
CS193X:
Web Programming

Fundamentals
Spring 2017

Victoria Kirst
(vrk@stanford.edu)

Schedule

Today:

- async/await: A JavaScript language feature

- Not Node-specific!

- Sending data to the server

- Returning JSON

- package.json

- HW5 released

- Due May 30, but please try to complete the setup

steps by May 27

PSA: Reinstall Node!

Whoops, you should install Node v7 instead of Node v6.

Please revisit the installation instructions:

- http://web.stanford.edu/class/cs193x/install-node/

If you followed them earlier, please reinstall Node, this

time selecting "Current" rather than "LTS."

http://web.stanford.edu/class/cs193x/install-node/
http://web.stanford.edu/class/cs193x/install-node/

Lecture code

The lecture code has been uploaded to this GitHub:

- https://github.com/yayinternet/lecture21

https://github.com/yayinternet/lecture21
https://github.com/yayinternet/lecture21

async/await

Two types of asynchrony

We have been working with two broad types of

asynchronous events:

1. Inherently asynchronous events

- Example: addEventListener('click'). There is no

such thing as a synchronous click event.

2. Annoyingly asynchronous events

- Example: fetch(). This function would be easier to

use if it were synchronous, but for performance reasons

it's asynchronous

Asynchronous fetch()

function onJsonReady(json) {

 console.log(json);

}

function onResponse(response) {

 return response.json();

}

fetch('albums.json')

 .then(onResponse)

 .then(onJsonReady);

The usual

asynchronous

fetch() looks like

this:

Synchronous fetch()?

// THIS CODE DOESN'T WORK

const response = fetch('albums.json');

const json = response.json();

console.log(json);

A hypothetical synchronous fetch() might look like this:

This is a lot cleaner code-wise!!
However, a synchronous fetch() would freeze the

browser as the resource was downloading, which would be

terrible for performance.

async / await

What if we could get the best of both worlds?

- Synchronous-looking code

- That actually ran asynchronously

// THIS CODE DOESN'T WORK

const response = fetch('albums.json');

const json = response.json();

console.log(json);

// But this code does work:

async function loadJson() {

 const response = await fetch('albums.json');

 const json = await response.json();

 console.log(json);

}

loadJson();

async / await

What if we could get the best of both worlds?

- Synchronous-looking code

- That actually ran asynchronously

// But this code does work:

async function loadJson() {

 const response = await fetch('albums.json');

 const json = await response.json();

 console.log(json);

}

loadJson();

async / await

What if we could get the best of both worlds?

- Synchronous-looking code

- That actually ran asynchronously

???

async functions

A function marked async has the following qualities:

- It will behave more or less like a normal function if you

don't put await expression in it.

- An await expression is of form:

- await promise

async functions

A function marked async has the following qualities:

- If there is an await expression, the execution of the

function will pause until the Promise in the await

expression is resolved.
- Note: The browser is not blocked; it will continue executing JavaScript

as the async function is paused.

- Then when the Promise is resolved, the execution of

the function continues.

- The await expression evaluates to the resolved value

of the Promise.

function onJsonReady(json) {

 console.log(json);

}

function onResponse(response) {

 return response.json();

}

fetch('albums.json')

 .then(onResponse)

 .then(onJsonReady);

async function loadJson() {

 const response = await fetch('albums.json');

 const json = await response.json();

 console.log(json);

}

loadJson();

The methods in

purple return

Promises.

function onJsonReady(json) {

 console.log(json);

}

function onResponse(response) {

 return response.json();

}

fetch('albums.json')

 .then(onResponse)

 .then(onJsonReady);

async function loadJson() {

 const response = await fetch('albums.json');

 const json = await response.json();

 console.log(json);

}

loadJson();

The variables in

blue are the values

that the Promises

"resolve to".

async function loadJson() {

 const response = await fetch('albums.json');

 const json = await response.json();

 console.log(json);

}

loadJson();

async functions

async function loadJson() {

 const response = await fetch('albums.json');

 const json = await response.json();

 console.log(json);

}

loadJson();

async functions

async function loadJson() {

 const response = await fetch('albums.json');

 const json = await response.json();

 console.log(json);

}

loadJson();

async functions

Since we've reached an await statement, two things happen:

1. fetch('albums.json'); runs

2. The execution of the loadJson function is paused here until

fetch('albums.json'); has completed.

async function loadJson() {

 const response = await fetch('albums.json');

 const json = await response.json();

 console.log(json);

}

loadJson();

console.log('after loadJson');

async functions

At the point, the JavaScript engine will return from loadJson()

and it will continue executing where it left off.

async function loadJson() {

 const response = await fetch('albums.json');

 const json = await response.json();

 console.log(json);

}

loadJson();

console.log('after loadJson');

async functions

async function loadJson() {

 const response = await fetch('albums.json');

 const json = await response.json();

 console.log(json);

}

loadJson();

console.log('after loadJson');

async functions

async function loadJson() {

 const response = await fetch('albums.json');

 const json = await response.json();

 console.log(json);

}

loadJson();

console.log('after loadJson');

async functions

async function loadJson() {

 const response = await fetch('albums.json');

 const json = await response.json();

 console.log(json);

}

loadJson();

console.log('after loadJson');

async functions

If there are other events, like if a button was clicked and we had a

event handler for it, JavaScript will continue executing those

events.

async function loadJson() {

 const response = await fetch('albums.json');

 const json = await response.json();

 console.log(json);

}

loadJson();

console.log('after loadJson');

async functions

When the fetch() completes, the JavaScript engine will resume

execution of loadJson().

function onResponse(response) {

 return response.json();

}

fetch('albums.json')

 .then(onResponse)

Recall: fetch() resolution

Normally when fetch() finishes, it executes the onResponse

callback, whose parameter will be response.

In Promise-speak:

- The return value of fetch() is a Promise that resolves to

the response object.

async function loadJson() {

 const response = await fetch('albums.json');

 const json = await response.json();

 console.log(json);

}

loadJson();

console.log('after loadJson');

async functions

The value of the await expression is the value that the Promise

resolves to, in this case response.

async function loadJson() {

 const response = await fetch('albums.json');

 const json = await response.json();

 console.log(json);

}

loadJson();

console.log('after loadJson');

async functions

async function loadJson() {

 const response = await fetch('albums.json');

 const json = await response.json();

 console.log(json);

}

loadJson();

async functions

Since we've reached an await statement, two things happen:

1. response.json(); runs

2. The execution of the loadJson function is paused here until

response.json(); has completed.

async function loadJson() {

 const response = await fetch('albums.json');

 const json = await response.json();

 console.log(json);

}

loadJson();

async functions

If there are other events, like if a button was clicked and we had a

event handler for it, JavaScript will continue executing those

events.

async function loadJson() {

 const response = await fetch('albums.json');

 const json = await response.json();

 console.log(json);

}

loadJson();

async functions

async function loadJson() {

 const response = await fetch('albums.json');

 const json = await response.json();

 console.log(json);

}

loadJson();

async functions

When the response.json() completes, the JavaScript engine

will resume execution of loadJson().

function onJsonReady(jsObj) {

 console.log(jsObj);

}

function onResponse(response) {

 return response.json();

}

fetch('albums.json')

 .then(onResponse)

 .then(onJsonReady);

Recall: json() resolution

In Promise-speak:

- The return value of json() is a Promise that resolves to the

jsObj object.

Normally when json()

finishes, it executes the

onJsonReady callback,

whose parameter will be

jsObj.

async functions

The value of the await expression is the value that the Promise

resolves to, in this case json.

async function loadJson() {

 const response = await fetch('albums.json');

 const json = await response.json();

 console.log(json);

}

loadJson();

async functions

async function loadJson() {

 const response = await fetch('albums.json');

 const json = await response.json();

 console.log(json);

}

loadJson();

async functions

async function loadJson() {

 const response = await fetch('albums.json');

 const json = await response.json();

 console.log(json);

}

loadJson();

async functions

async function loadJson() {

 const response = await fetch('albums.json');

 const json = await response.json();

 console.log(json);

}

loadJson();

Note that the JS execution does *not* return back to the call

site, since the JS execution already did that when we saw the

first await expression.

Returning from async

Q: What happens if we return a value from an async

function?

async function loadJson() {

 const response = await fetch('albums.json');

 const json = await response.json();

 console.log(json);

 return true;

}

loadJson();

Returning from async

A: async functions must always return a Promise.

async function loadJson() {

 const response = await fetch('albums.json');

 const json = await response.json();

 console.log(json);

 return true;

}

loadJson();
If you return a value that is not a

Promise (such as true), then the

JavaScript engine will automatically

wrap the value in a Promise that

resolves to the value you returned.

Returning from async

function loadJsonDone(value) {

 console.log('loadJson complete!');

 // Prints "value: true"

 console.log('value: ' + value);

}

async function loadJson() {

 const response = await fetch('albums.json');

 const json = await response.json();

 console.log(json);

 return true;

}

loadJson().then(loadJsonDone)

console.log('after loadJson');

More async

- Constructors cannot be marked async

- But you can pass async functions as parameters to:

- addEventListener (Browser)

- on (NodeJS)

- get/put/delete/etc (ExpressJS)

- Wherever you can pass a function as a parameter

Why async now?!

Because you'll use it on HW5!

Recall: ExpressJS routes

We've been seeing ExpressJS routes that look like this, with

an anonymous function parameter:

ExpressJS routes

Of course, they can also be written like this, with a named

function parameter:

ExpressJS routes

In HW5, the starter code defines an async function

parameter:

Which works about the same as a non-async function,

except when you write an await inside of it.

gsa-sheets library

You will need to use the provided gsa-sheets library,

whose functions all return Promises:

Method name Description

getRows() Returns a Promise that resolves to the
non-empty rows of the spreadsheet.

appendRow(row) Adds the given row to the end of the
spreadsheet. Returns a Promise that resolves
when complete.

deleteRow(index) Deletes the given row in the spreadsheet.
Returns a Promise that resolves when
complete.

(see more details in the HW5 spec)

http://web.stanford.edu/class/cs193x/homework/5-sheets#using-the-gsa-sheets-node-module

ExpressJS routes

You should use await expression with these method calls:

This will essentially let you work with the gsa-sheets

methods as if they returned values instead of Promises.

async / await availability

Browsers:

- All major browsers support async /await, but it's

pretty recent: Edge + Safari support came ~1 month ago

NodeJS:

- async /await available in v7.5+... which is why we

need you to install v7 instead of v6

(FYI, underneath the covers async/await is implemented by

generator functions, another functional programming construct)

http://caniuse.com/#search=async%20functions
http://caniuse.com/#search=async%20functions
http://caniuse.com/#search=async%20functions
http://caniuse.com/#search=async%20functions
http://node.green/#ES2017-features-async-functions
http://node.green/#ES2017-features-async-functions
http://node.green/#ES2017-features-async-functions
http://node.green/#ES2017-features-async-functions
http://node.green/#ES2017-features-async-functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/function*
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/function*

One more random thing:
Template Literals

Template literals

Template literals allow you to embed expressions in

JavaScript strings:

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals

Sending data to the server

Route parameters

When we used the Spotify API, we saw a few ways to send

information to the server via our fetch() request.

Example: Spotify Album API

https://api.spotify.com/v1/albums/7aDBFWp72P

z4NZEtVBANi9

- The last part of the URL is a parameter representing the

album id, 7aDBFWp72Pz4NZEtVBANi9

A parameter defined in the URL of the request is often

called a "route parameter."

Route parameters

Q: How do we read route parameters in our server?

A: We can use the :variableName syntax in the path to

specify a route parameter (Express docs):

We can access the route parameters via req.params.

https://expressjs.com/en/guide/routing.html

Route parameters

GitHub

https://github.com/yayinternet/lecture20/tree/master/route-params
https://github.com/yayinternet/lecture20/tree/master/route-params

Route parameters

You can define multiple route parameters in a URL (docs):

GitHub

https://expressjs.com/en/guide/routing.html
https://github.com/yayinternet/lecture20/tree/master/route-params
https://github.com/yayinternet/lecture20/tree/master/route-params

Example: Dictionary

Given a dictionary.json file of word/value pairs, a

dictionary app that lets you look up the definition of the word:

Dictionary lookup

Dictionary fetch

Example: Dictionary

It'd be nice to have some flexibility on the display of the

definition:

Returning JSON from the server

JSON response

If we want to return a JSON response, we should use

res.json(object) instead:

The parameter we pass to res.json() should be a

JavaScript object.

https://expressjs.com/en/api.html#res.json

Example: Dictionary lookup

Example: Dictionary fetch

Result

Saving data

Example: Dictionary

What if we want to

modify the definitions

of words as well?

Posting data

POST message body: fetch()

Client-side:

You should specify a message body in your fetch() call:

Server-side

Server-side: Handling the message body in NodeJS/Express

is a little messy (GitHub):

https://github.com/yayinternet/lecture20/tree/master/post-body-no-parser

body-parser

We can use the body-parser library to help:

This is not a NodeJS API library, so we need to install it:

$ npm install body-parser

https://github.com/expressjs/body-parser

body-parser

We can use the body-parser library to help:

This creates a JSON parser stored in jsonParser, which

we can then pass to routes whose message bodies we want

parsed as JSON.

https://github.com/expressjs/body-parser

POST message body

Now instead of this code:

POST message body

We can access the message body through req.body:

GitHub

https://github.com/yayinternet/lecture20/tree/master/post-body-with-parser
https://github.com/yayinternet/lecture20/tree/master/post-body-with-parser

POST message body

We can access the message body through req.body:

Note that we also had to add the jsonParser as a

parameter when defining this route.

GitHub

https://github.com/yayinternet/lecture20/tree/master/post-body-with-parser
https://github.com/yayinternet/lecture20/tree/master/post-body-with-parser

POST message body

Finally, we need to add JSON content-type headers on the

fetch()-side (GitHub):

https://github.com/yayinternet/lecture20/blob/master/post-body-with-parser/public/fetch.js

Example: Dictionary

We will modify the

dictionary example to

POST the contents of

the form.

Example: server-side

Example: fetch()

Query parameters

Query parameters

The Spotify Search API was formed using query parameters:

Example: Spotify Search API

https://api.spotify.com/v1/search?type=album

&q=beyonce

- There were two query parameters sent to the Spotify

search endpoint:

- type, whose value is album

- q, whose value is beyonce

Query parameters

Q: How do we read query parameters in our server?

A: We can access query parameters via req.query:

GitHub

https://github.com/yayinternet/lecture20/tree/master/query-params
https://github.com/yayinternet/lecture20/tree/master/query-params

Recap

You can deliver parameterized information to the server in

the following ways:

1. Route parameters

2. GET request with query parameters

(DISCOURAGED: POST with query parameters)

3. POST request with message body

Q: When do you use route parameters vs query

parameters vs message body?

GET vs POST

● Use GET requests for retrieving data, not writing data

● Use POST requests for writing data, not retrieving data

You can also use more specific HTTP methods:

○ PATCH: Updates the specified resource

○ DELETE: Deletes the specified resource

There's nothing technically preventing you from breaking

these rules, but you should use the HTTP methods for their

intended purpose.

https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol#Request_methods
https://en.wikipedia.org/wiki/POST_(HTTP)

Route params vs Query params

Generally follow these rules:

● Use route parameters for required parameters for the

request

● Use query parameters for:

○ Optional parameters

○ Parameters whose values can have spaces

These are conventions and are not technically enforced,

nor are they followed by every REST API.

Example: Spotify API

The Spotify API mostly followed these conventions:

https://api.spotify.com/v1/albums/7aDBFWp72Pz4NZEtVBANi9

- The Album ID is required and it is a route parameter.

https://api.spotify.com/v1/search?type=album&q=the%20wee

knd&limit=10

- q is required but might have spaces, so it is a query

parameter

- limit is optional and is a query parameter

- type is required but is a query parameter (breaks

convention)

Notice both searches are GET requests, too

https://api.spotify.com/v1/albums/7aDBFWp72Pz4NZEtVBANi9
https://api.spotify.com/v1/albums/7aDBFWp72Pz4NZEtVBANi9
https://api.spotify.com/v1/search?type=album&q=the%20weeknd&limit=10
https://api.spotify.com/v1/search?type=album&q=the%20weeknd&limit=10
https://api.spotify.com/v1/search?type=album&q=the%20weeknd&limit=10

package.json

Installing dependencies

In our examples, we had to install the express and

body-parser npm packages.

$ npm install express

$ npm install body-parser

These get written to the node_modules directory.

Uploading server code

When you upload NodeJS code to a GitHub repository (or

any code repository), you should not upload the

node_modules directory:

- You shouldn't be modifying code in the node_modules

directory, so there's no reason to have it under version

control

- This will also increase your repo size significantly

Q: But if you don't upload the node_modules directory to

your code repository, how will anyone know what

libraries they need to install?

Managing dependencies

If we don't include the node_modules directory in our

repository, we need to somehow tell other people what

npm modules they need to install.

npm provides a mechanism for this: package.json

https://docs.npmjs.com/getting-started/using-a-package.json

package.json

You can put a file named package.json in the root

directory of your NodeJS project to specify metadata about

your project.

Create a package.json file using the following command:

$ npm init

This will ask you a series of questions then generate a

package.json file based on your answers.

https://docs.npmjs.com/getting-started/using-a-package.json
https://docs.npmjs.com/getting-started/using-a-package.json
https://docs.npmjs.com/getting-started/using-a-package.json

Auto-generated package.json

GitHub

https://github.com/yayinternet/lecture20/tree/master/post-body-with-parser-package-json
https://github.com/yayinternet/lecture20/tree/master/post-body-with-parser-package-json

Saving deps to package.json

Now when you install packages, you should pass in the

--save parameter:

$ npm install --save express

$ npm install --save body-parser

This will also add an entry for this library in package.json.

Saving deps to package.json

If you remove the node_modules directory:

$ rm -rf node_modules

You can install your project dependencies again via:

$ npm install

- This also allows people who have downloaded your code from

GitHub to install all your dependencies with one command instead

of having to install all dependencies individually.

npm scripts

Your package.json file also defines scripts:

You can run these scripts using $ npm scriptName

E.g. the following command runs "node server.js"

$ npm start

