
CS193X:
Web Programming

Fundamentals
Spring 2017

Victoria Kirst
(vrk@stanford.edu)

Schedule

Today:

- Fetch

- JSON

- Fetch in an class

- Querying REST APIs

- Form submission

- HW4 out!

GitHub repo for today's lecture examples:

https://github.com/yayinternet/lecture17 / live

https://github.com/yayinternet/lecture17
https://yayinternet.github.io/lecture17/
https://github.com/yayinternet/lecture17

Loading data from files

Loading data from a file

What if you had a

list of URLs in a

text file that you

wanted to load as

images in your

web page?

Fetch API

Fetch API

fetch(): Function to load resources in JavaScript

fetch(pathToResource)

 .then(onResponse)

 .then(onResourceReady);

onResponse:

● Return response.text() from this function to get

the resource as a string in onResourceReady

onResourceReady:

● Gets the resource as a parameter when it's ready

https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Body/text

Fetch API

function onTextReady(text) {

 // do something with text

}

function onResponse(response) {

 return response.text();

}

fetch('images.txt')

 .then(onResponse)

 .then(onTextReady);

Completed example

function onTextReady(text) {
 const urls = text.split('\n');
 for (const url of urls) {
 const image = document.createElement('img');
 image.src = url;
 document.body.append(image);
 }
}

function onResponse(response) {
 return response.text();
}

fetch('images.txt')
 .then(onResponse)
 .then(onTextReady);

Completed example

function onTextReady(text) {
 const urls = text.split('\n');
 for (const url of urls) {
 const image = new Image();
 image.src = url;
 document.body.append(image);
 }
}

function onResponse(response) {
 return response.text();
}

fetch('images.txt')
 .then(onResponse)
 .then(onTextReady);

Live example /
GitHub

https://yayinternet.github.io/lecture17/images-text/fetch-complete.html
https://github.com/yayinternet/lecture17/tree/master/images-text
https://github.com/yayinternet/lecture17/tree/master/images-text

fetch() limitations

● You cannot fetch a resource that is hosted on file://

○ You must serve your resource over HTTP / HTTPS

Serve over HTTP

We can run a program to serve our local files over HTTP:

$ python -m SimpleHTTPServer

Serving HTTP on 0.0.0.0 port 8000 ...

This now starts up a server that can load the files in the

current directory over HTTP.

- We can access this server by navigating to:

http://localhost:8000/

http://localhost:8000/
http://localhost:8000/

Note: Fetch Polyfill

Fetch is supported on all major browsers, though Safari

added support only within the last couple of months

- If you need to support older browsers, add a Fetch

Polyfill the way we did with Pointer Events

- (We've done this for you in HW4 starter code)

http://caniuse.com/#search=fetch
https://github.com/github/fetch/blob/master/fetch.js
https://github.com/github/fetch/blob/master/fetch.js
https://github.com/jquery/PEP
https://github.com/github/fetch/blob/master/fetch.js

JSON

JavaScript Object Notation

JSON: Stands for JavaScript Object Notation

- Created by Douglas Crockford

- Defines a way of serializing JavaScript objects

- to serialize: to turn an object into a string that can

be deserialized

- to deserialize: to turn a serialized string into an

object

JSON.stringify()

We can use the JSON.stringify() function to seralize a

JavaScript object:

const bear = {

 name: 'Ice Bear',

 hobbies: ['knitting', 'cooking', 'dancing']

};

const serializedBear = JSON.stringify(bear);

console.log(serializedBear);

CodePen

https://codepen.io/bee-arcade/pen/0e07c135fb367b169c8a5ae84dc504e9?editors=1111
https://codepen.io/bee-arcade/pen/0e07c135fb367b169c8a5ae84dc504e9?editors=1111

JSON.parse()

We can use the JSON.parse() function to deseralize a

JavaScript object:

const bearString = '{"name":"Ice

Bear","hobbies":["knitting","cooking","danci

ng"]}';

const bear = JSON.parse(bearString);

console.log(bear);

CodePen

https://codepen.io/bee-arcade/pen/edebe703d104548ae623a0bb854f441f?editors=1111
https://codepen.io/bee-arcade/pen/edebe703d104548ae623a0bb854f441f?editors=1111

Fetch API and JSON

The Fetch API also has built-in support for JSON:

function onJsonReady(json) {

 console.log(json);

}

function onResponse(response) {

 return response.json();

}

fetch('images.json')

 .then(onResponse)

 .then(onJsonReady);

Return
response.json()
instead of
response.text()
and Fetch will
essentially call
JSON.parse() on the
response string.

Why JSON?

Let's say we had a file that contained a list of albums.

Each album has:

- Title

- Year

- URL to album image

We want to display each album in chronological order.

Text file?

The Emancipation Of Mimi
2005
https://i.scdn.co/image/dca82bd9c1ccae90b09972027a408068f7a4d700

Daydream
1995
https://i.scdn.co/image/0638f0ddf70003cb94b43aa5e4004d85da94f99c

E=MC²
2008
https://i.scdn.co/image/bca35d49f6033324d2518656531c9a89135c0ea3

Mariah Carey
1990
https://i.scdn.co/image/82f13700dfa78fa877a8cdecd725ad552c9a9653

Music Box
1993
https://i.scdn.co/image/676275b41e19de3048fddfb72937ec0db13c58d7

Emotions
1991
https://i.scdn.co/image/2424877af9fa273690b688462c5afbad678c5072

Merry Christmas
1994
https://i.scdn.co/image/e06f3ddadf59ee24504fc02bfe205945807a2437

Butterfly
1997
https://i.scdn.co/image/f568f63dd6183aadc9dc42824ba080dde0361367

Rainbow
1999
https://i.scdn.co/image/a666bcba51a0073ce34d7ad24703f4c45b374eff

Charmbracelet
2002
https://i.scdn.co/image/c642f1ac7861c85133a0d4bc80a1ebefcad969a7

Memoirs Of An Imperfect Angel
2009
https://i.scdn.co/image/c15ee84ece3ff03856ce0ec8112e7597b6c9d072

Me. I Am Mariah ...The Elusive Chanteuse
2014
https://i.scdn.co/image/1793edc1954a9603935ecffb3d4fe5b4a3e429e6

We could create a text file formatted consistently in some
format that we make up ourselves, e.g.:

Text file processing

function onTextReady(text) {

 const lines = text.split('\n\n');

 const albums = [];

 for (let i = 0; i < lines.length; i++) {

 const infoText = lines[i];

 const infoStrings = infoText.split('\n');

 const name = infoStrings[0];

 const year = infoStrings[1];

 const url = infoStrings[2];

 albums.push({

 name: name,

 year: parseInt(year),

 url: url

 });

 }

 ...

}

We would have to write
all this custom file
processing code:

- Must convert
numbers from
strings

- If you ever add
another attribute to
the album, we'd
have to change our
array indices

Live example /
GitHub

https://yayinternet.github.io/lecture17/albums/fetch-text.html
https://github.com/yayinternet/lecture17/blob/master/albums/fetch-text.js
https://github.com/yayinternet/lecture17/blob/master/albums/fetch-text.js

JSON file

{
 "albums": [
 {
 "name": "The Emancipation Of Mimi",
 "year": 2005,
 "url":
"https://i.scdn.co/image/dca82bd9c1ccae90b09972027a408068f7a4d700
"
 },
 {
 "name": "Daydream",
 "year": 1995,
 "url":
"https://i.scdn.co/image/0638f0ddf70003cb94b43aa5e4004d85da94f99c
"
 },
 {
 "name": "E=MC²",
 "year": 2008,
 "url":
"https://i.scdn.co/image/bca35d49f6033324d2518656531c9a89135c0ea3
"
 },
 {
 "name": "Mariah Carey",
 "year": 1990,
 "url":
"https://i.scdn.co/image/82f13700dfa78fa877a8cdecd725ad552c9a9653
"
 },
 {
 "name": "Music Box",
 "year": 1993,
 "url":
"https://i.scdn.co/image/676275b41e19de3048fddfb72937ec0db13c58d7
"
 },
 {
 "name": "Emotions",
 "year": 1991,
 "url":
"https://i.scdn.co/image/2424877af9fa273690b688462c5afbad678c5072
"
 },
 {
 "name": "Merry Christmas",
 "year": 1994,
 "url":
"https://i.scdn.co/image/e06f3ddadf59ee24504fc02bfe205945807a2437
"
 },
 {
 "name": "Butterfly",
 "year": 1997,
 "url":
"https://i.scdn.co/image/f568f63dd6183aadc9dc42824ba080dde0361367
"
 },
 {
 "name": "Rainbow",
 "year": 1999,
 "url":
"https://i.scdn.co/image/a666bcba51a0073ce34d7ad24703f4c45b374eff
"
 },
 {
 "name": "Charmbracelet",
 "year": 2002,
 "url":
"https://i.scdn.co/image/c642f1ac7861c85133a0d4bc80a1ebefcad969a7
"
 },
 {
 "name": "Memoirs Of An Imperfect Angel",
 "year": 2009,
 "url":
"https://i.scdn.co/image/c15ee84ece3ff03856ce0ec8112e7597b6c9d072
"
 },
 {
 "name": "Me. I Am Mariah ...The Elusive Chanteuse",
 "year": 2014,
 "url":
"https://i.scdn.co/image/1793edc1954a9603935ecffb3d4fe5b4a3e429e6
"
 }
]
}

It'd be much more convenient to store the file in JSON format:

JSON processing

function onJsonReady(json) {

 const albums = json.albums;

 ...

}

Since we're using JSON, we
don't have to manually
convert the response
strings to a JavaScript
object:
- JavaScript has built-in

support to convert a
JSON string into a
JavaScript object.

Live example /
GitHub

https://yayinternet.github.io/lecture17/albums/fetch-json.html
https://github.com/yayinternet/lecture17/blob/master/albums/fetch-json.js
https://github.com/yayinternet/lecture17/blob/master/albums/fetch-json.js

Fetch in a class

Discography page

Let's write a web page that lists the Mariah Carey albums

stored in albums.json and lets us sort the albums: (demo)

https://yayinternet.github.io/lecture17/oo-albums/albums.json
https://codepen.io/bee-arcade/live/1169a5760153ee5f6877a8b6f7c30521

Class diagram

App

Album

albums.jsonscript.js

The class diagram is going to look something like this:

creates

creates

fetches

returns

Album fetch()

App

Album

albums.json

script.js

1. Script creates

App object.

2. App calls

fetch() for

albums.json

Synchronous

Asynchronous

Album fetch()

App

Album

albums.json

script.js 3. Fetch request

returns the JSON data

as a JavaScript object
4. App creates an

Album object for each

album in the JSON

response

Synchronous

Asynchronous

Discography page

Q: How do we begin to implement this??

App

Album

albums.jsonscript.js
creates

creates

fetches

returns

Getting started

Suggestion:

Implement the Album class first!

- The App class will have to use

the Album class, meaning it is

dependent on the Album class.

- The Album class doesn't have

any dependencies, so let's

create that first.

App

AlbumAlbumAlbumAlbumAlbum

script.js

Milestone 1: Album

For your first step, just implement the Album class: ignore

App/fetch()/etc for now.

script.js

AlbumAlbum

Milestone 1: Album

Modify script.js to create two Albums.

Milestone 1: Album

Milestone 1: CodePen / page

https://codepen.io/bee-arcade/pen/d7156c2c1196973cadc6422812325ac3?editors=0010
https://s.codepen.io/bee-arcade/debug/d7156c2c1196973cadc6422812325ac3

Milestone 2: Print album info

Suggestion: Implement the fetch() next!

- The App class is going to fetch data from albums.json,

then it will create Albums based on that data.

- Let's implement fetch() first and make sure it works

by printing out the results to the console.

App

albums.jsonscript.js

Create a method

loadAlbums() that

calls fetch() like we

did in the previous

examples.

(Note: We don't have to

define a constructor if

we don't want to do in

the constructor.)

Modify script.js to create an App and call its

loadAlbums() method.

Milestone 2: Print album info

Milestone 2: CodePen / page

Milestone 2: Print album info

https://codepen.io/bee-arcade/pen/c6760ac74e0859f3038c06dc62f115cf?editors=0011
https://s.codepen.io/bee-arcade/debug/c6760ac74e0859f3038c06dc62f115cf

Milestone 3: Create Albums

App

Album

albums.jsonscript.js

Now let's connect App and Album:

- The App class is supposed to create Albums based on

the data fetched from the JSON file.

- Since Album and fetch() are working separately, now

let's try making them work together.

Milestone 3: CodePen / page

Milestone 3: Create albums

https://codepen.io/bee-arcade/pen/ff93758ecd58fabc4b74979b79f6dace?editors=0011
https://s.codepen.io/bee-arcade/debug/ff93758ecd58fabc4b74979b79f6dace

Milestone 4: Sort by year, asc

Let's now implement the Sort by Year, Ascending:

- On button click:

- Print to console

- Unrender albums

- Sort albums data

- Rereunder albums

Milestone 4: Sort by year, asc

Start with adding an event handler and log to make sure it

works: CodePen

https://codepen.io/bee-arcade/pen/537708a9ce65d1d97166ac7d39321340?editors=0011

Now we want to:

- Unrender the

albums

Now we want to:

- Unrender the

albums

(CodePen)

https://codepen.io/bee-arcade/pen/fa6237764d5dc5856523e45366036d5b?editors=0011

Now we want to:

- Sort the albums

data

Meaning we need

the json.albums

from the fetch

request available in

the onClick

Saving data from fetch()

We can save the data from the fetch() command in a

field of the App class (CodePen):

But now we are using this in a callback… so…

What do we need to do?

https://codepen.io/bee-arcade/pen/d409d7357eda4146fcc9506025050e26?editors=0011

Saving data from fetch()

We need to bind _onJsonReady in the constructor:

Saving data from fetch()

We are now going to sort the album info on click

(CodePen):

But now we are using this in an event handler… so…

What do we need to do?

https://codepen.io/bee-arcade/pen/d409d7357eda4146fcc9506025050e26?editors=0011

Saving data from fetch()

We need to bind _onAscClick in the constructor:

Last, we want to:

- Rerender the

albums data

Rerender albums data

We can put the render code in a helper method and call it:

(CodePen)

https://codepen.io/bee-arcade/pen/02c3052266d82a76b0fdba9b7a3f9e93?editors=0011

Milestone 4: CodePen / page

Milestone 4: Sort by year, asc

https://codepen.io/bee-arcade/pen/02c3052266d82a76b0fdba9b7a3f9e93?editors=0011
https://s.codepen.io/bee-arcade/debug/02c3052266d82a76b0fdba9b7a3f9e93

Milestone 5: Other buttons

Actually, the behavior is almost identical for each button,

except the sort function...

Finally, let's implement the other two buttons:

Add SortButton class

App

Album

albums.jsonscript.js

Let's add a SortButton class

- The App class will create 3 SortButtons

- Each SortButton will take a sorting function as a

parameter.

SortButton

Add SortButton class

We'll add and test the SortButton first… CodePen

https://codepen.io/bee-arcade/pen/af47b8942b13ec7a5bf2c875a7a0cec4

Sorting the albums

App albums.jsonscript.js

But then when we click a sort button, we want the Albums

to be sorted… and the Albums are in the App class.

- Q: How do we communicate between SortButton

and App?

SortButton

Click event!

 "App, you should sort

yourself with my

sorting function"

Sorting the albums

We can add an onClickCallback in the SortButton

constructor (or fire a CustomEvent):

Sorting the albums

When

constructing

SortButton,

pass it the

_sortAlbums

function.

Milestone 5: CodePen / page / GitHub

Milestone 5: Completed!

https://codepen.io/bee-arcade/pen/1169a5760153ee5f6877a8b6f7c30521
https://codepen.io/bee-arcade/live/1169a5760153ee5f6877a8b6f7c30521
https://github.com/yayinternet/lecture17/tree/master/oo-albums

Querying REST APIs

First: Servers again

Servers

Sometimes when you type a URL in your browser,

the URL is a path to a file on the internet:

- Your browser connects to the host address

and requests the given file over HTTP

- The web server software (e.g. Apache) grabs

that file from the server's local file system,

and sends back its contents to you

HTTP: Hypertext Transfer Protocol, the protocol for sending

files and messages through the web

https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol

HTTP methods

HTTP Methods: the set of commands understood by a web

server and sent from a browser

- GET: request/retrieve data

This is request sent by the browser automatically

whenever you navigate to a URL!

- POST: send/submit data

- PUT: upload file

- PATCH: updates data

- DELETE: delete data

- More HTTP methods

https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods

You type a URL in
the address bar and

hit "enter"

http://cs193x.stanford.edu

Browser sends an HTTP GET
request saying "Please GET me

the index.html file at
http://cs193x.stanford.edu"

Server at
http://cs193x.stanford.edu

(Routing,
etc…)

(Warning: Somewhat inaccurate,
massive hand-waving begins now.

See this Quora answer for slightly more detailed/accurate handwaving)

https://www.quora.com/What-is-the-role-of-OSI-layers-when-we-open-a-webpage

Assuming all goes well, the
server responds by sending the
HTML file through the internet
back to the browser to display.

Server at
http://cs193x.stanford.edu

Servers

Sometimes when you type a URL in your browser,

the URL is a path to a file on the internet:

- Your browser connects to the host address

and requests the given file over HTTP

- The web server software (e.g. Apache) grabs

that file from the server's local file system,

and sends back its contents to you

But that's not always the case.

Web Services

Other times when you type a URL into your

browser, the URL represents an API endpoint,

and not a path to a file.

That is:

- The web server does not grab a file from

the local file system, and the URL is not

specifying where a file is located.

- Rather, the URL represents a

parameterized request, and the web

server dynamically generates a response

to that request.

API endpoint example

Look at the URL for this Google slide deck:

https://docs.google.com/presentation/d/1Rim3-IXt6y
N7yny_SBv7B5NMBiYbaQEiRMUD5s66uN8

https://docs.google.com/presentation/d/1Rim3-IXt6yN7yny_SBv7B5NMBiYbaQEiRMUD5s66uN8/

API endpoint example

- presentation: Tells the server that we are requesting a doc

of type "presentation"

- d/1Rim3-IXt6yN7yny_SBv7B5NMBiYbaQEiRMUD5s66uN8:
Tells the server to request a doc ("d") with the document id of
"1Rim3-IXt6yN7yny_SBv7B5NMBiYbaQEiRMUD5s66uN8"

Look at the URL for this Google slide deck:

https://docs.google.com/presentation/d/1Rim3-IXt6y
N7yny_SBv7B5NMBiYbaQEiRMUD5s66uN8

https://docs.google.com/presentation/d/1Rim3-IXt6yN7yny_SBv7B5NMBiYbaQEiRMUD5s66uN8/

RESTful API

RESTful API: URL-based API that has these properties:

- Requests are sent as an HTTP request:

- HTTP Methods: GET, PUT, POST, DELETE, etc

- Requests are sent to base URL, also known as an "API

Endpoint"

- Requests are sent with a specified MIME/content type,

such as HTML, CSS, JavaScript, plaintext, JSON, etc.

https://en.wikipedia.org/wiki/Representational_state_transfer#Applied_to_Web_services
https://en.wikipedia.org/wiki/Representational_state_transfer#Applied_to_Web_services
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol#Request_methods
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol#Request_methods
https://en.wikipedia.org/wiki/Media_type

RESTful API

Almost every website on the internet uses RESTful URLs /

RESTful APIs to handle requests to its servers.

Notable alternatives to REST:

- GraphQL,

- Used by Facebook since 2012

- Open-sourced by Facebook since 2015

- Still early but some big clients: GitHub, Pinterest

- Falcor?

- Netflix's REST alternative, introduced ~2015

- Probably cool but never hear of anyone using it

- Doesn't even have a Wikipedia page

http://graphql.org/
http://graphql.org/
https://netflix.github.io/falcor/
https://netflix.github.io/falcor/

Using REST APIs

3rd-Party APIs

Many websites expose REST APIs to outside developers.

These are often called "3rd-party APIs" or "Developer APIs"

Examples:

- Spotify

- Giphy

- GitHub

- Hoards of Google APIs

- Facebook

- Instagram

- Twitter

- etc...

Try Googling

"<product name> API"

to see if one exists for

a given company!

Example: Spotify

Spotify has a REST API that external developers (i.e. people

who aren't Spotify employees) can query:

https://developer.spotify.com/web-api/endpoint-reference/

Example: Spotify

REST API structure (details):

- The Base URL is https://api.spotify.com

- The HTTP method is GET

- The API endpoint to query is:
https://api.spotify.com/v1/albums/<spotify_id>

- It returns JSON data about the album that's requested

https://developer.spotify.com/web-api/get-album/

Example: Spotify

If we had Spotify Album ID 7aDBFWp72Pz4NZEtVBANi9,

how would we make a GET request for the album

information?

REST API structure (details):

- The Base URL is https://api.spotify.com

- The HTTP method is GET

- The API endpoint to query is:
https://api.spotify.com/v1/albums/<spotify_id>

- It returns JSON data about the album that's requested

https://developer.spotify.com/web-api/get-album/

GET request: Browse to URL

Loading a URL in a browser issues an HTTP GET request for

that resource.

So if we just piece together this URL:

- API Endpoint:
https://api.spotify.com/v1/albums/<spotify_id>

- Album ID: 7aDBFWp72Pz4NZEtVBANi9

- Request URL:

https://api.spotify.com/v1/albums/7aDBFWp72Pz4NZE

tVBANi9

If you click on the link, you see it returns a JSON object.

https://api.spotify.com/v1/albums/7aDBFWp72Pz4NZEtVBANi9
https://api.spotify.com/v1/albums/7aDBFWp72Pz4NZEtVBANi9
https://api.spotify.com/v1/albums/7aDBFWp72Pz4NZEtVBANi9

GET request: fetch()

Actually, the fetch() API also issues an HTTP GET request

by default.

So if we do:

fetch('https://api.spotify.com/v1/albums/7aDBFWp72Pz4

NZEtVBANi9')

 .then(onResponse)

 .then(onTextReady);

...we can load the JSON data as a JavaScript object, as we

did with our .json files!

(CodePen / demo)

https://codepen.io/bee-arcade/pen/04b8dbe8ad433bcb841baa58de3cc0fa?editors=1111
https://s.codepen.io/bee-arcade/debug/04b8dbe8ad433bcb841baa58de3cc0fa

Album example

Let's write a web page that asks the user to enter an artist's

name, then displays the albums of that artist, as provided

by the Spotify Search API. (live demo)

https://developer.spotify.com/web-api/search-item/
https://yayinternet.github.io/lecture17/spotify-albums/spotify-discography.html

Spotify search API

Spotify Search URL:
https://api.spotify.com/v1/search?type=album&q=query

E.g.

https://api.spotify.com/v1/search?type=album&q=beyonce

Q: Hey, what's that at the end of the URL?

- ?type=album&q=beyonce

https://api.spotify.com/v1/search?type=album&q=query
https://api.spotify.com/v1/search?type=album&q=query
https://api.spotify.com/v1/search?type=album&q=query
https://api.spotify.com/v1/search?type=album&q=beyonce
https://api.spotify.com/v1/search?type=album&q=beyonce
https://api.spotify.com/v1/search?type=album&q=beyonce

Query parameters

You can pass parameters to HTTP GET requests by adding

query parameters to the URL:

?type=album&q=beyonce

- Defined as key-value pairs

- param=value

- The first query parameter starts with a ?

- Subsequent query parameters start with &

Reminder: HTML elements

Single-line text input:

In JavaScript, you can read and set the input text via
inputElement.value

Some other input types:
- Select
- Textarea
- Checkbox

https://codepen.io/bee-arcade/pen/963ae17d61f828a7b5c321c148b84e40?editors=1011
https://codepen.io/bee-arcade/pen/963ae17d61f828a7b5c321c148b84e40?editors=1011
https://codepen.io/bee-arcade/pen/bd301158f62a54e40eea37da1aff0d7a?editors=1011
https://codepen.io/bee-arcade/pen/bd301158f62a54e40eea37da1aff0d7a?editors=1011
https://codepen.io/bee-arcade/pen/714933b816bf4f91a6ae4ab8eba6b649?editors=1011
https://codepen.io/bee-arcade/pen/714933b816bf4f91a6ae4ab8eba6b649?editors=1011

Form submit

Q: What if you want the form to submit after you click
"enter"?

Form submit

1. Wrap your input elements in a <form>

You should also use <input type="submit"> instead of

<button> for the reason on the next slide...

Form submit

2. Listen for the 'submit' event on the form element:

This is why you want to use <input type="submit">

instead of <button> -- the 'submit' event will fire on click

for but not <button>.

Form submit

3. Prevent the default action before handling the event

through event.preventDefault():

The page will refresh on submit unless you explicitly

prevent it.

Album example

Solution: GitHub / Demo

https://github.com/yayinternet/lecture17/blob/master/spotify-albums/app.js
https://yayinternet.github.io/lecture17/spotify-albums/spotify-discography.html

