
CS193X:
Web Programming

Fundamentals
Spring 2017

Victoria Kirst
(vrk@stanford.edu)

Today's schedule

Wednesday
- DOM: How to interact with your web page
- HW1 due tonight
- HW2 is out!
- Victoria's Office Hours → moved to Friday again
- Amy and Cindy have office hours at 4pm like usual

Friday
- More DOM
- data attributes
- Browser extensions
- Victoria's Office Hours from 2:30 to 4pm

http://web.stanford.edu/class/cs193x/staff/

var, let, const

Declare a variable in JS with one of three keywords:

● Function scope variable:

var x = 15;

● Block scope variable:

let fruit = 'banana';

● Block scope constant (cannot be reassigned):

const isHungry = true;

What's a "block"?

In the context of programming languages, a block is a

group of 0 or more statements, usually surrounded by curly

braces. (wiki / mdn)

- Also known as a compound statement

- Not JavaScript-specific; exists in most languages (C++,

Java, Python, etc)

- Has absolutely nothing to do with the HTML/CSS

notion of "block", i.e. block elements

https://en.wikipedia.org/wiki/Block_(programming)
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/block

What's a "block"?

For example, the precise definition of an if-statement might

look like:

if (expression) statement

And a block might look like

{

 console.log('Hello, world!');

 console.log('Today is a good day.');

}

A "block" or compound statement is a type of statement, which is why we can

execute multiple statements when the condition is true.

Blocks and scope

Most languages that include blocks also tie scoping rules to

blocks, i.e. via "block scope":

// C++ code, not JS:

if (...) {

 int x = 5;

 ...

}

// can't access x here

This is the behavior of Java, C++, C, etc.

https://en.wikipedia.org/wiki/Scope_(computer_science)#Block_scope

Blocks and scope

This is also the behavior of JavaScript variables so long as

you use const and let:

if (...) {

 let x = 5;

 ...

}

// can't access x here

Blocks and scope

But if you use var, the variable exists for the entirety of the

function, completely independent of blocks:

if (...) {

 var x = 5;

 ...

}

// x is 5 here

This is the same behavior as Python, which also has

function scope.

* Note that variable hoisting and function scope are not the same thing, either.

Blocks and scope

But if you use var, the variable exists for the entirety of the

function, completely independent of blocks:

if (...) {

 var x = 5;

 ...

}

// x is 5 here

This is the same behavior as Python, which also has

function scope.

* Note that variable hoisting and function scope are not the same thing, either.

For more details, come to office hours!

In 193X we encourage you
to always use let and const,

so you don't need to understand
var very deeply anyway.

JavaScript
language tour

Arrays

Arrays are Object types used to create lists of data.

// Creates an empty list

let list = [];

let groceries = ['milk', 'cocoa puffs'];

groceries[1] = 'kix';

- 0-based indexing

- Mutable

- Can check size via length property (not function)

Looping through an array

You can use the familiar for-loop to iterate through a list:

let groceries = ['milk', 'cocoa puffs', 'tea'];

for (let i = 0; i < groceries.length; i++) {

 console.log(groceries[i]);

}

Or use a for-each loop via for...of (mdn):
(intuition: for each item of the groceries list)

for (let item of groceries) {

 console.log(item);

}

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/for...of

Maps through Objects

● Every JavaScript object is a collection of property-value

pairs. (We'll talk about this more later.)

● Therefore you can define maps by creating Objects:

// Creates an empty object

const prices = {};

const scores = {

 'peach': 100,

 'mario': 88,

 'luigi': 91

};

console.log(scores['peach']); // 100

Maps through Objects

FYI, string keys do not need quotes around them.

Without the quotes, the keys are still of type string.

// This is the same as the previous slide.

const scores = {

 peach: 100,

 mario: 88,

 luigi: 91

};

console.log(scores['peach']); // 100

Maps through Objects

There are two ways to access the value of a property:

1. objectName[property]

2. objectName.property
(2 only works for string keys.)

const scores = {

 peach: 100,

 mario: 88,

 luigi: 91

};

console.log(scores['peach']); // 100

console.log(scores.luigi); // 91

Maps through Objects

There are two ways to access the value of a property:

1. objectName[property]

2. objectName.property
(2 only works for string keys.)

const scores = {

 peach: 100,

 mario: 88,

 luigi: 91

};

console.log(scores['peach']); // 100

scores.luigi = 87;

console.log(scores.luigi); // 91

Generally prefer style
(2), unless the property

is stored in a variable, or
if the property is not a

string.

Maps through Objects

To add a property to an object, name the property and give

it a value:

const scores = {

 peach: 100,

 mario: 88,

 luigi: 91

};

scores.toad = 72;

let name = 'wario';

scores[name] = 102;

console.log(scores);

Maps through Objects

To remove a property to an object, use delete:

const scores = {

 peach: 100,

 mario: 88,

 luigi: 91

};

scores.toad = 72;

let name = 'wario';

scores[name] = 102;

delete scores.peach;

console.log(scores);

Iterating through Map

Iterate through a map using a for...in loop (mdn):
(intuition: for each key in the object)

for (key in object) {

// … do something with object[key]

}

for (let name in scores) {

console.log(name + ' got ' + scores[name]);

}

- You can't use for...in on lists; only on object types

- You can't use for...of on objects; only on list types

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/for...in

Events

Event-driven programming

Most JavaScript written in the browser is event-driven:

The code doesn't run right away, but it executes after some

event fires.

Click Me!

Example:

Here is a UI element that

the user can interact with.

Click Me!

Event-driven programming

Most JavaScript written in the browser is event-driven:

The code doesn't run right away, but it executes after some

event fires.

When the user clicks the button...

Event-driven programming

Most JavaScript written in the browser is event-driven:

The code doesn't run right away, but it executes after some

event fires.

Click Me!

EVENT!

...the button emits an "event," which

is like an announcement that some

interesting thing has occurred.

Event-driven programming

Most JavaScript written in the browser is event-driven:

The code doesn't run right away, but it executes after some

event fires.

Click Me!

EVENT! function onClick() {

 ...

}

Any function listening to that event

now executes. This function is called

an "event handler."

Quick aside…

Let's learn some input-related
HTML elements

A few more HTML elements

Buttons:

Single-line text input:

Multi-line text input:

Using event listeners

Let's print "Clicked" to the Web Console when the user

clicks the given button:

We need to add an event listener to the button...

Q: How do we access an element in HTML

from JavaScript?

The DOM

Every element on a page is accessible in JavaScript through

the DOM: Document Object Model

<html>

<head>

<title></title>

</head>

<body>

<h1></h1>

<div>

<p></p>

</div>

</body>

</html>

The DOM

The DOM is a tree of node objects corresponding to the

HTML elements on a page.

- JS code can examine these nodes to see the state of an

element
- (e.g. to get what the user typed in a text box)

- JS code can edit the attributes of these nodes to change

the attributes of an element
- (e.g. to toggle a style or to change the contents of an <h1> tag)

- JS code can add elements to and remove elements

from a web page by adding and removing nodes from

the DOM

How do we access a DOM object
from JavaScript?

Getting DOM objects

We can access an HTML element's corresponding DOM node in

JavaScript via the querySelector function:

document.querySelector('css selector');
- Returns the first element that matches the given CSS selector.

And via the querySelectorAll function:

document.querySelectorAll('css selector');
- Returns all elements that match the given CSS selector.

https://developer.mozilla.org/en-US/docs/Web/API/Document/querySelector
https://developer.mozilla.org/en-US/docs/Web/API/Document/querySelectorall

Getting DOM objects

// Returns the DOM object for the HTML element

// with id="button", or null if none exists.

let element = document.querySelector('#button');

// Returns a list of DOM objects containing all

// elements that have a "quote" class AND all

// elements that have a "comment" class.

let elementList =

 document.querySelectorAll('.quote, .comment');

Adding event listeners

Each DOM object has the following method defined:

addEventListener(event name, function name);

- event name is the string name of the JavaScript event

you want to listen to

- Common ones: click, focus, blur, etc

- function name is the name of the JavaScript function

you want to execute when the event fires

https://developer.mozilla.org/en-US/docs/Web/API/EventTarget/addEventListener
https://developer.mozilla.org/en-US/docs/Web/Events

Removing event listeners

To stop listening to an event, use removeEventListener:

removeEventListener(event name, function name);

- event name is the string name of the JavaScript event

to stop listening to

- function name is the name of the JavaScript function

you no longer want to execute when the event fires

https://developer.mozilla.org/en-US/docs/Web/API/EventTarget/removeEventListener
https://developer.mozilla.org/en-US/docs/Web/Events

Error! Why?

 <head>

 <title>CS 193X</title>

 <link rel="stylesheet" href="style.css" />

 <script src="script.js"></script>

 </head>

 <head>

 <title>CS 193X</title>

 <link rel="stylesheet" href="style.css" />

 <script src="script.js"></script>

 </head>

 <head>

 <title>CS 193X</title>

 <link rel="stylesheet" href="style.css" />

 <script src="script.js"></script>

 </head>

 <head>

 <title>CS 193X</title>

 <link rel="stylesheet" href="style.css" />

 <script src="script.js"></script>

 </head>

function onClick() {

 console.log('clicked');

}

const button = document.querySelector('button');

button.addEventListener('click', onClick);

 <head>

 <title>CS 193X</title>

 <link rel="stylesheet" href="style.css" />

 <script src="script.js"></script>

 </head>

function onClick() {

 console.log('clicked');

}

const button = document.querySelector('button');

button.addEventListener('click', onClick);

 <head>

 <title>CS 193X</title>

 <link rel="stylesheet" href="style.css" />

 <script src="script.js"></script>

 </head>

function onClick() {

 console.log('clicked');

}

const button = document.querySelector('button');

button.addEventListener('click', onClick);

We are only at the <script> tag, which is at the top of the

document… so the <button> isn't available yet.

 <head>

 <title>CS 193X</title>

 <link rel="stylesheet" href="style.css" />

 <script src="script.js"></script>

 </head>

function onClick() {

 console.log('clicked');

}

const button = document.querySelector('button');

button.addEventListener('click', onClick);

Therefore querySelector returns null, and we can't call

addEventListener on null.

Use defer

You can add the defer attribute onto the script tag so that

the JavaScript doesn't execute until after the DOM is

loaded (mdn):

<script src="script.js" defer></script>

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/script

Use defer

You can add the defer attribute onto the script tag so that

the JavaScript doesn't execute until after the DOM is

loaded (mdn):

<script src="script.js" defer></script>

Other old-school ways of doing this (don't do these):

- Put the <script> tag at the bottom of the page

- Listen for the "load" event on the window object

You will see tons of examples on the internet that do this.

They are out of date. defer is widely supported and better.

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/script
http://caniuse.com/#search=defer

Log messages aren't so interesting...

How do we interact with the page?

A few technical details

The DOM objects that we retrieve from querySelector

and querySelectorAll have types:

- Every DOM node is of general type Node (an interface)

- Element implements the Node interface
(FYI: This has nothing to do with NodeJS, if you've heard of that)

- Each HTML element has a specific Element derived

class, like HTMLImageElement

https://developer.mozilla.org/en-US/docs/Web/API/Node
https://developer.mozilla.org/en-US/docs/Web/API/Element
https://developer.mozilla.org/en-US/docs/Web/API/Node
https://developer.mozilla.org/en-US/docs/Web/API/Element
https://developer.mozilla.org/en-US/docs/Web/API/Element
https://developer.mozilla.org/en-US/docs/Web/API/htmlimageelement

Attributes and DOM properties

Roughly every attribute on an HTML element is a property

on its respective DOM object...

HTML

JavaScript
const element = document.querySelector('img');

element.src = 'bear.png';

(But you should always check the JavaScript spec to be

sure. In this case, check the HTMLImageElement.)

https://developer.mozilla.org/en-US/docs/Web/API/htmlimageelement

Adding and removing classes

You can control classes applied to an HTML element via

classList.add and classList.remove:

const image = document.querySelector('img');

// Adds a CSS class called "active".

image.classList.add('active');

// Removes a CSS class called "hidden".

image.classList.remove('hidden');

(More on classList)

https://developer.mozilla.org/en-US/docs/Web/API/Element/classList

Example: Present

See the CodePen -
much more exciting!

https://codepen.io/bee-arcade/pen/8242bfd471e118e820422ce715c6ede5?editors=1010

Finding the element twice...

This redundancy is unfortunate.

Q: Is there a way to fix it?

Finding the element twice...

This redundancy is unfortunate.

Q: Is there a way to fix it?

CodePen

https://codepen.io/bee-arcade/pen/54d86cd33e2fd1bd8e5de97f41213f4d
https://codepen.io/bee-arcade/pen/54d86cd33e2fd1bd8e5de97f41213f4d

Event.currentTarget

An Event element is passed to the listener as a parameter:

The event's currentTarget property is a reference to

the object that we attached to the event, in this case the

's Element to which we added the listener.

https://developer.mozilla.org/en-US/docs/Web/API/Event
https://developer.mozilla.org/en-US/docs/Web/API/Event/currentTarget
https://developer.mozilla.org/en-US/docs/Web/API/element

Psst.. Not to be confused with Event.target

(Note: Event has both:

- event.target: the element that was clicked /

"dispatched the event" (might be a child of the target)

- event.currentTarget: the element that the original

event handler was attached to)

(Programming note: I got these mixed up in lecture and used target when I

meant currentTarget, so I'm correctly the slides retroactively. Whoops,

sorry!)

https://developer.mozilla.org/en-US/docs/Web/API/Event/target
https://developer.mozilla.org/en-US/docs/Web/API/Event/currentTarget

Example: Present

It would be nice to
change the text after the
present is "opened"...

Some properties of Element objects

Property Description

id The value of the id attribute of the element, as a string

innerHTML
The raw HTML between the starting and ending tags of an
element, as a string

textContent
The text content of a node and its descendants. (This
property is inherited from Node)

classList An object containing the classes applied to the element

Maybe we can adjust the
textContent!

CodePen

https://developer.mozilla.org/en-US/docs/Web/API/Element/id
https://developer.mozilla.org/en-US/docs/Web/API/Element/id
https://developer.mozilla.org/en-US/docs/Web/API/Element/innerhtml
https://developer.mozilla.org/en-US/docs/Web/API/Element/innerhtml
https://developer.mozilla.org/en-US/docs/Web/API/Node/textContent
https://developer.mozilla.org/en-US/docs/Web/API/Node/textContent
https://developer.mozilla.org/en-US/docs/Web/API/Node/textContent
https://developer.mozilla.org/en-US/docs/Web/API/Element/classList
https://developer.mozilla.org/en-US/docs/Web/API/Element/classList
https://codepen.io/bee-arcade/pen/db0b3223fd87ed06051aa1f2abf5ec63?editors=1010
https://codepen.io/bee-arcade/pen/db0b3223fd87ed06051aa1f2abf5ec63?editors=1010

We can select the h1 element then set its textContent to

change what is displayed in the h1. (CodePen)

https://codepen.io/bee-arcade/pen/db0b3223fd87ed06051aa1f2abf5ec63?editors=1010

Another approach:
Changing the elements

Add elements via DOM

We can create elements dynamically and add them to the

web page via createElement and appendChild:

document.createElement(tag string)

element.appendChild(element);

Technically you can also add elements to the webpage via

innerHTML, but it poses a security risk.

// Try not to use innerHTML like this:

element.innerHTML = '<h1>Hooray!</h1>';

https://developer.mozilla.org/en-US/docs/Web/API/Document/createElement
https://developer.mozilla.org/en-US/docs/Web/API/Node/appendChild
https://developer.mozilla.org/en-US/docs/Web/API/Element/innerHTML#Security_considerations

Remove elements via DOM

We can also call remove elements from the DOM by calling

the remove() method on the DOM object:

element.remove();

And actually setting the innerHTML of an element to an

empty string is a fine way of removing all children from a

parent node:

// This is fine and poses no security risk.

element.innerHTML = '';

https://developer.mozilla.org/en-US/docs/Web/API/ChildNode/remove
https://developer.mozilla.org/en-US/docs/Web/API/Element/innerHTML#Notes

CodePen

https://codepen.io/bee-arcade/pen/6b8956cb0acaaf72f9927094b87d8577?editors=0010
https://codepen.io/bee-arcade/pen/6b8956cb0acaaf72f9927094b87d8577?editors=0010

Hmm, the effect is slightly janky though:

The text changes faster than the image loads.

Q: How do we fix this issue?

https://docs.google.com/file/d/0BxtKIz3gISunZF9Pc0tDQXJPRnM/preview

display: none;

There is yet another super helpful value for display:

display: block;

display: inline;

display: inline-block;

display: flex;

display: none;

display: none; turns off rendering for the element and

all its children. It's treated as if the element were not in the

document at all...

https://developer.mozilla.org/en-US/docs/Web/CSS/display

display: none;

There is yet another super helpful value for display:

display: block;

display: inline;

display: inline-block;

display: flex;

display: none;

display: none; turns off rendering for the element and

all its children. It's treated as if the element were not in the

document at all…
...but the content (such as the images) is still loaded.

https://developer.mozilla.org/en-US/docs/Web/CSS/display

We can add both views to the HTML,

with one view hidden by default…

(CodePen)

https://codepen.io/bee-arcade/pen/5b1885ca9e14d88fc5ef078f07fb1a00?editors=0010

Then we toggle the display state of the containers

by adding/removing the hidden class.

(CodePen)

https://codepen.io/bee-arcade/pen/5b1885ca9e14d88fc5ef078f07fb1a00?editors=0010

Recap

Several strategies for updating HTML elements in JS:

1. Change content of existing HTML elements in page:

- Good for simple text updates

2. Add elements via createElement and appendChild

- Needed if you're adding a variable number of elements

3. Put all "views" in the HTML but set inactive ones to

hidden, then update display state as necessary.

- Good when you know ahead of time what element(s)

you want to display

- Can be used in conjunction with (1) and/or (2)

