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Outline for Today
● Plane Graphs

● Subdividing 2D space into regions.
● Point Location

● Where are you in 2D space?
● Slab Decomposition

● Breaking space apart for fast searches.
● Persistent Red/Black Trees

● Sharing space across trees.



  

Plane Graphs



  



  



  

Plane Graphs
● A plane graph is a 

drawing of a graph in 
2D space such that
● all edges are 

represented as simple 
curves, and

● excluding their 
endpoints, no two curves 
touch.

● Plane graphs are a 
natural way of encoding 
borders on a map or 
regions in an image. 



  

Plane Graphs
● For most of today, we’ll be 

talking about straight-line 
plane graphs, plane graphs 
where each edge is a straight 
line.

● Fáry’s theorem says that every 
plane graph can be redrawn as 
a straight line plane graph.
● This is a beautiful proof by 

induction; do a quick Google 
search for more details.

● Many of the techniques from 
today work in the more general 
case of arbitrary curves – it’s a 
good exercise to think about 
how to modify them.



  



  

Plane Graphs
● A plane graph 

subdivides 2D space into 
regions called faces, 
spaces demarcated by 
edges.

● The outer region of 
space outside the plane 
graph is considered a 
face as well.

● When working with 
plane graphs, often the 
faces are more 
important than the 
vertices.



  

A Key Theorem
● Theorem: A plane graph 

with n nodes has O(n) 
edges and O(n) faces.

● This is a consequence of 
Euler’s theorem, which 
relates the number of 
edges, vertices, and faces 
of a plane graph.

● This means that plane 
graphs are sparse.

● We will typically use n, 
the number of nodes, as a 
measure of the size of the 
input.



  

The Story So Far
● A plane graph is a drawing of a graph in 

the plane. We’ll assume we’re working 
with straight-line drawings today.

● A plane graph with n nodes has O(n) 
edges (they’re sparse).

● Plane graphs decompose the plane into 
O(n) faces, including the infinite external 
face.



  

Planar Subdivisions



  



  

This edge has the
same face on both

sides.

Same here.



  

Planar Subdivisions
● A planar 

subdivision is a 
plane graph where 
each edge borders 
two different 
faces.

● Equivalently, a 
planar subdivision 
is a plane graph 
with no bridges.



  

Planar Point Location



  

Planar Point Location
● The planar point location 

problem is the following:
Preprocess a planar 

subdivision to efficiently 
answer queries of the 

form “which face is point 
p in?”

● It’s yet another place where 
we’d expect to get a 
tradeoff between 
preprocessing time and 
runtime.

● Question: How quickly can 
we solve this problem?



  

A Naive Solution
● What would the “no 

preprocessing” solution 
to this problem look 
like?

● Basic idea: Iterate over 
all closed faces and see 
if the point is in any of 
them. If so, return it. If 
not, return the external 
face.

● Question: How do you 
check whether a point is 
contained within a face?



  

Point-In-Face Queries
● Faces in planar 

subdivisions can 
have irregular 
shapes.

● Simply testing if a 
point is in such a 
polygon seems 
challenging!

● However, there’s a 
really clever way to 
solve this problem.

“Picasso Camel”

“Jack-O-Lantern”



  

Notice a pattern in the
number of intersections?

Formulate a
hypothesis! 😃



  

Notice a pattern in the
number of intersections?

Discuss with your
neighbors! 😃



  

Each line crossed toggles
whether we’re outside or

inside the polygon.

Suppose we cross k line
segments. If k is even,
the point is outside. If

k is odd, it’s inside.



  

Each line crossed toggles
whether we’re outside or

inside the polygon.

Suppose we cross k line
segments. If k is even,
the point is outside. If

k is odd, it’s inside.



  

A Naive Solution
● For each polygon, count the number of edges that 

intersect a horizontal line passing through the 
query point.
● This intersection test boils down to some linear algebra 

and can be done in time O(1).
● Each edge is processed at most twice, once for 

each face it borders.
● Total query time: O(n).
● Question: Can we do better?

Preprocessing
Time

Query
Time

Space
Usage

Test All Faces O(n log n) O(n) O(n)



  

Slab Decomposition



  

Observation 1: Determining
which face we’re in can be
done by finding which edge

is directly above us.



  

Observation 2: Nudging a
point left or right usually

doesn’t change which
segment is above it. That can
only change if we cross the x

coordinate of a vertex.



  



  

This region is
called a slab.

Within a slab,
we can order
line segments

from top to
bottom by the

“is above”
relation.



  



  

Binary search over x
coordinates to find
which slab we’re in.

Time: O(log n).

Binary search across
the line segments to

find the one above us.

Time: O(log n).

Total time: O(log n).



  

Slab Decomposition
● Idea: Draw a vertical line 

through each line segment 
endpoint to cut the space 
into slabs.

● Each slab consists of some 
number of line segments, 
which can be ordered from 
top to bottom.

● We can then solve point 
location in time O(log n) 
by binary searching in the 
x direction to find which 
slab we’re in, then binary 
searching in the y direction 
to see which face we’re in.



  

Slab Decomposition
● Some remaining 

questions:
● How do you 

construct the slabs?
● How much 

preprocessing time 
will this take?

● How much space is 
needed?

● Let’s address each 
of these questions in 
turn.



  

A
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F

H
K

J

ID

E
G

The slab to the left of all
polygons has no line

segments in it.

Slab 1



  

A

C

B

F

H
K

J

ID

E
G

AD
AC
AB

Slab 1 Slab 2

A

D

C

B

Sort all line segments
emanating from A

from top to bottom,
and add them into

the slab.



  

A

C

B

F

H
K

J

ID

E
G

AD
AC
AB

Slab 1 Slab 2 Slab 3

Many of the line segments from
before are still in this slab.

Some of the line segments from
before are no longer in this slab.

Some new line segments will be
added to this slab.



  

A

C

B

F

H
K

J

ID

E
G

AD
AC
AB

AD
AC

Slab 1 Slab 2 Slab 3

A

F

C

B

Any line segment ending in
B needs to be removed.



  

A
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B

F

H
K
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ID

E
G

AD
AC
AB

AD
AC
BC
BF

Slab 1 Slab 2 Slab 3

A

F

C

B

Any line segment ending in
B needs to be removed.

Any line segment starting
at B needs to be added in

sorted order.
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Slab 1 Slab 2 Slab 3
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ID

E
G

AD
AC
AB

AD
AC
BC
BF

Slab 1 Slab 2 Slab 3

AD
AC
BC
BF

Slab 4

C

B
H

GA

Copy the
previous slab.

Remove all
segments

ending at C.

Add all segments
starting at C,

in sorted order.



  

A

C

B

F

H
K

J

ID

E
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AB

AD
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BF

Slab 1 Slab 2 Slab 3

AD
BF

Slab 4

C

B
H

GA

Copy the
previous slab.

Remove all
segments

ending at C.

Add all segments
starting at C,

in sorted order.
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AD
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AB
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BF

Slab 1 Slab 2 Slab 3

AD
CG
CH
BF

Slab 4

C

B
H

GA

Copy the
previous slab.

Remove all
segments

ending at C.

Add all segments
starting at C,

in sorted order.



  

A

C

B

F
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J
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E
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AD
AC
AB

AD
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BF

AD
CG
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BF

DI
DE
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CH
BF

DI
EG
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FH

DI
GI
GK
HK

IJ
GK
HK

Slab 1 Slab 2 Slab 3 Slab 4 Slab 5 Slab 6 Slab 7 Slab 8 Slab 9



  

Building Slabs
● Sort vertices from left to right, grouping 

vertices with equal x coordinates together.
● Create an initial, empty slab.
● For each distinct x coordinate, from left to right:

● Copy the previous slab.
● Delete all segments that end at this x coordinate.
● Add all segments that start at this x coordinate, 

keeping segments sorted from top to bottom.
● Question: How fast is this algorithm?



  

Observation: These
vertical stripes cut line

segments into
fragments that run
from the start of a

slab to the end.
 

Each line segment
appears in k slabs,

where k is the number
of fragments it’s cut

into.

Claim: There are
families of planar

subdivisions with O(n)
edges that produce Θ(n2)

fragments, and this
is a tight upper bound.
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DX
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DX
EX
FX
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IX
IJ

Slab 1 Slab 2 Slab 3 Slab 4 Slab 5 Slab 6 Slab 7 Slab 8 Slab 9 Slab 10 Slab 11



  

Slabs: The Drawback
● In the worst case, a slab decomposition 

requires Θ(n2) space.
● If you’re clever with your preprocessing, you 

can construct a slab decomposition in time 
O(n log n) + O(S), where S is the number of 
fragments.

● Question: Can we do better?
Preprocessing

Time
Query
Time

Space
Usage

Test All Faces O(n log n) O(n) O(n)
Slab

Decomposition O(n2) O(log n) O(n2)



  

AX
AB
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BX
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BX
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CD
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Add AX
Add AB

Add BX
Add BC
Del AB

Add CX
Add CD
Del BC

Add DX
Add DE
Del CD

Add EX
Add EF
Del DE

Add FX
Add FG
Del EF

Add GX
Add GH
Del FG

Add HX
Add HI
Del GH

Add IX
Add IJ
Del HI

Del AX
Del BX

…
Del JX

A
B

C
D

E
F

G
H

I

X

J

Slab 1 Slab 2 Slab 3 Slab 4 Slab 5 Slab 6 Slab 7 Slab 8 Slab 9 Slab 10 Slab 11



  Add AX
Add AB

Add BX
Add BC
Del AB

Add CX
Add CD
Del BC

Add DX
Add DE
Del CD

Add EX
Add EF
Del DE

Add FX
Add FG
Del EF

Add GX
Add GH
Del FG

Add HX
Add HI
Del GH

Add IX
Add IJ
Del HI

Del AX
Del BX

…
Del JX

Slab 1 Slab 2 Slab 3 Slab 4 Slab 5 Slab 6 Slab 7 Slab 8 Slab 9 Slab 10 Slab 11

Saving Space
● Each segment is first added in some slab 

and later removed from a slab.
● Total number of edits made across all 

slabs: O(n).
● Question: Can we use O(n) storage for 

our slabs by just encoding the deltas?



  Add AX
Add AB

Add BX
Add BC
Del AB

Add CX
Add CD
Del BC

Add DX
Add DE
Del CD

Add EX
Add EF
Del DE

Add FX
Add FG
Del EF

Add GX
Add GH
Del FG

Add HX
Add HI
Del GH

Add IX
Add IJ
Del HI

Del AX
Del BX

…
Del JX

Slab 1 Slab 2 Slab 3 Slab 4 Slab 5 Slab 6 Slab 7 Slab 8 Slab 9 Slab 10 Slab 11

Saving Space
● Just storing the deltas themselves breaks 

our O(log n) query time – how can you 
binary search over a group of segments if 
you don’t know which ones are there?

● We’re going to need to change our 
approach.



  

Abstracting Away
● We need to store several collections of sorted 

sequences.
● Each sequence is formed by making some 

number of edits to the previous one.
● We want to do so with space usage 

proportional to the number of edits.
● Question: How do we do this?

Δ₁ Δ₂ Δ₃



  

Abstracting Away
● Reasonable Guess: Store our sorted sequences 

as red/black trees to support fast edits (insertions 
and removals).

● We’re now left with the following goal:
Modify a red/black tree so that, after making 
changes, you’re left with two trees: the tree 

you started with, plus the resulting tree.

Δ₁ Δ₂ Δ₃
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Which nodes in the red/black tree can see the
changes that were just made?
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Idea: Keep the old tree around. Clone nodes
that can see a part of the tree that changed.
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Idea: Keep the old tree around. Clone nodes
that can see a part of the tree that changed.
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Idea: Keep the old tree around. Clone nodes
that can see a part of the tree that changed.
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Idea: Keep the old tree around. Clone nodes
that can see a part of the tree that changed.



  

Purely Functional Red/Black Trees
● A purely functional red/black tree (PFRBT) is a BST 

where nodes cannot be modified after they’re created.
● Operations that would normally mutate the tree instead 

create new nodes representing the changed parts and share 
some of the original tree structure.

● The overall shape of the forest of trees is a DAG where each 
node and its descendants form a red/black tree.
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20

5 35

0 25

3010

4015



  

Purely Functional Red/Black Trees
● An insertion or 

deletion on PFRBTs 
can be done in time 
O(log n) and creates 
Θ(log n) new nodes.

● Proof idea: We only 
touch nodes on the 
access path, plus 
children of nodes on 
the access path.
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Purely Functional Red/Black Trees
● An insertion or 

deletion on PFRBTs 
can be done in time 
O(log n) and creates 
Θ(log n) new nodes.

● Proof idea: We only 
touch nodes on the 
access path, plus 
children of nodes on 
the access path.
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Functional Slabs
● Idea: Use the slab 

decomposition, storing slabs 
as PFRBTs.

● Each line segment is added 
into some slab, then 
removed from some later 
slab.

● Total number of insertions 
and deletions: O(n).

● Time cost per insertion or 
deletion: O(log n).

● Space cost per insertion or 
deletion: O(log n).

● Total time and space for 
preprocessing: O(n log n).



  

The Story So Far
● Using PFRBTs gives us markedly better worst-case 

preprocessing and space costs while preserving queries.
● Our space usage is O(n log n), which is realizable in the 

worst case.
● Just storing the deltas themselves requires space O(n).
● Question: Can we do better?

Preprocessing
Time

Query
Time

Space
Usage

Test All Faces O(n log n) O(n) O(n)
Slab

Decomposition O(n2) O(log n) O(n2)
Slabs With

PFRBTs O(n log n) O(log n) O(n log n)
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● We are currently 
using O(n log n) 
space. We want to 
use O(n) space. 
Where is the extra 
log factor from?

● Observation: 
Inserting into a 
PFRBT copies a full 
path of size O(log n) 
after each operation, 
but in many cases 
only O(1) nodes are 
updated.

Saving Space in PFRBTs
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● We are currently 
using O(n log n) 
space. We want to 
use O(n) space. 
Where is the extra 
log factor from?

● Observation: 
Inserting into a 
PFRBT copies a full 
path of size O(log n) 
after each operation, 
but in many cases 
only O(1) nodes are 
updated.

Saving Space in PFRBTs



  

● Fact: The amortized number of modifications 
made to a red/black tree after an insert or remove 
operation is O(1).

● In other words, a series of n operations on a 
red/black tree never makes more than O(n) total 
edits to the nodes in that tree.

● Goal: Store trees such that
● each operation still lets us access past versions 

of the tree, but
● the space usage is proportional to the number 

of edits made to the data structure.
● Question: Is this possible?

Saving Space



  

● Fact: The amortized number of modifications 
made to a red/black tree after an insert or remove 
operation is O(1).

● In other words, a series of n operations on a 
red/black tree never makes more than O(n) total 
edits to the nodes in that tree.

● Goal: Store trees such that
● each operation still lets us access past versions 

of the tree, but
● the space usage is proportional to the number 

of edits made to the data structure.
● Question: Is this possible?

Saving Space

Where would it make sense to store
the information about the edits?

Idea: Write the edit down at the
place that you make it.



  

Journal Trees
● A journal tree is a BST where each field in each node is replaced by a 

journal describing its values over time.
● Each operation has an timestamp of when it happened.

root

t = 0



  

t = 0

Journal Trees
● A journal tree is a BST where each field in each node is replaced by a 

journal describing its values over time.
● Each operation has an timestamp of when it happened.

left

t = 1

right

t = 1

root

t = 1



  

t = 1t = 0

Journal Trees
● A journal tree is a BST where each field in each node is replaced by a 

journal describing its values over time.
● Each operation has an timestamp of when it happened.

left right

t = 1

root

t = 1

t = 2

left

t = 2

right

t = 2



  

t = 1 t = 1t = 0

Journal Trees
● A journal tree is a BST where each field in each node is replaced by a 

journal describing its values over time.
● Each operation has an timestamp of when it happened.

left rightroot
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t = 3

t = 3
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Journal Trees
● A journal tree is a BST where each field in each node is replaced by a 

journal describing its values over time.
● Each operation has an timestamp of when it happened.

left rightroot
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right
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left right
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left
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right

t = 4

t = 4
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Journal Trees
● A journal tree is a BST where each field in each node is replaced by a 

journal describing its values over time.
● Each operation has an timestamp of when it happened.
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Journal Trees
● A journal tree is a BST where each field in each node is replaced by a 

journal describing its values over time.
● Each operation has an timestamp of when it happened.
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Time t = 0
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Journal Trees
● A journal tree is a BST where each field in each node is replaced by a 

journal describing its values over time.
● Each operation has an timestamp of when it happened.
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Journal Trees
● A journal tree is a BST where each field in each node is replaced by a 

journal describing its values over time.
● Each operation has an timestamp of when it happened.
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Journal Trees
● A journal tree is a BST where each field in each node is replaced by a 

journal describing its values over time.
● Each operation has an timestamp of when it happened.
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Journal Trees
● A journal tree is a BST where each field in each node is replaced by a 

journal describing its values over time.
● Each operation has an timestamp of when it happened.
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Journal Trees
● A journal tree is a BST where each field in each node is replaced by a 

journal describing its values over time.
● Each operation has an timestamp of when it happened.

Time t = 5
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Journal Trees
● Space usage: O(m), where m 

is the number of updates 
made to the data structure.

● Each insertion and deletion 
takes (asymptotically) the 
same amount of time as 
before.
● Use the most recent timestamps 

to see the current version of the 
tree, then write down any 
changes made.

● Using a red/black tree, any 
sequence of n operations 
requires only O(n) storage, 
since only O(n) updates are 
made.

t=2

left
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Journal Trees
● Suppose you’re given a 

time t and a key k. What is 
the cost of seeing whether 
k is in the tree at time t?

● At each node, we have to 
do a binary search over 
timestamps whenever we 
move left or right.
● Cost of each binary search: 

O(log n).
● Number of binary searches: 

O(log n).
● Total cost: O(log2 n).
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left
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right

t=2 t=3
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t = 0

root

t = 1

left right

t=3

left right

t = 3t=4
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right

t = 4

t=5

Formulate a
hypothesis! 😃



  

Journal Trees
● Suppose you’re given a 

time t and a key k. What is 
the cost of seeing whether 
k is in the tree at time t?

● At each node, we have to 
do a binary search over 
timestamps whenever we 
move left or right.
● Cost of each binary search: 

O(log n).
● Number of binary searches: 

O(log n).
● Total cost: O(log2 n).
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t=2 t=3

t=1t=1

t = 0

root

t = 1

left right

t=3

left right

t = 3t=4
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t = 4

right

t = 4

t=5

Discuss with your
neighbors! 😃



  

Journal Trees
● Suppose you’re given a 

time t and a key k. What is 
the cost of seeing whether 
k is in the tree at time t?

● At each node, we have to 
do a binary search over 
timestamps whenever we 
move left or right.
● Cost of each binary search: 

O(log t) = O(log n).
● Number of binary searches: 

O(log t) = O(log n).
● Total cost: O(log2 n).
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The Story So Far
● We’ve gotten down to linear space, but at a 

price – our lookups are now a bit slower than 
before.

● Is there some way to restore the query time?
Preprocessing

Time
Query
Time

Space
Usage

Test All Faces O(n log n) O(n) O(n)
Slab

Decomposition O(n2) O(log n) O(n2)
Slabs With

PFRBTs O(n log n) O(log n) O(n log n)
Slabs With

Journal RBTs O(n log n) O(log2 n) O(n)



  

O(n log n)

O(n log n)

Two Extremes
● With a purely functional tree, each node sees only one version 

of itself, but we copy lots of extra nodes on each operation.
● With a journal tree, we never copy nodes, but each node in the 

tree sees all versions of itself.
● Question: Is there some way to get the best of both worlds?

Preprocessing
Time

Test All Faces O(n log n) O(n) O(n)
Slab

Decomposition O(n2) O(log n) O(n2)
Slabs With

PFRBTs O(log n) O(n log n)
Slabs With

Journal RBTs O(log2 n) O(n)

Query
Time

Space
Usage



  

t=0root

Fat Node Trees
● Idea: Use journals of 

size 2. If a node runs out 
of journal space, clone 
the node and 
(recursively) update the 
parent to point to the 
copy.
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Fat Node Trees
● Idea: Use journals of 

size 2. If a node runs out 
of journal space, clone 
the node and 
(recursively) update the 
parent to point to the 
copy.
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t=0 t=1root

Fat Node Trees
● Idea: Use journals of 

size 2. If a node runs out 
of journal space, clone 
the node and 
(recursively) update the 
parent to point to the 
copy.
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Fat Node Trees
● Idea: Use journals of 

size 2. If a node runs out 
of journal space, clone 
the node and 
(recursively) update the 
parent to point to the 
copy.
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t=0root

Fat Node Trees
● Idea: Use journals of 

size 2. If a node runs out 
of journal space, clone 
the node and 
(recursively) update the 
parent to point to the 
copy.
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Fat Node Trees
● Idea: Use journals of 

size 2. If a node runs out 
of journal space, clone 
the node and 
(recursively) update the 
parent to point to the 
copy.
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t=0root

Fat Node Trees
● Idea: Use journals of 

size 2. If a node runs out 
of journal space, clone 
the node and 
(recursively) update the 
parent to point to the 
copy.
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Fat Node Trees
● Idea: Use journals of 

size 2. If a node runs out 
of journal space, clone 
the node and 
(recursively) update the 
parent to point to the 
copy.

t=2 t=4

t=3

t=3

t=5

t=5 t=6

t=6



  

t=3

t=4

t=1

t=1 t=2

t=0root

Fat Node Trees
● Idea: Use journals of 

size 2. If a node runs out 
of journal space, clone 
the node and 
(recursively) update the 
parent to point to the 
copy.
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Fat Node Trees
● Idea: Use journals of 

size 2. If a node runs out 
of journal space, clone 
the node and 
(recursively) update the 
parent to point to the 
copy.
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t=1

t=1 t=2

t=0root

Fat Node Trees
● Idea: Use journals of 

size 2. If a node runs out 
of journal space, clone 
the node and 
(recursively) update the 
parent to point to the 
copy.

● To see the version at 
time t, binary search 
over the version number 
at the root, then use the 
normal journal idea to 
find the node you want.
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Fat Node Trees
● Idea: Use journals of 

size 2. If a node runs out 
of journal space, clone 
the node and 
(recursively) update the 
parent to point to the 
copy.

● To see the version at 
time t, binary search 
over the version number 
at the root, then use the 
normal journal idea to 
find the node you want.
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Fat Node Trees
● Idea: Use journals of 

size 2. If a node runs out 
of journal space, clone 
the node and 
(recursively) update the 
parent to point to the 
copy.

● To see the version at 
time t, binary search 
over the version number 
at the root, then use the 
normal journal idea to 
find the node you want.
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Fat Node Trees
● Idea: Use journals of 

size 2. If a node runs out 
of journal space, clone 
the node and 
(recursively) update the 
parent to point to the 
copy.

● To see the version at 
time t, binary search 
over the version number 
at the root, then use the 
normal journal idea to 
find the node you want.
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Fat Node Trees
● Idea: Use journals of 

size 2. If a node runs out 
of journal space, clone 
the node and 
(recursively) update the 
parent to point to the 
copy.

● To see the version at 
time t, binary search 
over the version number 
at the root, then use the 
normal journal idea to 
find the node you want.
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Fat Node Trees
● Idea: Use journals of 

size 2. If a node runs out 
of journal space, clone 
the node and 
(recursively) update the 
parent to point to the 
copy.

● To see the version at 
time t, binary search 
over the version number 
at the root, then use the 
normal journal idea to 
find the node you want.
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Fat Node Trees
● Idea: Use journals of 

size 2. If a node runs out 
of journal space, clone 
the node and 
(recursively) update the 
parent to point to the 
copy.

● To see the version at 
time t, binary search 
over the version number 
at the root, then use the 
normal journal idea to 
find the node you want.
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Fat Node Trees
● Idea: Use journals of 

size 2. If a node runs out 
of journal space, clone 
the node and 
(recursively) update the 
parent to point to the 
copy.

● To see the version at 
time t, binary search 
over the version number 
at the root, then use the 
normal journal idea to 
find the node you want.
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t=1

Fat Node Trees
● Intuition: Use 

journaling to keep the 
space usage low, but 
don’t let the journals get 
so large they slow down 
lookups.

● Intuition: Use path 
copying infrequently 
enough to not copy too 
many nodes, but enough 
to keep lookups fast.
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Fat Node Queries
● The cost of a lookup 

in a fat node tree is 
at most an O(1) 
factor slower than a 
regular lookup.
● Have to potentially 

check one of two 
journal entries per 
node.

● Cost of a lookup in a 
fat node red/black 
tree: O(log n).
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Fat Node Updates
● Most of the time, updates 

to a fat node red/black 
tree will not require any 
nodes to be copied.

● Every now and then, we 
have to copy a node one 
level above us.

● Even more rarely, we 
have to copy a node two 
levels above us.

● Claim: The amortized 
work to do an update in a 
fat node red/black tree is 
O(1).
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Fat Node Updates
● Define Φ to be the number of 

nodes with two journal entries 
reachable from the most recent 
timestamp.

● Suppose we copy k nodes during 
an update, for a total of Θ(k) work.

● If we copy a chain of k nodes, then
● each of those k nodes had two journal 

entries before we started;
● each of those k nodes is no longer 

reachable from the most recent 
timestamp;

● each newly created node has only 
one journal entry; and

● the node above the chain has one 
more journal entry added.

● So ΔΦ = 1 – k, and the -k cancels 
with the Θ(k) work for an 
amortized update cost of O(1).
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The Final Scorecard

Preprocessing
Time

Query
Time

Space
Usage

Test All Faces O(n log n) O(n) O(n)
Slab

Decomposition O(n2) O(log n) O(n2)
Slabs With

PFRBTs O(n log n) O(log n) O(n log n)
Slabs With

Journal RBTs O(n log n) O(log2 n) O(n)
Slabs With

Fat Node RBTs O(n log n) O(log n) O(n)

● We’ve come a long way from where we started!
● Pretty much all the work went into efficiently sharing 

data across different versions of data structures.



  

More to Explore



  

Planar Point Location
● The monotone chains method breaks the 

planar subdivision apart into a series of left-to-
right chains, then uses clever binary searches to 
meet the same time bounds as here.

● Kirkpatrick’s algorithm works with fully-
triangulated planar subdivisions. It repeatedly 
removes vertices to simplify the triangulation, 
giving a recursive point location algorithm.

● The random trapezoidal method breaks space 
apart into trapezoids in a manner similar to slabs. 
Using randomization, the query cost and space 
usage can be shown to be low.



  

Persistent Data Structures
● The FPRBT, journal RBT, and fat node RBT are 

special cases of persistent data structures, 
where operations produce both a “before” and 
“after” version.

● The three methods shown here (purely functional, 
journaling, and fat nodes) generalize to many 
other data structures.

● With some more advanced techniques, you can 
design retroactive data structures, where 
operations can be sent back in time.

● There are also confluent data structures, where 
multiple timelines can be merged together.



  

Concluding Thoughts



  

Where We’ve Been
● What a whirlwind tour of data structures this has been!

RMQ · Red/Black Trees · B-Trees · Tree 
Augmentation · Count-Min Sketches · Count 

Sketches · HyperLogLog · Cuckoo Hashing · Two-
Stack Queues · Scapegoat Trees · Tournament 

Heaps · Abdication Heaps · Tries · Suffix Trees · 
Suffix Arrays · Succinct Rank Queries · x-Fast Tries 

· y-Fast Tries · Word-Level Parallelism · Sardine 
Trees · Fusion Tress · Planar Point Location

● We’ve covered topics that span from the early days of 
computing through developments of the past few years.



  

Where We’ve Been
● Over the course of the quarter, we’ve seen some beautiful 

problem-solving strategies:
Solve All Possible Small Problems

Use Isometries
Replicate to Boost Confidence

Harness Properties of Random Graphs
Add Wiggle Room and Defer Cleanup

Harness Mechanical and Operational Perspectives
Break Big Problems into Small Blocks
Find Parallelism in Unexpected Places

Make Every Bit Count
● These approaches have applications far beyond data structure 

design.



  

What Comes Next
● There’s so much more to explore in the world of data structures!

Querying a Graph as it Changes · Persistent Data Structures 
· Data Structures for Parallel Architectures · Harnessing 
Caches Without Knowing Their Sizes · The Quest for the 
Best BST · The Quest for the Best Hash Table · Finding 
Lower Bounds on Data Structure Performance · Data 

Structures for Objects in Motion · Approximate Maps and 
Sets · Self-Adjusting Data Structures · Data Structures for 
Planar Graphs · Data Structures for Finding all Points in a 
Region · Data Structures for Nearest-Neighbor Searching · 

Data Structures for Text Editors · Data Structures for 
Functional Programming Languages · Data Structures from 
Number Systems · Data Structures for High-Performance 

Databases · …
● There’s easily enough material here for a CS166 sequel. Let me 

know if you’d be interested in that!



  

What Comes Next
● Resources for the Future:

● Erik Demaine’s Advanced Data Structures 
course at MIT.

● Jeff Erickson’s Advanced Data Structures 
course at UIUC.

● David Eppstein’s Data Structures course at 
UC Irvine.

● Conferences to Watch:
STOC    SODA    FOCS

● And you can always ping me directly!



  

Keep asking if we can improve on
our existing approaches.

Stay curious and maintain
your sense of wonder.

Keep in touch! Best of
luck going forward.



  

Appendix: Associating Faces to Edges



  

Goal: Given a planar 
subdivision, determine 

its faces.



  

Idea: Each edge has a 
face on either side. Find 
the faces associated on 
each side of each edge.



  

Split each edge into 
two half-edges 

running in opposite 
directions.



  

Revised Goal: 
Partition the half-

edges into cycles that 
define each face.



  

Internal faces are 
bounded by 

anticlockwise loops.

The outer face is 
bounded by a 

clockwise loop.



  



  

Our initial group of 
half-edges isn’t nicely 
oriented in a way that 

defines the faces.



  

Goal: Convert an 
arbitrary collection of 
half-edges into loops 

bounding faces.



  

XC

B

A

D

Connecting Half-Edges
● Pick at a blue half-edge 

entering node X.
● Imagine you enter node 

X via that half-edge.
● Which orange half-

edge leaving X should 
you follow?

● Answer: The one 
pointing at the next 
neighbor, moving 
counterclockwise 
around X.



  

XC

B

A

D

Connecting Half-Edges
● For each node v, sort the 

nodes around it in 
anticlockwise order.

● For each neighbor u, chain 
the half-edge (v, u) to be 
followed by the half-edge 
(u, x), where x is the next 
node after v, ordered 
counterclockwise.

● Time: O(e log e) work per 
node, where e is its 
number of neighbors. 
Summing over all nodes 
gives a runtime of 
O(n log n).
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