Where We're Going

- Tournament Heaps (Today)
 - A simple, flexible, and versatile priority queue.
- Lazy Tournament Heaps (Today)
 - A powerful building block for designing more advanced data structures.
- Abdication Heaps (Tuesday)
 - A heavyweight and theoretically excellent priority queue.

Review: Priority Queues

Priority Queues

- A *priority queue* is a data structure that supports these operations:
 - *pq.enqueue*(v, k), which enqueues element v with key k;
 - *pq.find-min()*, which returns the element with the least key; and
 - *pq.extract-min()*, which removes and returns the element with the least key.
- They're useful as building blocks in a *bunch* of algorithms.

Priority Queues

- A *priority queue* is a data structure that supports these operations:
 - *pq.enqueue*(v, k), which enqueues element v with key k;
 - *pq.find-min()*, which returns the element with the least key; and
 - *pq.extract-min(),* which removes and returns the element with the least key.
- They're useful as building blocks in a *bunch* of algorithms.

Binary Heaps

- Priority queues are frequently implemented as *binary heaps*.
 - *enqueue* and *extract-min* run in time O(log n); *find-min* runs in time O(1).
- These heaps are surprisingly fast in practice. It's tough to beat their performance!
 - *d*-ary heaps can outperform binary heaps for a welltuned value of *d*, and otherwise only the *sequence heap* is known to specifically outperform this family.
 - (Is this information incorrect as of 2022? Let me know and I'll update it.)
- In that case, why do we need other heaps?

Priority Queues in Practice

- Many graph algorithms directly rely on priority queues supporting extra operations:
 - **meld**(pq_1 , pq_2): Destroy pq_1 and pq_2 and combine their elements into a single priority queue. (*MSTs via Cheriton-Tarjan*)
 - pq.decrease-key(v, k'): Given a pointer to element v already in the queue, lower its key to have new value k'. (Shortest paths via Dijkstra, global min-cut via Stoer-Wagner)
 - $pq.add-to-all(\Delta k)$: Add Δk to the keys of each element in the priority queue, typically used with *meld*. (Optimum branchings via Chu-Edmonds-Liu)
- In lecture, we'll cover tournament heaps to efficiently support meld and abdication heaps to efficiently support meld and decrease-key.
- You'll design a priority queue supporting *meld* and *add-to-all* on the next problem set.

Priority Queues in Practice

Many graph algorithms directly rely on priority queues supporting extra operations:

• $meld(pq_1, pq_2)$: Destroy pq_1 and pq_2 and combine their elements into a single priority queue. (*MSTs via Cheriton-Tarjan*)

pq.**decrease-key**(v, k'): Given a pointer to element v already in the queue, lower its key to have new value k'. (Shortest paths via Dijkstra, global min-cut via Stoer-Wagner)

 $pq.add-to-all(\Delta k)$: Add Δk to the keys of each element in the priority queue, typically used with **meld**. (Optimum branchings via Chu-Edmonds-Liu)

In lecture, we'll cover tournament heaps to efficiently support *meld* and abdication heaps to efficiently support *meld* and *decrease-key*.

You'll design a priority queue supporting *meld* and *add-toall* on the next problem set.

Meldable Priority Queues

Meldable Priority Queues

- A priority queue supporting the *meld* operation is called a *meldable priority queue*.
- **meld**(pq_1 , pq_2) destructively modifies pq_1 and pq_2 and produces a new priority queue containing all elements of pq_1 and pq_2 .

Efficiently Meldable Queues

- Standard binary heaps do not efficiently support *meld*.
- **Intuition**: Binary heaps are complete binary trees, and two complete binary trees cannot easily be linked to one another.

What things *can* be combined together efficiently?

Adding Binary Numbers

• Given the binary representations of two numbers n and m, we can add those numbers in time $O(\log m + \log n)$.

Intuition: Writing out n in any "reasonable" base requires $\Theta(\log n)$ digits.

Adding Binary Numbers

 Given the binary representations of two numbers n and m, we can add those numbers in time O(log m + log n).

A Different Intuition

- Represent *n* and *m* as a collection of "packets" whose sizes are powers of two.
- Adding together *n* and *m* can then be thought of as combining the packets together, eliminating duplicates

A Different Intuition

- Represent *n* and *m* as a collection of "packets" whose sizes are powers of two.
- Adding together *n* and *m* can then be thought of as combining the packets together, eliminating duplicates

 Idea: Store elements in "packets" whose sizes are powers of two and meld by "adding" groups of packets.

- What properties must our packets have?
 - Sizes must be powers of two.
 - Can efficiently fuse packets of the same size.

64

97

As long as the packets provide O(1) access to the minimum, we can execute *find-min* in time $O(\log n)$.

26

53

- What properties must our packets have?
 - Sizes must be powers of two.
 - Can efficiently fuse packets of the same size.
 - Can efficiently find the minimum element of each packet.

Inserting into the Queue

- If we can efficiently meld two priority queues, we can efficiently enqueue elements to the queue.
- **Idea:** Meld together the queue and a new queue with a single packet.

Inserting into the Queue

- If we can efficiently meld two priority queues, we can efficiently enqueue elements to the queue.
- **Idea:** Meld together the queue and a new queue with a single packet.

Inserting into the Queue

- If we can efficiently meld two priority queues, we can efficiently enqueue elements to the queue.
- **Idea:** Meld together the queue and a new queue with a single packet.

Time required: O(log *n*) fuses.

Deleting the Minimum

- Our analogy with arithmetic breaks down when we try to remove the minimum element.
- After losing an element, the packet will not necessarily hold a number of elements that is a power of two.

Deleting the Minimum

• If we have a packet with 2^k elements in it and remove a single element, we are left with $2^k - 1$ remaining elements.

Deleting the Minimum

- If we have a packet with 2^k elements in it and remove a single element, we are left with $2^k 1$ remaining elements.
- Fun fact: $2^k 1 = 2^0 + 2^1 + 2^2 + \dots + 2^{k-1}$.
- **Idea**: "Fracture" the packet into k smaller packets, then add them back in.

Fracturing Packets

• We can *extract-min* by fracturing the packet containing the minimum and adding the fragments back in.

Fracturing Packets

- We can *extract-min* by fracturing the packet containing the minimum and adding the fragments back in.
- Runtime is O(log *n*) fuses in *meld*, plus fracture cost.

- What properties must our packets have?
 - Size is a power of two.
 - Can efficiently fuse packets of the same size.
 - Can efficiently find the minimum element of each packet.
 - Can efficiently "fracture" a packet of 2^k nodes into packets of 2⁰, 2¹, 2², 2³, ..., 2^{k-1} nodes.
- *Question:* How can we represent our packets to support the above operations efficiently?

Formulate a hypothesis!

- What properties must our packets have?
 - Size is a power of two.
 - Can efficiently fuse packets of the same size.
 - Can efficiently find the minimum element of each packet.
 - Can efficiently "fracture" a packet of 2^k nodes into packets of 2⁰, 2¹, 2², 2³, ..., 2^{k-1} nodes.
- *Question:* How can we represent our packets to support the above operations efficiently?

Discuss with your neighbors!

Tournament Trees

- A *tournament tree* is a complete binary tree representing the result of a tournament.
- Each leaf represents a single "player" in the tournament.
- Each internal node shows the "winner" of the game played by those players.

Tournament Trees

- What properties must our packets have?
 - Size must be a power of two. \checkmark
 - Can efficiently fuse packets of the same size. \checkmark
 - Can efficiently find the minimum element of each packet. \checkmark
 - Can efficiently "fracture" a packet of 2^k nodes into packets of 2⁰, 2¹, 2², 2³, ..., 2^{k-1} nodes.

The Tournament Heap

- A *tournament heap* is a collection of tournament trees stored in ascending order of size.
- Operations defined as follows:
 - **meld** (pq_1, pq_2) : Use addition to combine all the trees.
 - Fuses $O(\log n + \log m)$ trees. Cost: $O(\log n + \log m)$. Here, assume one tournament heap has n nodes, the other m.
 - pq.enqueue(v, k): Meld pq and a singleton heap of (v, k).
 - Total time: O(log *n*).
 - *pq.find-min*(): Find the minimum of all tree roots.
 - Total time: $O(\log n)$.
 - *pq.extract-min()*: Find the min, delete the tree root, then meld together the queue and the exposed children.
 - Total time: $O(\log n)$.

Draw what happens if we *enqueue* the numbers 1, 2, 3, 4, 5, 6, 7, 8, and 9 into a tournament heap.

Draw what happens if we perform an *extract-min* on this tournament heap.

9

Draw what happens if we perform an *extract-min* on this tournament heap.

Draw what happens if we perform an *extract-min* on this tournament heap.

- Here's the current scorecard for the tournament heap.
- This is a fast, elegant, and clever data structure.
- **Question:** Can we do better?

- **enqueue**: O(log *n*)
- *find-min*: O(log *n*)
- **extract-min**: O(log n)
- **meld**: $O(\log m + \log n)$.

- **Theorem:** No comparison-based priority queue structure can have **enqueue** and **extract-min** each take time o(log n).
- Proof: Suppose these operations each take time o(log n). Then we could sort n elements by perform n enqueues and then n extract-mins in time o(n log n). This is impossible with comparison-based algorithms. ■

- **enqueue**: O(log *n*)
- *find-min*: O(log *n*)
- **extract-min**: O(log n)
- **meld**: $O(\log m + \log n)$.

- We can't make both
 enqueue and extractmin run in time o(log n).
- However, we could conceivably make one of them faster.
- *Question:* Which one should we prioritize?
- Probably *enqueue*, since we aren't guaranteed to have to remove all added items.
- *Goal:* Make *enqueue* take time O(1).

- **enqueue**: O(log *n*)
- *find-min*: O(log *n*)
- **extract-min**: O(log n)
- **meld**: $O(\log m + \log n)$.

- The *enqueue* operation is implemented in terms of *meld*.
- If we want
 enqueue to run
 in time O(1),
 we'll need meld
 to take time O(1).
- How could we accomplish this?

- **enqueue**: O(log *n*)
- *find-min*: O(log *n*)
- *extract-min*: O(log *n*)
- **meld**: $O(\log m + \log n)$.

Thinking With Amortization

Refresher: Amortization

- In an amortized efficient data structure, some operations can take much longer than others, provided that previous operations didn't take too long to finish.
- Think dishwashers: you may have to do a big cleanup at some point, but that's because you did basically no work to wash all the dishes you placed in the dishwasher.

• Consider the following lazy *meld*ing approach:

To meld together two tournament heaps, just combine the two sets of trees together.

• **Intuition:** Why do any work to organize keys if we're not going to do an **extract-min**? We'll worry about cleanup then.

- If we store our list of trees as circularly, doubly-linked lists, we can concatenate tree lists in time O(1).
 - Cost of a *meld*: **O(1)**.
 - Cost of an *enqueue*: O(1).
- If it sounds too good to be true, it probably is.

- Imagine that we implement *extract-min* the same way as before:
 - Find the packet with the minimum.
 - "Fracture" that packet to expose smaller packets.
 - Meld those packets back in with the master list.
- What happens if we do this with lazy melding?

- Imagine that we implement *extract-min* the same way as before:
 - Find the packet with the minimum.
 - "Fracture" that packet to expose smaller packets.
 - Meld those packets back in with the master list.
- What happens if we do this with lazy melding?

Washing the Dishes

- Every *meld* (and *enqueue*) creates some "dirty dishes" (small trees) that we need to clean up later.
- If we never clean them up, then our *extract-min* will be too slow to be usable.
- **Idea:** Change **extract-min** to "wash the dishes" and make things look nice and pretty again.
- *Question:* What does "wash the dishes" mean here?

Washing the Dishes

- With our eager *meld* (and *enqueue*) strategy, our priority queue never had more than one tree of each height.
- This kept the number of trees low, which is why each operation was so fast.
- *Idea:* After doing an *extract-min*, do a *coalesce step* to ensure there's at most one tree of each height. This gets us to where we would be if we had been doing cleanup as we go.

Washing the Dishes

- With our eager *meld* (and *enqueue*) strategy, our priority queue never had more than one tree of each height.
- This kept the number of trees low, which is why each operation was so fast.
- *Idea:* After doing an *extract-min*, do a *coalesce step* to ensure there's at most one tree of each height. This gets us to where we would be if we had been doing cleanup as we go.

Where We're Going

- A *lazy tournament heap* is a tournament heap, modified as follows:
 - The *meld* operation is lazy. It just combines the two groups of trees together.
 - After doing an *extract-min*, we do a *coalesce* to combine together trees until there's at most one tree of each height.
- Intuitively, we'd expect this to amortize away nicely, since the "mess" left by *meld* gets cleaned up later on by a future *extract-min*.
- Questions left to answer:
 - How do we efficiently implement the *coalesce* operation?
 - How efficient is this approach, in an amortized sense?

- The *coalesce* step repeatedly combines trees together until there's at most one tree of each height.
- How do we implement this so that it runs quickly?

• **Observation:** This would be a *lot* easier to do if all the trees were sorted by height.

- **Observation:** This would be a *lot* easier to do if all the trees were sorted by height.
- We can sort our group of *t* trees by height in time O(*t* log *t*) using a standard sorting algorithm.
- **Better idea:** All the sizes are small integers. Use counting sort!

- Here is a fast implementation of *coalesce*:
 - Distribute the trees into an array of buckets big enough to hold trees of heights 0, 1, 2, ..., $[log_2 (n + 1)]$.
 - Start at bucket 0. While there's two or more trees in the bucket, fuse them and place the result one bucket higher.

- Here is a fast implementation of *coalesce*:
 - Distribute the trees into an array of buckets big enough to hold trees of heights 0, 1, 2, ..., $[log_2 (n + 1)]$.
 - Start at bucket 0. While there's two or more trees in the bucket, fuse them and place the result one bucket higher.

Height 2	Height	1 Height 0
		5
6 0 3	2 7 1	5 9 4

- Here is a fast implementation of *coalesce*:
 - Distribute the trees into an array of buckets big enough to hold trees of heights 0, 1, 2, ..., $\lceil \log_2 (n + 1) \rceil$.
 - Start at bucket 0. While there's two or more trees in the bucket, fuse them and place the result one bucket higher.

- Here is a fast implementation of *coalesce*:
 - Distribute the trees into an array of buckets big enough to hold trees of heights 0, 1, 2, ..., $[log_2 (n + 1)]$.
 - Start at bucket 0. While there's two or more trees in the bucket, fuse them and place the result one bucket higher.

Analyzing Coalesce

- **Claim:** Coalescing a group of t trees takes time $O(t + \log n)$.
 - Time to create the array of buckets: O(log *n*).
 - Time to distribute trees into buckets: O(t).
 - Time to fuse trees: $O(t + \log n)$
 - Number of fuses is O(t), since each fuse decreases the number of trees by one. Cost per fuse is O(1).
 - Need to iterate across O(log *n*) buckets.
- Total work done: $O(t + \log n)$.
- In the worst case, this is O(n).

The Story So Far

- A tournament heap with lazy melding has these worst-case time bounds:
 - *enqueue*: O(1)
 - *meld*: O(1)
 - *find-min*: O(1)
 - *extract-min*: O(*n*).
- But these are *worst-case* time bounds. Intuitively, things should nicely amortize away.
 - The number of trees grows slowly (one per *enqueue*).
 - The number of trees drops quickly (at most one tree per order) after an *extract-min*).

An Amortized Analysis

- This is a great spot to use an amortized analysis by defining a potential function Φ .
- In each case, the idea is to clearly mark what "messes" we need to clean up.
- In our case, each tree is a "mess," since our future *coalesce* operation has to clean it up.

3

2

Set Φ to the number of trees in the lazy tournament heap.

5

An Amortized Analysis

• **Recall:** We assign amortized costs as

amortized-cost = real-cost + $k \cdot \Delta \Phi$,

where $\Delta \Phi = \Phi_{after} - \Phi_{before}$.

- Increasing Φ (adding more trees) artificially boosts costs.
- Decreasing Φ (removing trees) artificially lowers costs.
- Let's work out the amortized costs of each operation on a lazy tournament heap.

Analyzing an Insertion

- To *enqueue* a key, we add a new tournament tree to the forest.
- Real cost: O(1). $\Delta \Phi$: +1
- Amortized cost: **O(1)**.

Analyzing a Meld

- What is the amortized cost of *meld*?
- Real Cost: O(1).
- $\Delta \Phi = 0.$
 - No trees are created or destroyed.
- Amortized cost: **O(1)**.

Analyzing *extract-min*

Amortized cost: **O(log n)**.

Analyzing Extract-Min

- Suppose we perform an *extract-min* on a lazy tournament heap with *t* trees in it.
- Initially, we fracture the tree containing the minimum. This increases the number of trees to $t + O(\log n)$.
- The runtime for coalescing these trees is $O(t + \log n)$.
- When we're done merging, there will be $O(\log n)$ trees remaining, so $\Delta \Phi = -t + O(\log n)$.
- Amortized cost is

 $O(t + \log n) + k \cdot (-t + O(\log n))$ $= O(t) - k \cdot t + k \cdot O(\log n)$ $= O(\log n).$

The Final Scorecard

- Here's the final scorecard for our lazy tournament heap.
- These are *great* runtimes! We can't improve upon this except by making *extract-min* worstcase efficient.
 - This is possible! Check out *bootstrapped skew binomial heaps* for details!

Lazy Tournament Heap

- **Insert**: O(1)
- *Find-Min*: O(1)
- *Extract-Min*: O(log *n*)*
- **Meld**: O(1)

* amortized

Major Ideas from Today

- Isometries are a *great* way to design data structures.
 - Here, tournament heaps come from binary arithmetic.
- Designing for amortized efficiency is about building up messes slowly and rapidly cleaning them up.
 - Each individual *enqueue* isn't too bad, and a single *extract-min* fixes all the prior problems.

Next Time

- The Need for decrease-key
 - A powerful and versatile operation on priority queues.
- Abdication Heaps
 - A variation on lazy tournament heaps with efficient *decrease-key*.
- Analyzing Abdication Heaps
 - A clever analysis.