
CS193X:
Web Programming

Fundamentals
Spring 2017

Victoria Kirst
(vrk@stanford.edu)

Today's schedule

Today
- position
- Random helpful CSS

- calc, variables, background properties
- Mobile layouts

- em and rem

Monday
- Intro to JavaScript

"I can think of 12 different ways to implement this!

Which one is best?"

Simplicity above all else

Always prefer simplicity.

Other tips:

- Separation of concerns: HTML should contain content

NOT style, CSS should contain style NOT content

- Descriptive HTML tags: Make your HTML more

readable by using e.g. <header> instead of <div>

when appropriate

- Reduce redundancy: Try grouping styles, using

descendant selectors to reduce redundancy (see past

slides for details)

Last time

More flexbox stuff:

- flex-shrink
- Default value is 1 (on by default)
- This CSS property is on the flex item, not container

- flex-grow
- Default value is 0 (off by default)
- This CSS property is on the flex item, not container

vh / vw / box-sizing

Flexbox example

How do we make a layout that looks like this? (Codepen)

The header and footer

stay at the top and

bottom of the viewport.

(Live example)

https://codepen.io/bee-arcade/professor/2f97b2cdfc04949c2c73dda852f739d7?editors=1100
https://codepen.io/bee-arcade/live/eea60f1f8f8475b67c74da0dac6e9f93

Flexbox example solution

(Solved CodePen)

https://codepen.io/bee-arcade/pen/eea60f1f8f8475b67c74da0dac6e9f93
https://codepen.io/bee-arcade/pen/eea60f1f8f8475b67c74da0dac6e9f93

Another rendering
mode: position

Moving things with position

Positioned layout lets you define precisely where an

element should be in the page (mdn).

You can use positioned layout doing the following:

1. Define a position method:

Static, fixed, absolute, relative

2. Define offsets: top, left, bottom, and right

3. (optional) Define z-index for overlapping layers (mdn)

Let's check it out!

https://developer.mozilla.org/en-US/docs/Web/CSS/position
https://developer.mozilla.org/en-US/docs/Web/CSS/z-index

Moving things with position

To specify exactly where an element goes, set

its top, left, bottom, and/or right offset.

The meaning of these offset values depend on the

reference point set by position:

- static: no reference point; static block can't move

(this is the default style for every element)

- fixed: a fixed position within the viewport

- absolute: a fixed position within its "containing

element"

- relative: offset from its normal static position

position: static
(nothing happens!)

- static is the default value for position

- If you use top / left / bottom / right without

setting a non-static position, nothing will happen

(CodePen)

https://codepen.io/bee-arcade/pen/035142111fbb5282262535074a2f9a36?editors=1100

position: fixed

#menubar {
 position: fixed;
 top: 50px;
 right: 100px;
}

100px

50px

- For fixed positioning, the
offset is the distance
positioned relative to the
viewport.

- The element does not
move when scrolled.

- Element is removed from
normal document flow,
positioned on its own layer

Often used to implement
UIs; control bars that

shouldn't go away

position: fixed

(CodePen)

https://codepen.io/bee-arcade/pen/d61c4f0abfdad88d9aef7c3b771b3ce5?editors=1100

position: absolute

#menubar {
 position: absolute;
 left: 400px;
 top: 50px;
}

- For absolute positioning,
the offset is the distance
from the "containing
element", which is the
viewport by default

- Element is removed from
normal document flow,
positioned on its own layer

400px

50px

position: absolute

(CodePen)

https://codepen.io/bee-arcade/pen/f9b72d15c1704fe870ffb56943feade0?editors=0100

position: relative

For position: relative; the element is placed where it would
normally be placed in the layout of the page, but shifted by the top /
left / bottom / right values.

(CodePen)

https://codepen.io/bee-arcade/pen/e08a5109c9f0ee1abbdfd0b0ffaf6ddd?editors=0100

Relative absolute positioning

Let's revisit the definition of absolute positioning:

- absolute: a fixed position within its "containing

element"

- The containing element is the viewport by default

You can change the containing element by setting

"position: relative;" on some parent of your

absolutely positioned element!

Relative absolute positioning

#area2 {
 position: relative;
}

300px

50px

#menubar {
 position: absolute;
 left: 400px;
 top: 50px;
}

Offsets are relative to the first parent element that has
position: relative which in this case is #area2

Common use case: Overlay

(CodePen)

http://codepen.io/bee-arcade/pen/54cd4c36b43e4ffd30c5bafc0eb4e9c4?editors=1100

Let's revisit Squarespace again!
(link to solution)

http://web.stanford.edu/class/cs193x/lectures/05/squarespace.html

Random useful CSS

calc

You can use the calc CSS function to define numeric

values in terms of expressions:

width: calc(50% - 10px);

width: calc(100% / 6);

(MDN details of calc)

https://developer.mozilla.org/en-US/docs/Web/CSS/calc
https://developer.mozilla.org/en-US/docs/Web/CSS/calc

CSS variables

Variables are a brand-new CSS feature (caniuse).

:root {

 --primary-color: hotpink;

}

h1 {

 background-color: var(--primary-color);

}

(MDN details of CSS variables)

http://caniuse.com/#search=css%20variables
https://developer.mozilla.org/en-US/docs/Web/CSS/Using_CSS_variables

background properties

An easy way to render images stretched and cropped to a

given size: set it as a background image for an element.

background-image: url(background.png);

(CodePen)

https://codepen.io/bee-arcade/pen/b342aabacba7b1ca848daab8a820e660

background properties

You can then use additional background properties to

further style it:

background-size: cover;

background-size: contain;

background-repeat: no-repeat;

background-position: top;

background-position: center;

(CodePen: Try resizing the window)

https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Background_and_Borders
https://codepen.io/bee-arcade/pen/fb9f9e758d658465d47f273a2969e2bc?editors=1100

Web Fonts

You can use Google Fonts to choose from better fonts:

https://fonts.google.com/

Web Fonts

You can use Google Fonts to choose from better fonts:

The instructions are

pretty self-explanatory:

Basically, add the given

<link> tag into the

<head> section of your

page alongside your

other CSS files.

https://fonts.google.com/

Aside: Fallback fonts

Notice that the Google Font example shows a

comma-separated list of values for font-family:

- Each successive font listed is a fallback, i.e. the font that will be

loaded if the previous font could not be loaded

- There are also six generic font names, which allows the browser to

choose the font based on intent + fonts available on the OS.

- It's good practice to list a generic font at the end of all your

font-family declarations.

https://developer.mozilla.org/en-US/docs/Web/CSS/font-family#%3Cgeneric-name%3E

Hosted fonts with @font-face

You can also load your own font via @font-face:

- Give it your own font name

- Link to where the font file is found

CodePen

https://developer.mozilla.org/en-US/docs/Web/CSS/@font-face
https://codepen.io/bee-arcade/pen/82fb108139cbe82c5b8015477fc04585?editors=1100
https://codepen.io/bee-arcade/pen/82fb108139cbe82c5b8015477fc04585?editors=1100

Mobile web

Say you have the following website:

Q: What does it look like on a phone?

Not terrible… but pretty small and hard to read.

Responsive web design

We want to write our CSS in a way that can look nice in a

wide range of screen sizes:

- 27" desktop monitor

- Macbook Air

- Samsung Galaxy S7

- iPhone 7

- iPad

Q: How do we do this?
Do we need to write totally different

CSS for every screen size?!

Unless directed otherwise via HTML or

CSS cues, mobile browsers render web

pages at a desktop screen width

(~1000px), then "zooms out" until the

entire page fits on screen.

(That's why you sometimes get web pages with

teeny-tiny font on your phone: these webpages

have not added support for mobile.)

(Read more on how this works)

Mobile sizing

https://www.quirksmode.org/mobile/viewports.html

To prevent phone browsers from rendering the page at

desktop width and zooming out, use the meta viewport tag:

<meta name="viewport"

content="width=device-width, initial-scale=1">

This belongs in the <head> section of your HTML.
(Same section as the <title>, <link>, and other metadata elements.)

Meta viewport tag

Meta viewport tag

Without the meta

viewport tag

With the meta

viewport tag

<meta name="viewport"

content="width=device-width, initial-scale=1">

- name=viewport: "Browser, I am going to tell you how I

want the viewport to look."

- width=device-width: "The viewport's width should

always start at the device's width." (i.e., don't do that thing on

mobile where you render the page at the desktop's width)

- initial-scale=1: "Start at zoom level of 100%."

Meta viewport tag

<meta name="viewport"

content="width=device-width, initial-scale=1">

(You should pretty much always

include this tag in your HTML.)

Meta viewport tag

Making adjustments

The meta viewport tag gets us almost all

the way there, but we want to make a

few adjustments.

For example, the margin seems a tad too

big on mobile. Can we set a different

margin property for mobile?

CSS media queries

You can define a CSS media query in order to change style

rules based on the characteristics of the device:

You can create much more complex

media queries as well.

@media (max-width: 500px) {

 article {

 margin: 0 2px;

 }

}

https://developer.mozilla.org/en-US/docs/Web/CSS/Media_Queries/Using_media_queries

Development strategies

Practical question: How do you test mobile layouts?

- Do you upload your HTML+CSS somewhere online and

navigate to that URL on your phone?

- Is there a way to connect your phone to your local

device?

- Do you run it in an Android/iOS emulator?

- Other?!

Chrome device mode

You can simulate a web page in a mobile layout via Chrome

device mode:

https://developers.google.com/web/tools/chrome-devtools/device-mode/
https://developers.google.com/web/tools/chrome-devtools/device-mode/
https://developers.google.com/web/tools/chrome-devtools/device-mode/

Chrome device mode

You can simulate a web page in a mobile layout via Chrome

device mode:

https://developers.google.com/web/tools/chrome-devtools/device-mode/
https://developers.google.com/web/tools/chrome-devtools/device-mode/
https://developers.google.com/web/tools/chrome-devtools/device-mode/

Chrome device mode

You can simulate a web page in a mobile layout via Chrome

device mode:

https://developers.google.com/web/tools/chrome-devtools/device-mode/
https://developers.google.com/web/tools/chrome-devtools/device-mode/
https://developers.google.com/web/tools/chrome-devtools/device-mode/

Chrome device mode

Advantages of Chrome device mode:

- Super convenient

- Mostly accurate

Disadvantages of Chrome device mode:

- Not always accurate - iPhone particularly an issue

- A little buggy

- Doesn't simulate performance issues

You should always test on real devices, too.

Chrome remote debugging

If you have an Android phone, you can debug web pages on

your phone via Chrome remote debugging.

(You can also load a server running locally on your laptop, on your phone via port forwarding.

But we haven't talked about servers yet.)

https://developers.google.com/web/tools/chrome-devtools/remote-debugging/
https://developers.google.com/web/tools/chrome-devtools/remote-debugging/local-server

Safari remote debugging

If you have an iPhone, you can debug web pages on your

phone via Safari remote debugging.

http://developer.telerik.com/featured/a-concise-guide-to-remote-debugging-on-ios-android-and-windows-phone/

Relative font sizes:
percent, em, rem

Relative units

Whenever possible, it's best to use relative units (like

percentage) instead of absolute units (like px).

Advantages:

- More likely to work on different screen sizes

- Easier to reason about; fewer magic numbers

10% / 80% / 10% vs 122px / 926px / 122px

Q: Should we be using relative units on font-size?

Relative font sizes: percent

You can define font sizes in terms of percentage:

(CodePen)

https://codepen.io/bee-arcade/pen/46185dfdb442b3cbd7e171b73d773cf9?editors=1100

Relative font sizes: percent

(CodePen)

Percent on font-size behaves exactly like percentage on

width and height, in that it's relative to the parent:

https://codepen.io/bee-arcade/pen/41e67228f64820390f9468c1af042943?editors=1100

Relative font sizes: percent

(CodePen)

Percent on font-size behaves exactly like percentage on

width and height, in that it's relative to the parent:

p is 75% of its parent, which
is 200% of 30px.

p's size: .75*2*30 = 45px

https://codepen.io/bee-arcade/pen/41e67228f64820390f9468c1af042943?editors=1100

Relative font sizes: em

But instead of percentages, relative font sizes are usually

defined in terms of em:

- em represents the calculated font-size of the element

- 1em = the inherited font size

- 2em = 2 times the inherited font size

In other words,
font-size: 1em; is the same as font-size: 100%;

Relative font sizes: em

(CodePen)

https://codepen.io/bee-arcade/pen/df4066ed1ec96342d81eab8f53d833ee?editors=1100

Relative font sizes: em

(CodePen)

https://codepen.io/bee-arcade/pen/574fba4e1a7ccc591697be99dd9cbad3?editors=1100

Relative font sizes: em

(CodePen)

p's inherited font size is
2em, which is 60px. So
0.75em is 0.75*60 = 45px.

https://codepen.io/bee-arcade/pen/574fba4e1a7ccc591697be99dd9cbad3?editors=1100

Wait, why is 120px and not 60px?

In the Chrome Inspector, we see the default browser
font-size for h1 is 2em. So it's 30*2*2 = 120px.

(CodePen)

https://codepen.io/bee-arcade/pen/41c0654360dfa6ebfc908c534ad59ee4?editors=1100

Relative font sizes: rem

If you do not want your relative font sizes to compound

through inheritance, use rem:

- rem represents the font-size of the root element

- 1rem = the root (html tag) font size

- 2rem = 2 times root font size

Relative font sizes: rem

(CodePen)

https://codepen.io/bee-arcade/pen/574fba4e1a7ccc591697be99dd9cbad3?editors=1100

Relative font sizes: rem

(CodePen)

font-size is set on the
html element, not body (or
any other tag)

https://codepen.io/bee-arcade/pen/574fba4e1a7ccc591697be99dd9cbad3?editors=1100

Relative font sizes: rem

(CodePen)

.75em is calculated from
the root, which is 30px, so
30*.75 = 22.5px.

https://codepen.io/bee-arcade/pen/574fba4e1a7ccc591697be99dd9cbad3?editors=1100

Relative font conclusions

Use relative fonts for the same purpose as using relative

heights and widths:

- Prefer em and rem over percentages
- Not for any deep reason, but em is meant for font so it's

semantically cleaner

- Use rem to avoid compounding sizes

- In addition to font-size, consider em/rem for:

- line-height

- margin-top

- margin-bottom

What does our Squarespace layout look like in a phone

with the meta viewport tag?

Without the meta
viewport tag

With the meta
viewport tag

Completed mobile layout

http://web.stanford.edu/class/cs193x/lectures/06/squarespace-mobile.html
http://web.stanford.edu/class/cs193x/lectures/06/squarespace-mobile.html

Mobile summary

- Always add the meta viewport tag

- Use @media queries to add styles for devices with

certain characteristics, such as screen width

- Use the Chrome Device Mode to simulate mobile

rendering on desktop

- For height and width, prefer percentages

- For fonts, prefer em and rem

- Try to minimize dependent rules (Changing the width of one

container force you to change 15 other properties to look right)

More on responsive web design

https://developers.google.com/web/fundamentals/design-and-ui/responsive/

CSS wrap-up

Even though we're "done" with CSS, we will be using CSS all

quarter in homework and examples.

Later this quarter:

- More flexbox patterns

- More practice with flexbox / game

- CSS animations

- Possibly grid

https://flexbox.webflow.com/
http://flexboxgame.com
https://developer.mozilla.org/en-US/docs/Web/CSS/grid

