1 nodes.
● Question: How can we represent our packets to support

the above operations efficiently?

Formulate a
hypothesis!

Building a Priority Queue
● What properties must our packets have?

● Size is a power of two.
● Can efficiently fuse packets of the same size.
● Can efficiently find the minimum element of each packet.
● Can efficiently “fracture” a packet of 2k nodes into

packets of 20, 21, 22, 23, …, 2k-1 nodes.
● Question: How can we represent our packets to support

the above operations efficiently?

Discuss with your
neighbors!

Tournament Trees
● A tournament tree is a complete binary tree

representing the result of a tournament.
● Each leaf represents a single “player” in the tournament.
● Each internal node shows the “winner” of the game

played by those players.

137 42 271 828 182 845 904 523

42 271 182 523

42 182

42

Tournament Trees

3 4 2 6

3 2

2

● What properties must our packets have?
● Size must be a power of two. ✓
● Can efficiently fuse packets of the same size. ✓
● Can efficiently find the minimum element of each packet. ✓
● Can efficiently “fracture” a packet of 2k nodes into packets

of 20, 21, 22, 23, …, 2k-1 nodes. ✓

5 1 9 7

1 7

1

1

The Tournament Heap
● A tournament heap is a collection of tournament trees

stored in ascending order of size.
● Operations defined as follows:

● meld(pq₁, pq₂): Use addition to combine all the trees.
– Fuses O(log n + log m) trees. Cost: O(log n + log m). Here,

assume one tournament heap has n nodes, the other m.
● pq.enqueue(v, k): Meld pq and a singleton heap of (v, k).

– Total time: O(log n).
● pq.find-min(): Find the minimum of all tree roots.

– Total time: O(log n).
● pq.extract-min(): Find the min, delete the tree root, then

meld together the queue and the exposed children.
– Total time: O(log n).

Draw what happens if we enqueue the numbers

1, 2, 3, 4, 5, 6, 7, 8, and 9 into a tournament heap.

1 2

1

3 4

3

1

5 6

5

7 8

7

5

1

9

Draw what happens if we perform an extract-min

on this tournament heap.

1 2

1

3 4

3

1

5 6

5

7 8

7

5

1

9

Draw what happens if we perform an extract-min

on this tournament heap.

23 4

3

5 6

5

7 8

7

5

9

Draw what happens if we perform an extract-min

on this tournament heap.

23 4

3

5 6

5

7 8

7

5

9

2

2

2

Where We Stand
● Here’s the current

scorecard for the
tournament heap.

● This is a fast,
elegant, and
clever data
structure.

● Question: Can we
do better?

Tournament Heap
● enqueue: O(log n)
● find-min: O(log n)
● extract-min: O(log n)
● meld: O(log m + log n).

Where We Stand
● Theorem: No

comparison-based
priority queue structure
can have enqueue and
extract-min each take
time o(log n).

● Proof: Suppose these
operations each take
time o(log n). Then we
could sort n elements by
perform n enqueues
and then n extract-
mins in time o(n log n).
This is impossible with
comparison-based
algorithms. ■

Tournament Heap
● enqueue: O(log n)
● find-min: O(log n)
● extract-min: O(log n)
● meld: O(log m + log n).

Where We Stand
● We can’t make both

enqueue and extract-
min run in time o(log n).

● However, we could
conceivably make one of
them faster.

● Question: Which one
should we prioritize?

● Probably enqueue,
since we aren’t
guaranteed to have to
remove all added items.

● Goal: Make enqueue
take time O(1).

Tournament Heap
● enqueue: O(log n)
● find-min: O(log n)
● extract-min: O(log n)
● meld: O(log m + log n).

Where We Stand
● The enqueue

operation is
implemented in
terms of meld.

● If we want
enqueue to run
in time O(1),
we’ll need meld
to take time O(1).

● How could we
accomplish this?

Tournament Heap
● enqueue: O(log n)
● find-min: O(log n)
● extract-min: O(log n)
● meld: O(log m + log n).

Thinking With Amortization

Refresher: Amortization
● In an amortized efficient data structure, some operations

can take much longer than others, provided that
previous operations didn’t take too long to finish.

● Think dishwashers: you may have to do a big cleanup at
some point, but that’s because you did basically no work
to wash all the dishes you placed in the dishwasher.

w
or

k

time

Lazy Melding
● Consider the following lazy melding approach:

To meld together two tournament heaps,
just combine the two sets of trees together.

● Intuition: Why do any work to organize keys if
we’re not going to do an extract-min? We’ll worry
about cleanup then.

2 7 1 8 2 8

2 1

1

2

4 5 9

5

Lazy Melding
● If we store our list of trees as circularly, doubly-linked

lists, we can concatenate tree lists in time O(1).
● Cost of a meld: O(1).
● Cost of an enqueue: O(1).

● If it sounds too good to be true, it probably is. 😃

2 7 1 8 2 8

2 1

1

2

4 5 9

5

0 4

Lazy Melding
● Imagine that we implement extract-min the same

way as before:
● Find the packet with the minimum.
● “Fracture” that packet to expose smaller packets.
● Meld those packets back in with the master list.

● What happens if we do this with lazy melding?

2 7 1 8 2 8

2 1

1

2

4 5 9

5

0 4

Lazy Melding
● Imagine that we implement extract-min the same

way as before:
● Find the packet with the minimum.
● “Fracture” that packet to expose smaller packets.
● Meld those packets back in with the master list.

● What happens if we do this with lazy melding?

2 7 8 8

2

4 5 9

5

4

Each pass of finding the
minimum value takes time Θ(n)

in the worst case. We’ve lost
our nice runtime guarantees!

Washing the Dishes
● Every meld (and enqueue) creates some “dirty dishes”

(small trees) that we need to clean up later.
● If we never clean them up, then our extract-min will be

too slow to be usable.
● Idea: Change extract-min to “wash the dishes” and make

things look nice and pretty again.
● Question: What does “wash the dishes” mean here?

2 7 8 8

2

4 5 9

5

4

Washing the Dishes
● With our eager meld (and enqueue) strategy, our priority

queue never had more than one tree of each height.
● This kept the number of trees low, which is why each

operation was so fast.
● Idea: After doing an extract-min, do a coalesce step to

ensure there’s at most one tree of each height. This gets us to
where we would be if we had been doing cleanup as we go.

2 7 8 8

2

4 5 9

5

4

Washing the Dishes
● With our eager meld (and enqueue) strategy, our priority

queue never had more than one tree of each height.
● This kept the number of trees low, which is why each

operation was so fast.
● Idea: After doing an extract-min, do a coalesce step to

ensure there’s at most one tree of each height. This gets us to
where we would be if we had been doing cleanup as we go.

2 7 8 8

2

45 9

5

4

8 4

2 4

2
At this point, the mess is

cleaned up, and we’re
left with what we would
have had if we had been

cleaning up as we go.

Where We’re Going
● A lazy tournament heap is a tournament heap,

modified as follows:
● The meld operation is lazy. It just combines the two groups

of trees together.
● After doing an extract-min, we do a coalesce to combine

together trees until there’s at most one tree of each height.
● Intuitively, we’d expect this to amortize away nicely,

since the “mess” left by meld gets cleaned up later on
by a future extract-min.

● Questions left to answer:
● How do we efficiently implement the coalesce operation?
● How efficient is this approach, in an amortized sense?

Coalescing Trees
● The coalesce step repeatedly combines

trees together until there’s at most one
tree of each height.

● How do we implement this so that it runs
quickly?

2 7 8 8

2

4 5 9

5

4

Coalescing Trees
● Observation: This would be a lot easier

to do if all the trees were sorted by
height.

2 7 8 8

2

45 9

5

4

Coalescing Trees
● Observation: This would be a lot easier

to do if all the trees were sorted by
height.

● We can sort our group of t trees by
height in time O(t log t) using a standard
sorting algorithm.

● Better idea: All the sizes are small
integers. Use counting sort!

Coalescing Trees
● Here is a fast implementation of coalesce:

● Distribute the trees into an array of buckets big enough
to hold trees of heights 0, 1, 2, …, ⌈log₂ (n + 1)⌉.

● Start at bucket 0. While there’s two or more trees in the
bucket, fuse them and place the result one bucket
higher.

2 76 3

2

1 5 9

5

40

Coalescing Trees
● Here is a fast implementation of coalesce:

● Distribute the trees into an array of buckets big enough
to hold trees of heights 0, 1, 2, …, ⌈log₂ (n + 1)⌉.

● Start at bucket 0. While there’s two or more trees in the
bucket, fuse them and place the result one bucket
higher.

Height 1 Height 0Height 2

2 76 3

2

1 5 9

5

40

Coalescing Trees
● Here is a fast implementation of coalesce:

● Distribute the trees into an array of buckets big enough
to hold trees of heights 0, 1, 2, …, ⌈log₂ (n + 1)⌉.

● Start at bucket 0. While there’s two or more trees in the
bucket, fuse them and place the result one bucket
higher.

Height 1 Height 0Height 2

2 7

0

3

2

1

5 9

5 4

6

Coalescing Trees
● Here is a fast implementation of coalesce:

● Distribute the trees into an array of buckets big enough
to hold trees of heights 0, 1, 2, …, ⌈log₂ (n + 1)⌉.

● Start at bucket 0. While there’s two or more trees in the
bucket, fuse them and place the result one bucket
higher.

2 7 03

2

15 9

5

46

1 4

12

1

Analyzing Coalesce
● Claim: Coalescing a group of t trees takes

time O(t + log n).
● Time to create the array of buckets: O(log n).
● Time to distribute trees into buckets: O(t).
● Time to fuse trees: O(t + log n)

– Number of fuses is O(t), since each fuse decreases
the number of trees by one. Cost per fuse is O(1).

– Need to iterate across O(log n) buckets.
● Total work done: O(t + log n).
● In the worst case, this is O(n).

The Story So Far
● A tournament heap with lazy melding has these

worst-case time bounds:
● enqueue: O(1)
● meld: O(1)
● find-min: O(1)
● extract-min: O(n).

● But these are worst-case time bounds. Intuitively,
things should nicely amortize away.
● The number of trees grows slowly (one per enqueue).
● The number of trees drops quickly (at most one tree

per order) after an extract-min).

An Amortized Analysis
● This is a great spot to use an amortized analysis

by defining a potential function Φ.
● In each case, the idea is to clearly mark what

“messes” we need to clean up.
● In our case, each tree is a “mess,” since our

future coalesce operation has to clean it up.

Set Φ to the number of trees in
the lazy tournament heap.

2 76

2

1 40 3 5 9

5

An Amortized Analysis
● Recall: We assign amortized costs as

amortized-cost = real-cost + k · ΔΦ,
where ΔΦ = Φafter – Φbefore.
● Increasing Φ (adding more trees) artificially boosts costs.
● Decreasing Φ (removing trees) artificially lowers costs.

● Let’s work out the amortized costs of each operation on a
lazy tournament heap.

2 76

2

1 40 3 5 9

5

Set Φ to the number of trees in
the lazy tournament heap.

Analyzing an Insertion
● To enqueue a key, we add a new tournament

tree to the forest.
● Real cost: O(1). ΔΦ: +1
● Amortized cost: O(1).

Set Φ to the number of trees in
the lazy tournament heap.

2 76

2

1 40 3 5 9

5

3

Analyzing a Meld
● What is the amortized cost of meld?
● Real Cost: O(1).
● ΔΦ = 0.

● No trees are created or destroyed.
● Amortized cost: O(1).

2 76

2

0 3 1 45 9

5

3

Set Φ to the number of trees in
the lazy tournament heap.

Analyzing extract-min

Find tree with
minimum key.

Work: O(t)
Φ = t

Remove min.
Add children to

list of trees.

Work: O(log n)

Run the coalesce
algorithm.

Work: O(t + log n)
Φ = O(log n)

Work: O(t + log n) ΔΦ: O(-t + log n)

Find tree with
minimum key.

Work: O(t)
Φ = t

Remove min.
Add children to

list of trees.

Work: O(log n)

Amortized cost: O(log n).

Run the coalesce
algorithm.

Work: O(t + log n)
Φ = O(log n)

Analyzing Extract-Min
● Suppose we perform an extract-min on a lazy

tournament heap with t trees in it.
● Initially, we fracture the tree containing the minimum.

This increases the number of trees to t + O(log n).
● The runtime for coalescing these trees is O(t + log n).
● When we're done merging, there will be O(log n) trees

remaining, so ΔΦ = -t + O(log n).
● Amortized cost is

 = O(t + log n) + k · (-t + O(log n))
 = O(t) – k · t + k · O(log n)
 = O(log n).

The Final Scorecard
● Here’s the final

scorecard for our lazy
tournament heap.

● These are great
runtimes! We can’t
improve upon this
except by making
extract-min worst-
case efficient.
● This is possible! Check

out bootstrapped
skew binomial heaps
for details!

Lazy Tournament Heap
● Insert: O(1)
● Find-Min: O(1)
● Extract-Min: O(log n)*
● Meld: O(1)

* amortized

Major Ideas from Today
● Isometries are a great way to design data

structures.
● Here, tournament heaps come from binary

arithmetic.
● Designing for amortized efficiency is

about building up messes slowly and
rapidly cleaning them up.
● Each individual enqueue isn’t too bad, and a

single extract-min fixes all the prior
problems.

Next Time
● The Need for decrease-key

● A powerful and versatile operation on
priority queues.

● Abdication Heaps
● A variation on lazy tournament heaps with

efficient decrease-key.
● Analyzing Abdication Heaps

● A clever analysis.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70

