

Planar Point Location

Outline for Today
● Plane Graphs

● Subdividing 2D space into regions.
● Point Location

● Where are you in 2D space?
● Slab Decomposition

● Breaking space apart for fast searches.
● Persistent Red/Black Trees

● Sharing space across trees.

Plane Graphs

Plane Graphs
● A plane graph is a

drawing of a graph in
2D space such that
● all edges are

represented as simple
curves, and

● excluding their
endpoints, no two curves
touch.

● Plane graphs are a
natural way of encoding
borders on a map or
regions in an image.

Plane Graphs
● For most of today, we’ll be

talking about straight-line
plane graphs, plane graphs
where each edge is a straight
line.

● Fáry’s theorem says that every
plane graph can be redrawn as
a straight line plane graph.
● This is a beautiful proof by

induction; do a quick Google
search for more details.

● Many of the techniques from
today work in the more general
case of arbitrary curves – it’s a
good exercise to think about
how to modify them.

Plane Graphs
● A plane graph

subdivides 2D space into
regions called faces,
spaces demarcated by
edges.

● The outer region of
space outside the plane
graph is considered a
face as well.

● When working with
plane graphs, often the
faces are more
important than the
vertices.

A Key Theorem
● Theorem: A plane graph

with n nodes has O(n)
edges and O(n) faces.

● This is a consequence of
Euler’s theorem, which
relates the number of
edges, vertices, and faces
of a plane graph.

● This means that plane
graphs are sparse.

● We will typically use n,
the number of nodes, as a
measure of the size of the
input.

The Story So Far
● A plane graph is a drawing of a graph in

the plane. We’ll assume we’re working
with straight-line drawings today.

● A plane graph with n nodes has O(n)
edges (they’re sparse).

● Plane graphs decompose the plane into
O(n) faces, including the infinite external
face.

Planar Subdivisions

This edge has the
same face on both

sides.

Same here.

Planar Subdivisions
● A planar

subdivision is a
plane graph where
each edge borders
two different
faces.

● Equivalently, a
planar subdivision
is a plane graph
with no bridges.

Planar Point Location

Planar Point Location
● The planar point location

problem is the following:
Preprocess a planar

subdivision to efficiently
answer queries of the

form “which face is point
p in?”

● It’s yet another place where
we’d expect to get a
tradeoff between
preprocessing time and
runtime.

● Question: How quickly can
we solve this problem?

A Naive Solution
● What would the “no

preprocessing” solution
to this problem look
like?

● Basic idea: Iterate over
all closed faces and see
if the point is in any of
them. If so, return it. If
not, return the external
face.

● Question: How do you
check whether a point is
contained within a face?

Point-In-Face Queries
● Faces in planar

subdivisions can
have irregular
shapes.

● Simply testing if a
point is in such a
polygon seems
challenging!

● However, there’s a
really clever way to
solve this problem.

“Picasso Camel”

“Jack-O-Lantern”

Notice a pattern in the
number of intersections?

Formulate a
hypothesis! 😃

Notice a pattern in the
number of intersections?

Discuss with your
neighbors! 😃

Each line crossed toggles
whether we’re outside or

inside the polygon.

Suppose we cross k line
segments. If k is even,
the point is outside. If

k is odd, it’s inside.

Each line crossed toggles
whether we’re outside or

inside the polygon.

Suppose we cross k line
segments. If k is even,
the point is outside. If

k is odd, it’s inside.

A Naive Solution
● For each polygon, count the number of edges that

intersect a horizontal line passing through the
query point.
● This intersection test boils down to some linear algebra

and can be done in time O(1).
● Each edge is processed at most twice, once for

each face it borders.
● Total query time: O(n).
● Question: Can we do better?

Preprocessing
Time

Query
Time

Space
Usage

Test All Faces O(n log n) O(n) O(n)

Slab Decomposition

Observation 1: Determining
which face we’re in can be
done by finding which edge

is directly above us.

Observation 2: Nudging a
point left or right usually

doesn’t change which
segment is above it. That can
only change if we cross the x

coordinate of a vertex.

This region is
called a slab.

Within a slab,
we can order
line segments

from top to
bottom by the

“is above”
relation.

Binary search over x
coordinates to find
which slab we’re in.

Time: O(log n).

Binary search across
the line segments to

find the one above us.

Time: O(log n).

Total time: O(log n).

Slab Decomposition
● Idea: Draw a vertical line

through each line segment
endpoint to cut the space
into slabs.

● Each slab consists of some
number of line segments,
which can be ordered from
top to bottom.

● We can then solve point
location in time O(log n)
by binary searching in the
x direction to find which
slab we’re in, then binary
searching in the y direction
to see which face we’re in.

Slab Decomposition
● Some remaining

questions:
● How do you

construct the slabs?
● How much

preprocessing time
will this take?

● How much space is
needed?

● Let’s address each
of these questions in
turn.

A

C

B

F

H
K

J

ID

E
G

The slab to the left of all
polygons has no line

segments in it.

Slab 1

A

C

B

F

H
K

J

ID

E
G

AD
AC
AB

Slab 1 Slab 2

A

D

C

B

Sort all line segments
emanating from A

from top to bottom,
and add them into

the slab.

A

C

B

F

H
K

J

ID

E
G

AD
AC
AB

Slab 1 Slab 2 Slab 3

Many of the line segments from
before are still in this slab.

Some of the line segments from
before are no longer in this slab.

Some new line segments will be
added to this slab.

A

C

B

F

H
K

J

ID

E
G

AD
AC
AB

AD
AC

Slab 1 Slab 2 Slab 3

A

F

C

B

Any line segment ending in
B needs to be removed.

A

C

B

F

H
K

J

ID

E
G

AD
AC
AB

AD
AC
BC
BF

Slab 1 Slab 2 Slab 3

A

F

C

B

Any line segment ending in
B needs to be removed.

Any line segment starting
at B needs to be added in

sorted order.

A

C

B

F

H
K

J

ID

E
G

AD
AC
AB

AD
AC
BC
BF

Slab 1 Slab 2 Slab 3

A

C

B

F

H
K

J

ID

E
G

AD
AC
AB

AD
AC
BC
BF

Slab 1 Slab 2 Slab 3

AD
AC
BC
BF

Slab 4

C

B
H

GA

Copy the
previous slab.

Remove all
segments

ending at C.

Add all segments
starting at C,

in sorted order.

A

C

B

F

H
K

J

ID

E
G

AD
AC
AB

AD
AC
BC
BF

Slab 1 Slab 2 Slab 3

AD
BF

Slab 4

C

B
H

GA

Copy the
previous slab.

Remove all
segments

ending at C.

Add all segments
starting at C,

in sorted order.

A

C

B

F

H
K

J

ID

E
G

AD
AC
AB

AD
AC
BC
BF

Slab 1 Slab 2 Slab 3

AD
CG
CH
BF

Slab 4

C

B
H

GA

Copy the
previous slab.

Remove all
segments

ending at C.

Add all segments
starting at C,

in sorted order.

A

C

B

F

H
K

J

ID

E
G

AD
AC
AB

AD
AC
BC
BF

AD
CG
CH
BF

DI
DE
CG
CH
BF

DI
EG
CG
CH
FH

DI
GI
GK
HK

IJ
GK
HK

Slab 1 Slab 2 Slab 3 Slab 4 Slab 5 Slab 6 Slab 7 Slab 8 Slab 9

Building Slabs
● Sort vertices from left to right, grouping

vertices with equal x coordinates together.
● Create an initial, empty slab.
● For each distinct x coordinate, from left to right:

● Copy the previous slab.
● Delete all segments that end at this x coordinate.
● Add all segments that start at this x coordinate,

keeping segments sorted from top to bottom.
● Question: How fast is this algorithm?

Observation: These
vertical stripes cut line

segments into
fragments that run
from the start of a

slab to the end.

Each line segment
appears in k slabs,

where k is the number
of fragments it’s cut

into.

Claim: There are
families of planar

subdivisions with O(n)
edges that produce Θ(n2)

fragments, and this
is a tight upper bound.

A
B

C
D

E
F

G
H

I

X

J

AX
AB

AX
BX
BC

AX
BX
CX
CD

AX
BX
CX
DX
DE

AX
BX
CX
DX
EX
EF

AX
BX
CX
DX
EX
FX
FG

AX
BX
CX
DX
EX
FX
GX
GH

AX
BX
CX
DX
EX
FX
GX
HX
HI

AX
BX
CX
DX
EX
FX
GX
HX
IX
IJ

Slab 1 Slab 2 Slab 3 Slab 4 Slab 5 Slab 6 Slab 7 Slab 8 Slab 9 Slab 10 Slab 11

Slabs: The Drawback
● In the worst case, a slab decomposition

requires Θ(n2) space.
● If you’re clever with your preprocessing, you

can construct a slab decomposition in time
O(n log n) + O(S), where S is the number of
fragments.

● Question: Can we do better?
Preprocessing

Time
Query
Time

Space
Usage

Test All Faces O(n log n) O(n) O(n)
Slab

Decomposition O(n2) O(log n) O(n2)

AX
AB

AX
BX
BC

AX
BX
CX
CD

AX
BX
CX
DX
DE

AX
BX
CX
DX
EX
EF

AX
BX
CX
DX
EX
FX
FG

AX
BX
CX
DX
EX
FX
GX
GH

AX
BX
CX
DX
EX
FX
GX
HX
HI

AX
BX
CX
DX
EX
FX
GX
HX
IX
IJ

A
B

C
D

E
F

G
H

I

X

J

Slab 1 Slab 2 Slab 3 Slab 4 Slab 5 Slab 6 Slab 7 Slab 8 Slab 9 Slab 10 Slab 11

Add AX
Add AB

Add BX
Add BC
Del AB

Add CX
Add CD
Del BC

Add DX
Add DE
Del CD

Add EX
Add EF
Del DE

Add FX
Add FG
Del EF

Add GX
Add GH
Del FG

Add HX
Add HI
Del GH

Add IX
Add IJ
Del HI

Del AX
Del BX

…
Del JX

A
B

C
D

E
F

G
H

I

X

J

Slab 1 Slab 2 Slab 3 Slab 4 Slab 5 Slab 6 Slab 7 Slab 8 Slab 9 Slab 10 Slab 11

 Add AX
Add AB

Add BX
Add BC
Del AB

Add CX
Add CD
Del BC

Add DX
Add DE
Del CD

Add EX
Add EF
Del DE

Add FX
Add FG
Del EF

Add GX
Add GH
Del FG

Add HX
Add HI
Del GH

Add IX
Add IJ
Del HI

Del AX
Del BX

…
Del JX

Slab 1 Slab 2 Slab 3 Slab 4 Slab 5 Slab 6 Slab 7 Slab 8 Slab 9 Slab 10 Slab 11

Saving Space
● Each segment is first added in some slab

and later removed from a slab.
● Total number of edits made across all

slabs: O(n).
● Question: Can we use O(n) storage for

our slabs by just encoding the deltas?

 Add AX
Add AB

Add BX
Add BC
Del AB

Add CX
Add CD
Del BC

Add DX
Add DE
Del CD

Add EX
Add EF
Del DE

Add FX
Add FG
Del EF

Add GX
Add GH
Del FG

Add HX
Add HI
Del GH

Add IX
Add IJ
Del HI

Del AX
Del BX

…
Del JX

Slab 1 Slab 2 Slab 3 Slab 4 Slab 5 Slab 6 Slab 7 Slab 8 Slab 9 Slab 10 Slab 11

Saving Space
● Just storing the deltas themselves breaks

our O(log n) query time – how can you
binary search over a group of segments if
you don’t know which ones are there?

● We’re going to need to change our
approach.

Abstracting Away
● We need to store several collections of sorted

sequences.
● Each sequence is formed by making some

number of edits to the previous one.
● We want to do so with space usage

proportional to the number of edits.
● Question: How do we do this?

Δ₁ Δ₂ Δ₃

Abstracting Away
● Reasonable Guess: Store our sorted sequences

as red/black trees to support fast edits (insertions
and removals).

● We’re now left with the following goal:
Modify a red/black tree so that, after making
changes, you’re left with two trees: the tree

you started with, plus the resulting tree.

Δ₁ Δ₂ Δ₃

20

5 35

0 15 25 40

3010

20

5 35

0 15 27 40

3010 25

20

5 35

0 15 25 40

3010

20

5 35

0 15 27 40

3010 25

Which nodes in the red/black tree can see the
changes that were just made?

20

5 35

0 15 25 40

3010

20

5 35

0 15 27 40

3010 25

Idea: Keep the old tree around. Clone nodes
that can see a part of the tree that changed.

20

35

27

25

20

5 35

0 25

3010

4015

Idea: Keep the old tree around. Clone nodes
that can see a part of the tree that changed.

20

35

27

25

20

5 35

0 25

10

15

30

40

Idea: Keep the old tree around. Clone nodes
that can see a part of the tree that changed.

20

35

25

20

35

27

25 30

40

5

0

10

15

Idea: Keep the old tree around. Clone nodes
that can see a part of the tree that changed.

Purely Functional Red/Black Trees
● A purely functional red/black tree (PFRBT) is a BST

where nodes cannot be modified after they’re created.
● Operations that would normally mutate the tree instead

create new nodes representing the changed parts and share
some of the original tree structure.

● The overall shape of the forest of trees is a DAG where each
node and its descendants form a red/black tree.

20

35

27

25

20

5 35

0 25

3010

4015

Purely Functional Red/Black Trees
● An insertion or

deletion on PFRBTs
can be done in time
O(log n) and creates
Θ(log n) new nodes.

● Proof idea: We only
touch nodes on the
access path, plus
children of nodes on
the access path.

20

5 35

0 15 27 40

3010 25

Purely Functional Red/Black Trees
● An insertion or

deletion on PFRBTs
can be done in time
O(log n) and creates
Θ(log n) new nodes.

● Proof idea: We only
touch nodes on the
access path, plus
children of nodes on
the access path.

20

5 35

0 15 27 40

3010 25 45

Functional Slabs
● Idea: Use the slab

decomposition, storing slabs
as PFRBTs.

● Each line segment is added
into some slab, then
removed from some later
slab.

● Total number of insertions
and deletions: O(n).

● Time cost per insertion or
deletion: O(log n).

● Space cost per insertion or
deletion: O(log n).

● Total time and space for
preprocessing: O(n log n).

The Story So Far
● Using PFRBTs gives us markedly better worst-case

preprocessing and space costs while preserving queries.
● Our space usage is O(n log n), which is realizable in the

worst case.
● Just storing the deltas themselves requires space O(n).
● Question: Can we do better?

Preprocessing
Time

Query
Time

Space
Usage

Test All Faces O(n log n) O(n) O(n)
Slab

Decomposition O(n2) O(log n) O(n2)
Slabs With

PFRBTs O(n log n) O(log n) O(n log n)

20

5 35

0 15 27 40

3010 25

● We are currently
using O(n log n)
space. We want to
use O(n) space.
Where is the extra
log factor from?

● Observation:
Inserting into a
PFRBT copies a full
path of size O(log n)
after each operation,
but in many cases
only O(1) nodes are
updated.

Saving Space in PFRBTs

20

5 35

0 15 27 40

3010 25 45

● We are currently
using O(n log n)
space. We want to
use O(n) space.
Where is the extra
log factor from?

● Observation:
Inserting into a
PFRBT copies a full
path of size O(log n)
after each operation,
but in many cases
only O(1) nodes are
updated.

Saving Space in PFRBTs

● Fact: The amortized number of modifications
made to a red/black tree after an insert or remove
operation is O(1).

● In other words, a series of n operations on a
red/black tree never makes more than O(n) total
edits to the nodes in that tree.

● Goal: Store trees such that
● each operation still lets us access past versions

of the tree, but
● the space usage is proportional to the number

of edits made to the data structure.
● Question: Is this possible?

Saving Space

● Fact: The amortized number of modifications
made to a red/black tree after an insert or remove
operation is O(1).

● In other words, a series of n operations on a
red/black tree never makes more than O(n) total
edits to the nodes in that tree.

● Goal: Store trees such that
● each operation still lets us access past versions

of the tree, but
● the space usage is proportional to the number

of edits made to the data structure.
● Question: Is this possible?

Saving Space

Where would it make sense to store
the information about the edits?

Idea: Write the edit down at the
place that you make it.

Journal Trees
● A journal tree is a BST where each field in each node is replaced by a

journal describing its values over time.
● Each operation has an timestamp of when it happened.

root

t = 0

t = 0

Journal Trees
● A journal tree is a BST where each field in each node is replaced by a

journal describing its values over time.
● Each operation has an timestamp of when it happened.

left

t = 1

right

t = 1

root

t = 1

t = 1t = 0

Journal Trees
● A journal tree is a BST where each field in each node is replaced by a

journal describing its values over time.
● Each operation has an timestamp of when it happened.

left right

t = 1

root

t = 1

t = 2

left

t = 2

right

t = 2

t = 1 t = 1t = 0

Journal Trees
● A journal tree is a BST where each field in each node is replaced by a

journal describing its values over time.
● Each operation has an timestamp of when it happened.

left rightroot

t = 1

t = 2

left

t = 2

right

t = 2

left

t = 3

right

t = 3

t = 3

t = 1 t = 1t = 0

t = 3

Journal Trees
● A journal tree is a BST where each field in each node is replaced by a

journal describing its values over time.
● Each operation has an timestamp of when it happened.

left rightroot

t = 1

t = 2

left

t = 2

right

t = 2

left right

t = 3

t = 3

left

t = 4

right

t = 4

t = 4

t = 0

t = 3

t = 1t=2t=1

left

t = 2

right

t = 2

Journal Trees
● A journal tree is a BST where each field in each node is replaced by a

journal describing its values over time.
● Each operation has an timestamp of when it happened.

left rightroot

t = 1

t=5

left right

t = 3

t = 3

left

t = 4

right

t = 4

t = 4

t = 1

Journal Trees
● A journal tree is a BST where each field in each node is replaced by a

journal describing its values over time.
● Each operation has an timestamp of when it happened.

left

t=2

right

t = 1t=5

left

t = 2

right

t = 2

left

t = 3

right

t = 3

t = 3

left

t = 4

right

t = 4

t = 4

t=1

Time t = 0

root

t = 0

t = 3t=2 t=5t = 0

Journal Trees
● A journal tree is a BST where each field in each node is replaced by a

journal describing its values over time.
● Each operation has an timestamp of when it happened.

left

t = 2

right

t = 2

left

t = 3

right

t = 3

left

t = 4

right

t = 4

t = 4

Time t = 1

root

t = 1

left right

t = 1t=1

t=1 t = 3t=5t = 0

Journal Trees
● A journal tree is a BST where each field in each node is replaced by a

journal describing its values over time.
● Each operation has an timestamp of when it happened.

left

t = 3

right

t = 3

left

t = 4

right

t = 4

t = 4

Time t = 2

root

t = 1

left right

t = 1t=2

left

t = 2

right

t = 2

t = 1

t = 4

t=1 t=5t = 0

Journal Trees
● A journal tree is a BST where each field in each node is replaced by a

journal describing its values over time.
● Each operation has an timestamp of when it happened.

left

t = 4

right

t = 4Time t = 3

root

t = 1

left right

t=2

left

t = 2

right

t = 2

t = 3

left

t = 3

right

t = 3

t = 3

t = 1t=1 t=5t = 0

Journal Trees
● A journal tree is a BST where each field in each node is replaced by a

journal describing its values over time.
● Each operation has an timestamp of when it happened.

Time t = 4

root

t = 1

left right

t=2

left

t = 2

right

t = 2

t = 3

left right

t = 3t = 4

left

t = 4

right

t = 4

t=2

left

t = 2

right

t = 2 t = 3

t = 1t=1t = 0

Journal Trees
● A journal tree is a BST where each field in each node is replaced by a

journal describing its values over time.
● Each operation has an timestamp of when it happened.

Time t = 5

root

t = 1

left right

t = 3

left right

t = 3t = 4

left

t = 4

right

t = 4

t=5

Journal Trees
● Space usage: O(m), where m

is the number of updates
made to the data structure.

● Each insertion and deletion
takes (asymptotically) the
same amount of time as
before.
● Use the most recent timestamps

to see the current version of the
tree, then write down any
changes made.

● Using a red/black tree, any
sequence of n operations
requires only O(n) storage,
since only O(n) updates are
made.

t=2

left

t=2

right

t=2 t=3

t=1t=1

t = 0

root

t = 1

left right

t=3

left right

t = 3t=4

left

t = 4

right

t = 4

t=5

Journal Trees
● Suppose you’re given a

time t and a key k. What is
the cost of seeing whether
k is in the tree at time t?

● At each node, we have to
do a binary search over
timestamps whenever we
move left or right.
● Cost of each binary search:

O(log n).
● Number of binary searches:

O(log n).
● Total cost: O(log2 n).

t=2

left

t=2

right

t=2 t=3

t=1t=1

t = 0

root

t = 1

left right

t=3

left right

t = 3t=4

left

t = 4

right

t = 4

t=5

Formulate a
hypothesis! 😃

Journal Trees
● Suppose you’re given a

time t and a key k. What is
the cost of seeing whether
k is in the tree at time t?

● At each node, we have to
do a binary search over
timestamps whenever we
move left or right.
● Cost of each binary search:

O(log n).
● Number of binary searches:

O(log n).
● Total cost: O(log2 n).

t=2

left

t=2

right

t=2 t=3

t=1t=1

t = 0

root

t = 1

left right

t=3

left right

t = 3t=4

left

t = 4

right

t = 4

t=5

Discuss with your
neighbors! 😃

Journal Trees
● Suppose you’re given a

time t and a key k. What is
the cost of seeing whether
k is in the tree at time t?

● At each node, we have to
do a binary search over
timestamps whenever we
move left or right.
● Cost of each binary search:

O(log t) = O(log n).
● Number of binary searches:

O(log t) = O(log n).
● Total cost: O(log2 n).

t=2

left

t=2

right

t=2 t=3

t=1t=1

t = 0

root

t = 1

left right

t=3

left right

t = 3t=4

left

t = 4

right

t = 4

t=5

The Story So Far
● We’ve gotten down to linear space, but at a

price – our lookups are now a bit slower than
before.

● Is there some way to restore the query time?
Preprocessing

Time
Query
Time

Space
Usage

Test All Faces O(n log n) O(n) O(n)
Slab

Decomposition O(n2) O(log n) O(n2)
Slabs With

PFRBTs O(n log n) O(log n) O(n log n)
Slabs With

Journal RBTs O(n log n) O(log2 n) O(n)

O(n log n)

O(n log n)

Two Extremes
● With a purely functional tree, each node sees only one version

of itself, but we copy lots of extra nodes on each operation.
● With a journal tree, we never copy nodes, but each node in the

tree sees all versions of itself.
● Question: Is there some way to get the best of both worlds?

Preprocessing
Time

Test All Faces O(n log n) O(n) O(n)
Slab

Decomposition O(n2) O(log n) O(n2)
Slabs With

PFRBTs O(log n) O(n log n)
Slabs With

Journal RBTs O(log2 n) O(n)

Query
Time

Space
Usage

t=0root

Fat Node Trees
● Idea: Use journals of

size 2. If a node runs out
of journal space, clone
the node and
(recursively) update the
parent to point to the
copy.

t=0 t=1root

Fat Node Trees
● Idea: Use journals of

size 2. If a node runs out
of journal space, clone
the node and
(recursively) update the
parent to point to the
copy.

t=1

t=1

t=0 t=1root

Fat Node Trees
● Idea: Use journals of

size 2. If a node runs out
of journal space, clone
the node and
(recursively) update the
parent to point to the
copy.

t=2

t=2

t=1

t=0 t=1root

Fat Node Trees
● Idea: Use journals of

size 2. If a node runs out
of journal space, clone
the node and
(recursively) update the
parent to point to the
copy.

t=2

t=2 t=3

t=3

t=1

t=1 t=2

t=0root

Fat Node Trees
● Idea: Use journals of

size 2. If a node runs out
of journal space, clone
the node and
(recursively) update the
parent to point to the
copy.

t=2 t=3

t=3

t=3

t=3

t=1

t=1 t=2

t=0root

Fat Node Trees
● Idea: Use journals of

size 2. If a node runs out
of journal space, clone
the node and
(recursively) update the
parent to point to the
copy.

t=2 t=4

t=3

t=3

t=4

t=3

t=4

t=1

t=1 t=2

t=0root

Fat Node Trees
● Idea: Use journals of

size 2. If a node runs out
of journal space, clone
the node and
(recursively) update the
parent to point to the
copy.

t=2 t=4

t=3

t=3

t=5

t=5

t=3

t=4

t=1

t=1 t=2

t=0root

Fat Node Trees
● Idea: Use journals of

size 2. If a node runs out
of journal space, clone
the node and
(recursively) update the
parent to point to the
copy.

t=2 t=4

t=3

t=3

t=5

t=5 t=6

t=6

t=3

t=4

t=1

t=1 t=2

t=0root

Fat Node Trees
● Idea: Use journals of

size 2. If a node runs out
of journal space, clone
the node and
(recursively) update the
parent to point to the
copy.

t=2 t=4

t=3

t=3

t=5

t=5 t=6

t=6

t=6

t=4

t=3 t=4

t=5

t=3

t=1

t=1 t=2

t=0root

Fat Node Trees
● Idea: Use journals of

size 2. If a node runs out
of journal space, clone
the node and
(recursively) update the
parent to point to the
copy.

t=2

t=6

t=3

t=5 t=6

t=6

t=6

t=4

t=3 t=4

t=5

t=3

t=1

t=1 t=2

t=0root

Fat Node Trees
● Idea: Use journals of

size 2. If a node runs out
of journal space, clone
the node and
(recursively) update the
parent to point to the
copy.

● To see the version at
time t, binary search
over the version number
at the root, then use the
normal journal idea to
find the node you want.

t=2

t=6

t=3

t=5 t=6

t=6

t=6

t=3

t=4

t=4

t=5

t=3

t=1

t=1 t=2

Fat Node Trees
● Idea: Use journals of

size 2. If a node runs out
of journal space, clone
the node and
(recursively) update the
parent to point to the
copy.

● To see the version at
time t, binary search
over the version number
at the root, then use the
normal journal idea to
find the node you want.

t=2

t=6

t=3

t=5 t=6

t=6

t=6

t = 0

t=0root

t=3

t=4

t=2

t=4

t=5

t=3

Fat Node Trees
● Idea: Use journals of

size 2. If a node runs out
of journal space, clone
the node and
(recursively) update the
parent to point to the
copy.

● To see the version at
time t, binary search
over the version number
at the root, then use the
normal journal idea to
find the node you want.

t=2

t=6

t=3

t=5 t=6

t=6

t=6

t = 1

t=0root t=1

t=1

t=3

t=4

t=1

t=4

t=5

t=3

Fat Node Trees
● Idea: Use journals of

size 2. If a node runs out
of journal space, clone
the node and
(recursively) update the
parent to point to the
copy.

● To see the version at
time t, binary search
over the version number
at the root, then use the
normal journal idea to
find the node you want.

t=6

t=3

t=5 t=6

t=6

t=6

t = 2

t=0root t=1

t=2

t=2

t=4

t=1

t=2t=1

t=4

t=5

Fat Node Trees
● Idea: Use journals of

size 2. If a node runs out
of journal space, clone
the node and
(recursively) update the
parent to point to the
copy.

● To see the version at
time t, binary search
over the version number
at the root, then use the
normal journal idea to
find the node you want.

t=6

t=5 t=6

t=6

t=6

t = 3

t=0root

t=2

t=3

t=3

t=3

t=5

t=3

t=1

t=2t=1

Fat Node Trees
● Idea: Use journals of

size 2. If a node runs out
of journal space, clone
the node and
(recursively) update the
parent to point to the
copy.

● To see the version at
time t, binary search
over the version number
at the root, then use the
normal journal idea to
find the node you want.

t=6

t=5 t=6

t=6

t=6

t = 4

t=0root

t=2

t=3

t=3

t=4

t=4

t=4

t=3

t=1

t=2t=1

Fat Node Trees
● Idea: Use journals of

size 2. If a node runs out
of journal space, clone
the node and
(recursively) update the
parent to point to the
copy.

● To see the version at
time t, binary search
over the version number
at the root, then use the
normal journal idea to
find the node you want.

t=6

t=6

t=6

t=6

t = 5

t=0root

t=2

t=3

t=3

t=4

t=5

t=5

t=4 t=5

t=3 t=4

t=2 t=3

t=1

t=1

Fat Node Trees
● Idea: Use journals of

size 2. If a node runs out
of journal space, clone
the node and
(recursively) update the
parent to point to the
copy.

● To see the version at
time t, binary search
over the version number
at the root, then use the
normal journal idea to
find the node you want.

t = 6

t=0root

t=2

t=3

t=5

t=6

t=6

t=6

t=6

t=4 t=5

t=3 t=4

t=2 t=3

t=1

t=1

Fat Node Trees
● Intuition: Use

journaling to keep the
space usage low, but
don’t let the journals get
so large they slow down
lookups.

● Intuition: Use path
copying infrequently
enough to not copy too
many nodes, but enough
to keep lookups fast.

t=0root

t=2

t=3

t=5

t=6

t=6

t=6

t=6

t=4 t=5

t=3 t=4

t=2 t=3

t=1

t=1

Fat Node Queries
● The cost of a lookup

in a fat node tree is
at most an O(1)
factor slower than a
regular lookup.
● Have to potentially

check one of two
journal entries per
node.

● Cost of a lookup in a
fat node red/black
tree: O(log n).

t=0root

t=2

t=3

t=5

t=6

t=6

t=6

t=6

Fat Node Updates
● Most of the time, updates

to a fat node red/black
tree will not require any
nodes to be copied.

● Every now and then, we
have to copy a node one
level above us.

● Even more rarely, we
have to copy a node two
levels above us.

● Claim: The amortized
work to do an update in a
fat node red/black tree is
O(1).

t=4 t=5

t=3 t=4

t=2 t=3

t=1

t=1

t=0root

t=2

t=3

t=5

t=6

t=6

t=6

t=6

Fat Node Updates
● Define Φ to be the number of

nodes with two journal entries
reachable from the most recent
timestamp.

● Suppose we copy k nodes during
an update, for a total of Θ(k) work.

● If we copy a chain of k nodes, then
● each of those k nodes had two journal

entries before we started;
● each of those k nodes is no longer

reachable from the most recent
timestamp;

● each newly created node has only
one journal entry; and

● the node above the chain has one
more journal entry added.

● So ΔΦ = 1 – k, and the -k cancels
with the Θ(k) work for an
amortized update cost of O(1).

t=4 t=5

t=3 t=4

t=2 t=3

t=1

t=1

t=0root

t=2

t=3

t=5

t=6

t=6

t=6

t=6

The Final Scorecard

Preprocessing
Time

Query
Time

Space
Usage

Test All Faces O(n log n) O(n) O(n)
Slab

Decomposition O(n2) O(log n) O(n2)
Slabs With

PFRBTs O(n log n) O(log n) O(n log n)
Slabs With

Journal RBTs O(n log n) O(log2 n) O(n)
Slabs With

Fat Node RBTs O(n log n) O(log n) O(n)

● We’ve come a long way from where we started!
● Pretty much all the work went into efficiently sharing

data across different versions of data structures.

More to Explore

Planar Point Location
● The monotone chains method breaks the

planar subdivision apart into a series of left-to-
right chains, then uses clever binary searches to
meet the same time bounds as here.

● Kirkpatrick’s algorithm works with fully-
triangulated planar subdivisions. It repeatedly
removes vertices to simplify the triangulation,
giving a recursive point location algorithm.

● The random trapezoidal method breaks space
apart into trapezoids in a manner similar to slabs.
Using randomization, the query cost and space
usage can be shown to be low.

Persistent Data Structures
● The FPRBT, journal RBT, and fat node RBT are

special cases of persistent data structures,
where operations produce both a “before” and
“after” version.

● The three methods shown here (purely functional,
journaling, and fat nodes) generalize to many
other data structures.

● With some more advanced techniques, you can
design retroactive data structures, where
operations can be sent back in time.

● There are also confluent data structures, where
multiple timelines can be merged together.

Concluding Thoughts

Where We’ve Been
● What a whirlwind tour of data structures this has been!

RMQ · Red/Black Trees · B-Trees · Tree
Augmentation · Count-Min Sketches · Count

Sketches · HyperLogLog · Cuckoo Hashing · Two-
Stack Queues · Scapegoat Trees · Tournament

Heaps · Abdication Heaps · Tries · Suffix Trees ·
Suffix Arrays · Succinct Rank Queries · x-Fast Tries

· y-Fast Tries · Word-Level Parallelism · Sardine
Trees · Fusion Tress · Planar Point Location

● We’ve covered topics that span from the early days of
computing through developments of the past few years.

Where We’ve Been
● Over the course of the quarter, we’ve seen some beautiful

problem-solving strategies:
Solve All Possible Small Problems

Use Isometries
Replicate to Boost Confidence

Harness Properties of Random Graphs
Add Wiggle Room and Defer Cleanup

Harness Mechanical and Operational Perspectives
Break Big Problems into Small Blocks
Find Parallelism in Unexpected Places

Make Every Bit Count
● These approaches have applications far beyond data structure

design.

What Comes Next
● There’s so much more to explore in the world of data structures!

Querying a Graph as it Changes · Persistent Data Structures
· Data Structures for Parallel Architectures · Harnessing
Caches Without Knowing Their Sizes · The Quest for the
Best BST · The Quest for the Best Hash Table · Finding
Lower Bounds on Data Structure Performance · Data

Structures for Objects in Motion · Approximate Maps and
Sets · Self-Adjusting Data Structures · Data Structures for
Planar Graphs · Data Structures for Finding all Points in a
Region · Data Structures for Nearest-Neighbor Searching ·

Data Structures for Text Editors · Data Structures for
Functional Programming Languages · Data Structures from
Number Systems · Data Structures for High-Performance

Databases · …
● There’s easily enough material here for a CS166 sequel. Let me

know if you’d be interested in that!

What Comes Next
● Resources for the Future:

● Erik Demaine’s Advanced Data Structures
course at MIT.

● Jeff Erickson’s Advanced Data Structures
course at UIUC.

● David Eppstein’s Data Structures course at
UC Irvine.

● Conferences to Watch:
STOC SODA FOCS

● And you can always ping me directly!

Keep asking if we can improve on
our existing approaches.

Stay curious and maintain
your sense of wonder.

Keep in touch! Best of
luck going forward.

Appendix: Associating Faces to Edges

Goal: Given a planar
subdivision, determine

its faces.

Idea: Each edge has a
face on either side. Find
the faces associated on
each side of each edge.

Split each edge into
two half-edges

running in opposite
directions.

Revised Goal:
Partition the half-

edges into cycles that
define each face.

Internal faces are
bounded by

anticlockwise loops.

The outer face is
bounded by a

clockwise loop.

Our initial group of
half-edges isn’t nicely
oriented in a way that

defines the faces.

Goal: Convert an
arbitrary collection of
half-edges into loops

bounding faces.

XC

B

A

D

Connecting Half-Edges
● Pick at a blue half-edge

entering node X.
● Imagine you enter node

X via that half-edge.
● Which orange half-

edge leaving X should
you follow?

● Answer: The one
pointing at the next
neighbor, moving
counterclockwise
around X.

XC

B

A

D

Connecting Half-Edges
● For each node v, sort the

nodes around it in
anticlockwise order.

● For each neighbor u, chain
the half-edge (v, u) to be
followed by the half-edge
(u, x), where x is the next
node after v, ordered
counterclockwise.

● Time: O(e log e) work per
node, where e is its
number of neighbors.
Summing over all nodes
gives a runtime of
O(n log n).

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131

